Filter Banks with Variable System Delay. Georgia Institute of Technology. Abstract

Similar documents
Filterbanks and transforms

Pyramid Coding and Subband Coding

Design of Low-Delay FIR Half-Band Filters with Arbitrary Flatness and Its Application to Filter Banks

Pyramid Coding and Subband Coding

The theory and design of a class of perfect reconstruction modified DFT filter banks with IIR filters

Module 9 AUDIO CODING. Version 2 ECE IIT, Kharagpur

OVERSAMPLED filter banks have their applications in

DSP-CIS. Part-IV : Filter Banks & Subband Systems. Chapter-10 : Filter Bank Preliminaries. Marc Moonen

X.-P. HANG ETAL, FROM THE WAVELET SERIES TO THE DISCRETE WAVELET TRANSFORM Abstract Discrete wavelet transform (DWT) is computed by subband lters bank

x[n] x[n] c[n] z -1 d[n] Analysis Synthesis Bank x [n] o d[n] Odd/ Even Split x[n] x [n] e c[n]

SCALABLE IMPLEMENTATION SCHEME FOR MULTIRATE FIR FILTERS AND ITS APPLICATION IN EFFICIENT DESIGN OF SUBBAND FILTER BANKS

LOW COMPLEXITY SUBBAND ANALYSIS USING QUADRATURE MIRROR FILTERS

Filter Bank Design and Sub-Band Coding

Design of Orthogonal Graph Wavelet Filter Banks

AUDIO COMPRESSION ATLO W BIT RATES USING A SIGNAL ADAPTIVE SWITCHED FILTERBANK. AT&T Bell Labs. Murray Hill, NJ 07974

Perfect Reconstruction FIR Filter Banks and Image Compression

Design of NPR DFT-Modulated Filter Banks Using Modified Newton s Method

Scalable Perceptual and Lossless Audio Coding based on MPEG-4 AAC

Audio-coding standards

Appendix 4. Audio coding algorithms

To Appear in the IEEE Transactions on Signal Processing

Lecture 12 Video Coding Cascade Transforms H264, Wavelets

Motion-Compensated Subband Coding. Patrick Waldemar, Michael Rauth and Tor A. Ramstad

The Design of Nonuniform Lapped Transforms

Audio-coding standards

An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients

Document Image Restoration Using Binary Morphological Filters. Jisheng Liang, Robert M. Haralick. Seattle, Washington Ihsin T.

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter

Graph Wavelets and Filter Banks Designs in Graph Spectral Domain

Efficient and Low-Complexity Image Coding with the Lifting Scheme and Modified SPIHT

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Keywords - DWT, Lifting Scheme, DWT Processor.

Abstract. circumscribes it with a parallelogram, and linearly maps the parallelogram onto

ECE 6560 Multirate Signal Processing Chapter 8

Chapter 6: Problem Solutions

Anu Kalidas Muralidharan Pillai and Håkan Johansson

Key words: B- Spline filters, filter banks, sub band coding, Pre processing, Image Averaging IJSER

Fatima Michael College of Engineering & Technology

Image Compression & Decompression using DWT & IDWT Algorithm in Verilog HDL

PQMF Filter Bank, MPEG-1 / MPEG-2 BC Audio. Fraunhofer IDMT

DEPARTMENT OF ELECTRICAL ENGINEERING SIGNAL PROCESSING LABORATORY. Professor Murat Kunt - Director LTS-DE-EPFL CH-1015 LAUSANNE. Oce:

Digital Image Processing

Multistage Rate Change 1/12

CHAPTER 3 MULTISTAGE FILTER DESIGN FOR DIGITAL UPCONVERTER AND DOWNCONVERTER

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework

Digital Signal Processing Lecture Notes 22 November 2010

Reversible Wavelets for Embedded Image Compression. Sri Rama Prasanna Pavani Electrical and Computer Engineering, CU Boulder

3.1. Solution for white Gaussian noise

The 2D wavelet transform on. a SIMD torus of scanline processors. R. Lang A. Spray H. Schroder. Application Specic Computer Design (ASCOD)

1 INTRODUCTION The LMS adaptive algorithm is the most popular algorithm for adaptive ltering because of its simplicity and robustness. However, its ma

Lecture 10 Video Coding Cascade Transforms H264, Wavelets

2-D Dual Multiresolution Decomposition Through NUDFB and its Application

UNIVERSITY OF DUBLIN TRINITY COLLEGE

Wavelet filter bank based wide-band audio coder

signal-to-noise ratio (PSNR), 2

TRANSFORM FEATURES FOR TEXTURE CLASSIFICATION AND DISCRIMINATION IN LARGE IMAGE DATABASES

Zhitao Lu and William A. Pearlman. Rensselaer Polytechnic Institute. Abstract

1e+07 10^5 Node Mesh Step Number

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

A POWER EFFICIENT POLYPHASE SHARPENED CIC DECIMATION FILTER. FOR SIGMA-DELTA ADCs. A Thesis. Presented to

Implementation of Lifting-Based Two Dimensional Discrete Wavelet Transform on FPGA Using Pipeline Architecture

THE IDEA idea of interpolated finite impulse response

Lecture 12: Algorithmic Strength 2 Reduction in Filters and Transforms Saeid Nooshabadi

Representation as fiter bank. Assumption for coding: Certain viewing distance, playback size Certain viewing angle for the eye.

Lecture 6: The Haar Filter Bank

X(f) S(f) -F s X(f) * S(f)

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

GREENWOOD PUBLIC SCHOOL DISTRICT Algebra III Pacing Guide FIRST NINE WEEKS

Code Generation for TMS320C6x in Ptolemy

ELEC639B Term Project: An Image Compression System with Interpolating Filter Banks

Adaptive Quantization for Video Compression in Frequency Domain

Design of direction oriented filters using McClellan Transform for edge detection

Chapter 4 Face Recognition Using Orthogonal Transforms

Developing a Multimedia Toolbox for the Khoros System. Yuh-Lin Chang. Rafael Alonso. Matsushita Information Technology Laboratory

MR Image Reconstruction from Pseudo-Hex Lattice Sampling Patterns Using Separable FFT

reasonable to store in a software implementation, it is likely to be a signicant burden in a low-cost hardware implementation. We describe in this pap

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2

3.1 Problems. 3.2 Solution

Inverse Light Transport (and next Separation of Global and Direct Illumination)

An M-Channel Critically Sampled Graph Filter Bank

Bit Summation on the Recongurable Mesh. Martin Middendorf? Institut fur Angewandte Informatik

Radix-4 FFT Algorithms *

Digital Signal Processing. Soma Biswas

Discrete Cosine Transform Domain Parallel LMS Equalizer

An Embedded Wavelet Video. Set Partitioning in Hierarchical. Beong-Jo Kim and William A. Pearlman

isplever Parallel FIR Filter User s Guide October 2005 ipug06_02.0

CHAPTER 9 INPAINTING USING SPARSE REPRESENTATION AND INVERSE DCT

Figure 1: Representation of moving images using layers Once a set of ane models has been found, similar models are grouped based in a mean-square dist

The Steerable Pyramid: A Flexible Architecture for Multi-Scale Derivative Computation

S Postgraduate Course on Signal Processing in Communications, FALL Topic: Iteration Bound. Harri Mäntylä

19. Implementing High-Performance DSP Functions in Stratix & Stratix GX Devices

High-Performance Compression of Visual Information A Tutorial Review Part I: Still Pictures

FPGA Polyphase Filter Bank Study & Implementation

Fault Tolerant Parallel Filters Based on ECC Codes

MOST attention in the literature of network codes has

Reinforcement Control via Heuristic Dynamic Programming. K. Wendy Tang and Govardhan Srikant. and

Introduction to Functional Programming: Lecture 7 2 Functions as innite data structures Ordinary ML data structures are always nite. We can, however,

Time Domain Lapped Transform and its Applications

Scalable Multiresolution Video Coding using Subband Decomposition

Transcription:

A General Formulation for Modulated Perfect Reconstruction Filter Banks with Variable System Delay Gerald Schuller and Mark J T Smith Digital Signal Processing Laboratory School of Electrical Engineering Georgia Institute of Technology Atlanta, GA 0-00 Abstract This paper introduces a new formulation for analysis and design of modulated lter banks A unique feature of the formulation is that it provides explicit control of the input-to-output system delay The paper discusses minimum delay lter banks and demonstrates that truly exact reconstruction is possible in this context The formulation provides a broad range of design exibility within a compact framework and allows for the design of a variety of computationally ecient modulated lter banks with dierent numbers of bands and virtually arbitrary lengths Introduction Subband analysis/synthesis lter banks have been a topic of vigorous study for many years now In the most common mode of operation, an analysis lter bank rst splits the input signal into several frequency bands and then decimates each subband to its yquist sampling rate The synthesis lter bank performs the dual operation by upsampling the subbands, and then ltering them to remove the imaged spectral copies These outputs are summed to produce the reconstructed input Modulated lter banks are those in which a baseband lter is implicitly moduated, via a transform (such as a DCT), to create the bank These lter banks are typically very ecient computationally because fast transforms algorithms are generally employed There have been many contributions in the literature focusing on various aspects of the design problem [], [], [], [], [] In this paper, a new formulation is introduced that attempts to provide a broader range of design exibility than reported previously while maintaining a simple and compact framework The new formulation allows for the design of a variety of ecient modulated lter banks with dierent numbers of bands and virtually arbitrary lengths It also allows for the simultaneous control over the overall system delay foragiven lter length The Basic Matrix Framework The starting point of the discussion given here is the simple -band, -length, cosine modulated lter bank of the form y k (m) = ; x(m + n)h(n)cos( (k +0:)(n +0: ; )) () for all integer m, where y k (m) is the output of the k'th subband channel at the m'th interval As a side note, we point out that this particular lter bank is essentially the TDAC lter bank proposed in [] The lter bank may be viewed as processing the input in blocks For every block of samples, where m may be viewed as the block index for x(m + n), output samples in

x(0)h(0) ^x(0) x(-)h(-) - e e e e DCT ^x( ; ) y 0 y ; Figure : The analysis lter bank for the -band, -length, modulated lter bank the variable k are produced: y k (m) k =0 ::: ; For convenience and without loss of generality, we can perform the analysis over the m'th interval, and thus can simplify () to y k = ; Exploiting the symmetries embodied in the identities x(n)h(n)cos( (k +0:)(n +0: ; )) () cos( (k +0:)(( + n)+0:)) = ; cos( (k +0:)(( ; ; n)+0:)) and cos( (k +0:)((;n)+0:)) = cos( (k +0:)((n ; ) + 0:)) the analysis equation can be rewritten: ; y k = =; =; ; + x( ; ; n)h( ; ; n) cos( (k +0:)(n +0:)) x(n + )h(n + ) cos( (k +0:)(n +0:)) x( ; ; n)h( ; ; n)cos( (k +0:)( + n +0:)) A close examination of these symmetries shows that the analysis can be written as a type of \folding" operation followed by a cosine transform This is illustrated in Figure, where the boxes symbolize multiplications with + or ; respectively With ^x(n) as dened in the picture, y k (m) has the form y k = ; ^x(n)cos( (k +0:)(n +0:))

This is the DCT of ^x with odd spaced frequencies [] In reference to Figure, the signal and system components can now be written in matrix form with z-domain matrices and vectors Let the input be represented by the time domain vector, x =[x(0) ::: x( ; )] and the z-domain vector =[ 0 (z) ::: ; (z)]: The input and output vectors of the DCT can be written as ^ =[^ 0 (z) ::: ^ ; (z)] and Y =[Y 0 (z) ::: Y ; (z)] respectively The DCT transform matrix is T, with elements t(n k) = cos( (k +0:)(n +0:)) n k =0 ::: ; and a \folding" matrix F a, which converts into ^: F a = 0 h(0)z ; h() 0 h(= ; )z ; 0 h( + = ; ) h(=)z ; ;h( + =) 0 h( ; )z ; ;h( ; ) 0 Thus ^ can be written as ^ = F a : We can further decompose F a into the matrices D and F where z ; D = z ; 0 0 () F = 0 h(0) h() 0 h(= ; ) 0 h( + = ; ) h(=) ;h( + =) 0 h( ; ) ;h( ; ) 0 which results in ^ = F D and Y = F D T: This scheme also lends itself to a fast implementation, because most of the computations required are for the DCT, which can be done with fast algorithms The other matrices only contain multiplications (with the window function) and summations It is easy to see that the synthesis consists of the inverse operations: = Y T ; D ; F ; : For this simple lter bank, the inverses are very easy to compute:

y 0 y ; ^x(0) DCT ; ^x( ; ) z ; z ; h(/) - @ @@ @R h(/-) ; ;; z @ - @@ ; ;; ; : - @ @@ ;; ; h(+/) ; - h(+/-) L ; L L L x(/) x(-) x(0) x(/-) Figure : The corresponding synthesis ow graph for the -band, -length modulated lter bank T ; = T, which istheinverse DCT and the inverse of the delay matrix D is D ; z ; = z ; The multiplication with z ; is to make the lter bank causal If the window function h(n) has the symmetries required for the TDAC lterbank (which are not necessary here), then F ; = F T With these component inverses, the synthesis becomes z ; z ; = Y T (z; D ; ) F ; These matrix operations lead to the structure shown in Figure a structure which was rst introduced by Malvar Similarly, the analysis lter bank can also be drawn in this way, with butteries This discussion illustrates the new matrix formulation for the simple case of the -band length modulated lter bank This mathematical framework is next extended to include a wide variety of lter banks, with dierent window functions, dierent lengths, and with other transforms Extending the Matrix Framework The generalization of the formulation is illustrated here for the class of cosine modulation functions First consider lter banks with odd DCTs of the form cos( (k+0:)(n;0:+ )) and lter lengths L ; where L is a positive integer The analysis equation (for the m'th interval) is then y k = L; x(n)h(n)cos( (k +0:)(n +0: ; )): :

Exploiting the cosine symmetry cos( (k +0:)((n +)+0:)) = ; cos( (k +0:)(n +0:)) a folding matrix for longer windows with lengths L can be written The elements of this matrix have a diamond shaped pattern: F a = p(0)z ; p() p(= ; )z ; p( + = ; ) p(=)z ; ;p( + =) p( ; )z ; ;p( ; ) where p(n) = P L; m=0 h(n+m)(;)m z ;(L;;m) and h(n) is a window function For the synthesis lter bank F s = p(= ; ) p(=) p(0) p( ; ) p()z ; ;p( ; )z ; p( + = ; )z ; ;p( + =)z ; with p(n) = P m=0 h s (n+m)(;) m z ;m and where h s (n) is the synthesis window The indexing of the sum goes to innity because the synthesis lter bank is IIR ow consider -band, (L ; )-length lter banks based on modulating cosine functions of the form cos( (k +0:)(n ; 0:)): The analysis equation is then y k = L; x(n)h(n) cos( (k +0:)(n +0:)) and the elements of the analysis folding matrix take on a cross-shaped appearance: F a = p(0)z ; p(= ; )z ; ;p( + = ; ) ;p( + =) p(=)z ; ;p() ;p( ; ) p( ; )z ; with p(n) = P L; m=0 h(n + m)(;)m z ;(L;;m) The synthesis folding matrix also has the same appearance: F s = p(0) ;p( ; )z ; p(= ; ) ;p( + =)z ; ;p( + = ; )z ; p(=) ;p()z ; p( ; )

Many other types of lter banks are possible as well For example, modulating functions of the form cos( (k +0:)(n +0: ; )) are possible and will also result in cross-shaped synthesis folding matrices, but with the z ; on the main diagonal (which is needed eg for the minimum delay lter banks in section ) Similarly modulating functions of the form cos( k(n +0:)) also result in cross-shaped analysis-synthesis folding matrices, while functions of the form cos( k(n ; 0:+ )) result in diamond-shaped folding matrices To construct the synthesis lter bank which makes perfect reconstruction possible, it is necessary to nd the inverse of the folding matrices For the important cases of the diamond-shaped and the cross-shaped matrices as above, a general inverse can be computed Consider the diamond-shaped matrix F d = a =; a 0 b 0 b =; a = b = a ; b ; where a i and b i are polynomials in z or ratios of polynomials It can be shown (with subdeterminants), that the inverse is F ; d = a 0 =; a 0 = a 0 0 a 0 ; b 0 0 b 0 ; b 0 =; b 0 = with a 0 b ;;i i = b 0 ;a ;;i i = a i b ;;i ; b i a ;;i a i b ;;i ; b i a ;;i and i =0::: ; : Similarly for a cross-shaped matrix F c : F c = a 0 b 0 a =; b =; b = a = b ; a ; the inverse is F ; c : F ; c = a 0 0 b 0 0 a 0 =; b 0 = b 0 =; a 0 = b 0 ; a 0 ;

with a 0 i = a ;;i a i a ;;i ; b i b ;;i b 0 i = ;b i a i a ;;i ; b i b ;;i and i =0 ::: ; : With these inverses it is now possible to construct the synthesis lter bank for any analysis window function and any modulating function which leads to a diamond- or cross-shaped folding matrix, as long as it is invertible Conversely it is possible to construct an analysis lter bank from a given synthesis lter bank given the same conditions Most often, one wishes to have both analysis and synthesis lter banks be FIR To accommodate this specication, the elements of the folding matrices may be designed iteratively with the constraint that the inverse matrices are FIR The addition of this constraint does not represent a practical problem for reasonable lter lengths of interest in real world applications Controlling the System Delay This formulation of the analysis/synthesis problem is constrained structurally to guarantee exact reconstruction It has the additional advantage that its structure can be arranged to guarantee a prespecied input-to-output system delay Observe that if the folding matrix can be written as a product of delay matrices, (D ) of the form shown in (), and coecient matrices with real or complex coecients, the matrix inverses are always FIR, which means both, analysis and synthesis lter bank, will be FIR This can be done by using coecient matrices F and C i, which have the form F = d =; d = d 0 d d ; d ; d +=; d += C i = c i 0 c i =; c i +=; c i = c i += c i c i ; c i ; where d 0 :::d ; and c i 0 :::ci ; are the elements of F and C i respectively It can be shown that valid folding matrices are achieved if the analysis lter banks have the form and the synthesis banks have the form F a =( my i= C i D i ) F D () Y m; F s = D ; z ; F ; ( D ; m;i z; C ; m;i ): () i=0

The resulting lter bank has length K =m+ and a delay ofk ; samples, which is the typical system delay for lter banks The delay inabove section (except for the transform block delay) results from the multiplication by z ; to make the lter bank causal To facilitate systems with other delays, a folding matrix is needed with a form such that its inverse has no positive powers of z: As can be seen from the general inverse for the cross-shaped folding matrix, this can be achieved with the following two matrices, E and G: E i = 0 e i 0 e i +=; e i += e i = z; e i ; e i ; z; where e i j with is real or complex The inverse is E ; i = ^e i 0 z; ^e i =; z; ^e i +=; ^e i += 0 ^e i ^e i ; 0 ^e i j = The second matrix is with inverse e ;;j ;e +j e ;;j j =0:::= ; and ^e i +j = G i = G ; i = g i 0 z; g i =; z; g i +=; g i += 0 e +j e +j e ;;j j =0::: ; : g i g i ; 0 0 ^g i 0 ^g i +=; ^g i += ^g i = z; ^g i ; ^g i ; z;

where ^g i j = e i ;;j ;e i +j ei ;;j j = =::: ; and ^g i +j = e +j e i +j ei ;;j j =0::: ; : A product of the E i matrices yields valid folding matrices and can support lters with good magnitude response characteristics The analysis folding matrix is of the form F a = my i= E i and the synthesis matrix is the inverse, F s = m; Y i=0 E ; m;i The resulting length of the impulse response of the analysis and synthesis lter bank is K = m +0:, (where m>0 ) The delay that is left is the transform block delayof ; samples, which is the minimum possible delay A combination of minimum delay and standard delay matrices yields folding matrices for low delay lter banks Here minimum delay G i matrices should be used in conjunction with the normal delay C i, D, andf matrices to achieved the targeted system delay The G i matrices should be used here instead of the E i matrices because their structure allows analysis-synthesis lters with good lter characteristics to be designed The resulting form is for the analysis lters and Y m; F s =( i=0 F a =( my i= C i D i ) F D ( Y m; G ; m;i ) D; z ; F ; ( i=0 ny i= G i ) () D ; m;i z; C ; m;i ) () for the synthesis lters The length of the impulse response is K = m + n +, and the delay ism + ; samples To illustrate this issue of low delay lter banks, examine Figure It shows the magnitude responses for two baseband analysis lters Both correspond to an 8 band lter bank However, the one shown with the solid line is for an 8 tap system with a delay of 8 samples The one shown by the dashed line corresponds to a -tap low delay systems with a delay of 8 samples The improvement in quality that can be achieved for the same system delay is clearly visible Moreover, the reconstruction is exact since exact reconstruction is guaranteed by the matrix structure In conclusion, this matrix formulation provides a convenient design framework for constructing computationally ecient lter banks with a variety of dierent lengths and modulation kernels Moreover, it allows the overall system delay to be specied by selecting the proper cascade of submatrices The matrix parameters can be optimized iteratively to acheive good stopband and passband characteristics

0-0 -0-0 -0-0 -0 0 0 0 0 0 0 0 0 Figure : Magnitude response of two 8-band analysis lters The solid line corresponds to a system with delay 8 and lter length 8 The dashed line corresponds to a system with delay 8 and lter length References [] JPPrincen, ABBradley: \Analysis/Synthesis Filter Bank Design Based on Time Domain Alias Cancellation", Trans on ASSP, Oct, 98, pp- [] PP Vaidyanathan:" Theory and Design of M-channel Maximally Decimated Quadrature Mirror Filters with Arbitrary M, having the Perfect-Reconstruction Property", Trans ASSP, April, 98, pp-9 [] T Ramstad and J Tanem, \Cosine-Modulated Analysis Synthesis Filter Banks with Critical Sampling and Perfect Reconstruction," ICASSP 99, pp Db [] G Schuller: \Untersuchung von Kurzzeitspektralanalysatoren mit Spiegelfehlerkompensationseigenschaften", Diplomarbeit (Masters Thesis), Technische Universitat Berlin, West Germany, 989 [] K ayebi, TP Barnwell,III, MJT Smith: "On the Design of FIR Analysis-Synthesis Filter Banks with High Computational Eciency", Trans on Signal Processing, to appear Dec 99 [] HS Malvar: "Lapped Transforms for Ecient Transform/Subband Coding", Trans on ASSP, June 990, pp99-98 [] HS Malvar: "Extended Lapped Transforms: Fast Algorithms and Applications", ICASSP 99, pp 9-800 [8] MVetterli: "A Theory of Multirate Filter Banks", Trans ASSP, March, 98, pp- [9] TVaupel: "Transformationscodierung mit mehrfach uberlappenden Blocken und Zeitaliaskompensation", Frequenz, -, 990, pp9-98