Attitude Control for Small Satellites using Control Moment Gyros

Similar documents
CONTROL MOMENT GYRO CMG S : A compact CMG product for agile satellites in the one ton class

" Control Techniques for Aerospace Systems "

SSC15-XI-2 SmallSat Conference

Feasibility and design of miniaturized Control Moment Gyroscope for a 3-axis stabilized Micro Satellite

Line of Sight Stabilization Primer Table of Contents

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

MIXED CONTROL MOMENTUM GYROSCOPES AND REACTIONS WHEEL BASED ATTITUDE CONTROL SYSTEM

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education

SSC99-XI-8. GyroWheel TM - An Innovative New Actuator/Sensor for 3-axis Spacecraft Attitude Control

'Smartphone satellite' developed by Surrey space researchers

Camera Drones Lecture 2 Control and Sensors

Camera gimbal control system for unmanned platforms

Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

THE DYNAMIC MODEL OF A FOUR CONTROL MOMENT GYROSCOPE SYSTEM MODELO DINÁMICO DE UN SISTEMA DE CONTROL DE PAR POR CUATRO GIRÓSCOPOS

AMG Series. Motorized Position and Rate Gimbals. Continuous 360 rotation of azimuth and elevation including built-in slip ring

A Dynamic, Hardware-in-the-Loop, Three-Axis Simulator of Spacecraft Attitude Maneuvering with Nanosatellite Dimensions

AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION

E80. Experimental Engineering. Lecture 9 Inertial Measurement

DYNAMICS OF SPACE ROBOTIC ARM DURING INTERACTIONS WITH NON COOPERATIVE OBJECTS

Satellite Attitude Determination

Collaboration is encouraged among small groups (e.g., 2-3 students).

Smartphone Video Guidance Sensor for Small Satellites

VELOCITY OPTIMIZATION METHOD OF X-BAND ANTTENA FOR JTTER ATTENUATION

Agile ACMS Software Fast Prototyping for Real-time Validation with Hardware in the Loop

Responsive Flight Software Development & Verification Techniques for Small Satellites

Mechanisms Overview. August Space Systems. Mech_over aug01.ppt

Taking into account Flexibility in Attitude Control 1

DEVELOPMENT OF THE JEM ICS ANTENNA POINTING SYSTEM

A Cryogenic Heat Transport System for Space-Borne Gimbaled Instruments

1 in = 25.4 mm 1 m = ft g = 9.81 m/s 2

Meeting Date: February 12, Meeting Location: Building 78 Room Meeting time: 8:00 10:00 AM. Timeline:

Spacecraft Actuation Using CMGs and VSCMGs

NAVAL POSTGRADUATE SCHOOL THESIS

Characterization and Modeling of a Control Moment Gyroscope

MOBILE ROBOTIC SYSTEM FOR GROUND-TESTING OF MULTI-SPACECRAFT PROXIMITY OPERATIONS

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

Design of a Three-Axis Rotary Platform

Trajectory planning of 2 DOF planar space robot without attitude controller

ECS servo system MCS servo motors

Strapdown Inertial Navigation Technology

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE

Gyroscopic Stabilization of Unstable Dynamical Systems

Test Bench For Nanosatellite Attitude Determination And Control System Ground Tests

Samara center for nanosatellite testing: opportunities and services. Associate Professor, Technical Director of CTN Ivliev Alexander V.

Control of a Balance-Beam with Unknown Loads Using the Restoration Angle of a Gimbal

SHOCK AND VIBRATION TESTING OF AN AMB SUPPORTED ENERGY STORAGE FLYWHEEL

Strapdown inertial navigation technology

A Universal Interface for Modular Spacecraft. Lennon Rodgers

VARIABLE SPEED CONTROL MOMENT GYROSCOPE WORKBENCH: A NEW SIMULATION TOOL FOR TOMORROW'S SPACECRAFT

Inertial Navigation Systems

Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston

PROCEEDINGS OF SPIE. Kiarash Tajdaran, Larry D. Dewell, Eric V. Eason, Raymond M. Bell, Kuo-Chia Liu, et al.

VIBRATION-ISOLATION SYSTEM WITH GYROSCOPIC STABILIZER

Product Information. RCN 6000 Absolute Angle Encoder with Integral Bearing and Large Hollow Shaft

OHB System AG International Conference on Space Optics ICSO 2016 Prepared by Raffello MIGLIORE Date , Biarritz.

General model and control of an n rotor helicopter

ROBOTICS AND AUTONOMOUS SYSTEMS

Presentation Outline

INSTALLATION MANUAL AND OPERATING INSTRUCTIONS Series Electric Attitude Indicator

Robotics and Autonomous Systems

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

Robotics and Autonomous Systems

Spacecraft Momentum Control Systems

Two-Axis Gimbal for Air-to-Air and Air-to-Ground Laser Communications

Prototyping and characterization of an adjustable skew angle single gimbal control moment gyroscope

Physical Simulation Experiment System of Multi-Rigid-Body Spacecraft Attitude Control Based on Micro-Gravity Floating Platform Environment

ALGORITHMS FOR DETECTING DISORDERS OF THE BLDC MOTOR WITH DIRECT CONTROL

Design of Direct-Drive Mechanical Arms. Haruhiko Asada and Takeo Kanade CMURITR814

Author(s) Ackman, Kerri L. Prototyping of an open-architecture CMG sys. Monterey, California. Naval Postgraduate Sc. Issue Date

Vehicle s Kinematics Measurement with IMU

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS

Calhoun: The NPS Institutional Archive

Dynamical Modeling and Controlof Quadrotor

The new MiniCODER Absolute multi-talent for hollow shaft drives

All Graduate Theses and Dissertations

Developing a Robot Model using System-Level Design

Mobile Robotic System for Ground Testing of Multi- Spacecraft Proximity Operations

Rotational3D Efficient modelling of 3D effects in rotational mechanics

navigation Isaac Skog

PLG110 Linear Stage PLG mm Travel PLG110 s. Frameless Motor With Ballscrew Linear Motor

COMPACT PRECISION LINEAR MOTORIZED ACTUATORS LSMA Series LSMA-173

ALAR Series. Direct Drive, Large-Aperture, Rotary Stage. 5 different aperture sizes: 100 mm, 150 mm, 200 mm, 250 mm, 325 mm

ALAR Series. Direct Drive, Large-Aperture, Rotary Stage. 5 different aperture sizes: 100 mm, 150 mm, 200 mm, 250 mm, 325 mm

A Constrained Attitude Control Module for Small Satellites

Calibration of Inertial Measurement Units Using Pendulum Motion

Autonomous Navigation for Flying Robots

Magnetically Suspended VSCMGs for Simultaneous Attitude Control and Power Transfer IPAC Service

Rapid Assembly of Spacecraft Structures for Responsive Space

Path planning for satellite mounted robots R.W. Longman/ V.H. Schulz," H.G. Bock" Department of Mechanical Engineering, Columbia University,

Testbed for on-orbit servicing and formation flying dynamics emulation

Mechatronics Architecture of Smartphone-Based Spacecraft ADCS using VSCMG Actuators

TESTSAT STRUCTURE AND INTERFACE DESIGN & FABRICATION. Jonathan R. Chinen College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822

machine design, Vol.7(2015) No.4, ISSN pp

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

STEP 1: MODULE MOUNTING / WIRING:

INSTITUTE OF AERONAUTICAL ENGINEERING

Structural Configurations of Manipulators

EE565:Mobile Robotics Lecture 2

Transcription:

Attitude Control for Small Satellites using Control Moment Gyros V Lappas a, Dr WH Steyn b, Dr CI Underwood c a Graduate Student, University of Surrey, Guildford, Surrey GU 5XH, UK b Professor, University of Stellenbosch, Stellenbosch 76, South Africa c Senior Lecturer, University of Surrey, Guildford, Surrey GU 5XH, UK Abstract In this paper a new Attitude Control System is proposed, based on Control Moment Gyroscopes (CMG) These actuators can provide unique torque, angular momentum and slew rate capabilities to small satellites without any increase in power, mass or volume This will help small satellites become more agile A low cost, miniature SGCMG designed for an enhanced microsatellite is analysed Sizing of a proposed SGCMG indicates the advantages of using CMGs The SGCMG is able to produce a torque of 98 mnm and this is confirmed through experiments performed on an air-bearing table Introduction Many of the space missions will require much more capable spacecraft within smaller sizes These will include high precision Earth Observation and space monitoring, satellite inspection, distributed platforms, constellations, satellite docking and miniature interplanetary probes Many of these missions will require agility Agility considerably increases the operational envelope and efficiency of spacecraft and can substantially increase the return of mission data Attitude Control Systems (ACS) is an area critical for all types of spacecraft Designing high performance ACS subsystems for future high precision, agile mission scenarios within the stringent physical size constraints of small satellites is not an easy task Agility requires fast slew maneuvers of the 1-1 /s range It has become evident that current ACS actuators (eg momentum wheels, reaction wheels) are not able to provide this degree of agility efficiently However, Control Moment Gyros are actuators that can support such slew rates, and yet, to date, they have never been used in small satellites A low cost, miniature SGCMG for agile microsatellites A low cost miniature SGCMG has been designed as part of this research The aim is to investigate the feasibility of using a SGCMG for an enhanced microsatellite from the hardware point of view Slew Manoeuvre Requirement As a first step towards developing actuators for highly agile spacecraft, an actuator with an average slew requirement of 3 /s, will be studied using a SSTL

microsatellite platform, the SSTL Constella bus, which is baselined for the TOPSAT mission [4], as a suitable target vehicle A 3 /s average slew rate means that the satellite used for this analysis will be able to accomplish a 9 manoeuvre in 3s (or 3 in 1s) Table 1 provides the characteristics of the satellite (microsatellite) that is going to be used throughout the rest of the analyses, unless stated otherwise Satellite Inertia [I x, I y, I z ] (kg-m ) [5, 5, 5] Mass (kg) 13 Average Slew rate ( /s) 3 Table 1 - SSTL E Microsatellite characteristics Of all candidate actuators (reaction wheels, momentum wheels, control moment gyros), all of them have as a common factor a spinning rotor, which is the main torque generator Thus, the slew maneuver speed depends critically on the rotor s (hence motor) torque and momentum capability Therefore: w w w s N = I = I (1) where, N w is the wheel torque, I w is the wheel moment of inertia, w is the wheel speed I s is the spacecraft moment of inertia (Table 1) is the spacecraft s angular acceleration All parameters in this paper are measured with respect to the spacecraft body frame and referenced to the inertial frame The requirement is of the spacecraft to be able to perform a 9 manoeuvre in 3s, or for 3 in 1s In order to complete the 3 manoeuvres in 1s there needs to be an acceleration phase (which will take 5s) and a deceleration phase Thus we make our calculations for 15 in 5s: 1 t = () 1 rad = (5), = 1, 1 s with a maximum angular rate of 15 rad/s N w = N w-req = 55 mnm where, N w-req is the required torque needed to achieve the specified manoeuvre

A 4-SGCMG cluster in pyramid configuration is used throughout this paper as the basis for an ACS system for a microsatellite From the previous section it was concluded that a torque of 55 mnm is required to perform a 3 manoeuvre in 1s This requirement is used to size a SGCMG for a microsatellite: N CMG = h (3) Sizing the angular momentum of the CMG h and the maximum gimbal angles rate max (same for all four CMGs) is a trade-off between performance (torque), size and singularity avoidance One would want to keep the angular momentum as small as possible, since it depends on the inertia of the spinning wheel as well as the speed of rotation of the wheel This implies that with a larger angular momentum, a larger DC motor will be required, with a heavier disc On the other hand, the larger the gimbal rate, the larger the angle excursions, thus the greater the probability that the CMGs will enter into a singularity Thus it becomes important to optimise h and given the mechanical constraints of a practical system The attitude control model designed in previous work [3] is used to perform and evaluate this trade and to select the optimum values to be used in a CMG system From simulations, it has been decided to use a max of 6 /s (or 1 rad/s) This value matches the maximum slew rate needed in order to perform a 3 manoeuvre in 1s This selection for max ensures that torque amplification is feasible throughout a commanded manoeuvre Normally, one can calculate the angular momentum h, by using Equation 3 (and get h of each CMG) but this will not enable us to properly size a CMG for a single axis manoeuvre This can be explained by analysing the 4-SGCMG cluster trying to do a manoeuvre about its x-axis: Figure 1 - CMG cluster for an x-axis manoeuvre Due to symmetric rotation 1 = and N x 1 = = : = h cosbcosd (4)

Thus, for N z = 55 mnm, max = 1 rad/s and =, h = 35 Nms A value of 35 Nms is used to size the disc of the spinning wheel: h = I CMG (5) The DC motor chosen to be used to spin the disc has a maximum speed of rotation of, rpm Thus, a disc with an inertia of 17 x 1-4 kg-m is needed Now that all CMG parameters have been established, these values can be put into the attitude control model [3] designed in order to evaluate the performance of the proposed CMG Figure depicts the simulation of a microsatellite performing a 3 manoeuvre in 1s with the derived SGCMG parameters The manoeuvre is accomplished within 1s Figure b indicates the gimbal angle excursions, not exceeding more than 36 The gimbal rates reach a maximum of 67 /s (approximately 1 rad/s) The CMG torque and angular momentum values reach the values expected 35 Roll-Pitch-Yaw 4 Gimbal Angles 3 5 Roll Pitch Yaw 3 1 G1 G G3 G4 a degrees 15 1 degrees -1 b 5 - -3-5 4 6 8 1 1 14 16 18 Gimbal Rates 8-4 4 6 8 1 1 14 16 18 5 Ncmg 6 4 G1 G G3 G4 4 3 N CMGx N CMGy N CMGz c degrees/s N-m 1 d - -1-4 - -3-6 -4-8 4 6 8 1 1 14 16 18-5 4 6 8 1 1 14 16 18 Figure - a) Roll-Pitch-Yaw b) Gimbal angles c) Gimbal Rates d) CMG Torque SGCMG Experiments The CMG design proposed and evaluated in the previous section has being built and has been tested to prove the concept of CMGs for microsatellites The design comprises of an ultra miniature, high performance DC motor, gimballed by a stepper motor The use of a stepper motor is justified by trying to keep the design simple

and reliable A potentiometer and encoder are used to get readings for the rate of rotation of the DC motor mounted on its shaft A gear is used with an approximate ratio of :1 to reduce the 18 step angle and to increase the resolution of the CMG Two bearings are used to provide structural support to the CMG shafts Having designed the electronics to control the DC motor and stepper motors, the CMG is put on an air bearing table An air-bearing table provides the capability of rotation without significant friction It is frequently used to test the dynamic characteristics and performance of a model satellite control system during the prelaunch experimental testing campaign on the ground It is suspended by air, which allows nearly frictionless rotation The rotational freedom depends on the mechanical structure The air bearing table used is a single degree of freedom air bearing mounted around a semi-sphere which provides air suspension via 6 holes placed 1 apart in two different levels, which propel air under pressure to slightly lift the rotating part of the table from the stationary part In order to test the SGCMG the CMG test assembly was put on the air-bearing table A laser-pointing device was used to reflect on a mirror on the test assembly in order to calculate the angular rate of the rotating platform, which is rotating due to the torque exerted by the SGCMG The method used to test the SGCMG was to allow the CMG begin from a known inclined position of 5 from a reference axis parallel to the ground level The CMG is then commanded to perform a 5 excursion and return to its initial position, thus resulting to a 1 total gimbal angle excursion (5 positive and 5 negative) This will generate a rotation about the air-bearing rotation axis, which we measure by using the laser-pointing device and time with a stopwatch That allows measuring the average angular rate and angular acceleration of the platform The period and frequency of these 5 excursions can be varied and various measurements are made in order to evaluate the SGCMGs performance The theoretical and experimental values of the SGCMG designed are compared The theoretical values are attained by using the known angular momentum, h, of the SGCMG by using Equation 5 (I CMG and are known) and the commanded gimbal rates The experimental values are measured via the relationship derived from the dynamics of the rotation table: I AB AB = -I w w + N (6) d where, AB w is the angular speed of the air-bearing rotating platform is the angular speed of the CMG disc N d is the external disturbance torque For N d = (due to the air-bearing table) and by knowing the moment of inertia of the air-bearing table I AB (44 kg-m ) the experimental measurements can be used to calculate the experimental torque of the SGCMG

Theoretical vs Experimental CMG Torques 1E- 1E- 8E-3 Torque (Nm) 6E-3 4E-3 E-3 E+ 5 1 15 5 3 Gimbal Rates (degrees/s) Figure 3 - Theoretical and Experimental CMG Torques Comparing the theoretical and experimental data, it can be observed that the values are very close to each other with small deviations of error for a few measurements This can be justified from the low gimbal rates causing long excursions in the measurements of the distance measured from the reflecting laser beam Due to the small disturbances still existent in the air-bearing table, flywheel imbalances, flexing of the wires, flowing air in the room where the experiment takes place and also due to the small torques being measured, some small errors in measurements are expected Nonetheless the SGCMG is able to generate a torque of 98 mnm with a gimbal rate of 4 /s The CMG though is capable of producing the required 55 mnm torque for a 3 manoeuvre in 1s by simply using a higher gimbal rate or a higher inertia for the CMG disc For practical purposes a flywheel inertia of x 1-5 kg-m was used as well as a DC motor with a maximum angular speed of 11, rpm (maximum speed 16, rpm) Due to friction the maximum rpm of the motor cannot be obtained unless used in vacuum Future work In the next phase of research a cluster of 4-SGCMGs in pyramid configuration is to be designed This will focus into making the CMG cluster as compact and robust as possible A COTS Inertial Measurement Unit (IMU) will also be utilised in order to get better angular rate measurements Conclusions A new actuator for agile small satellites is described in this paper Future mission scenarios will a rapid slew manoeuvre capability Current ACS actuators momentum wheels, reaction wheels) are not able to provide this agility on a very efficient way CMGs can potentially be more capable and efficient actuators than those currently used and are argued in this paper to be the optimum actuator for agile small satellites A low cost, miniature SGCMG designed for an enhanced microsatellite is

studied Sizing of the proposed SGCMG indicates the advantages of using CMGs The SGCMG is able to produce a torque of 98 mnm and this is confirmed through experiments performed on an air-bearing table The use of CMGs will enable small satellites to substantially enhance their capabilities without any increase in power or size By providing agility, these satellites considerably increase their operational envelope and efficiency and substantially increase the return of earth and science mission data This can potentially lead into a new way of designing and operating small satellites, making them more versatile and efficient platforms than ever before References [1] Wie, B, Space Vehicle Dynamics and Control, AIAA Educational Series, Tempe, Arizona 1998 [] Steyn WH, Hashida Y, Lappas V, An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite, 14 th AIAA/USU Small Satellite Conference proceedings, SSC-VIII-8, August [3] Lappas, VJ, Steyn, WH, Underwood, CI, Control Moment Gyro Gimbal Angle Compensation using Magnetic Control During External Disturbances, AIAA Guidance, Navigation and Control Conference,Montreal, Quebec, Canada, 1 [4] Wicks, A, Jason, S, Harrison, J, An EO Constellation based on the TOPSAT Microsatellite: Global Daily Revisit at 5 meters, 15 th AIAA/USU Small Satellite Conference, SSC1-I-6, August 1