Lecture 11: Networks & Networking

Similar documents
Module 16: Distributed System Structures. Operating System Concepts 8 th Edition,

Module 15: Network Structures

Distributed System Chapter 16 Issues in ch 17, ch 18

Module 16: Distributed System Structures

Module 15: Network Structures

CHAPTER 17 - NETWORK AMD DISTRIBUTED SYSTEMS

Silberschatz and Galvin Chapter 15

Modulo II Introdução Sistemas Distribuídos

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.

Chapter 17: Distributed Systems (DS)

Vorlesung Kommunikationsnetze

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications.

Introduction to Internetworking

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite

Position of IP and other network-layer protocols in TCP/IP protocol suite

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Router Architecture Overview

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

ECE 4450:427/527 - Computer Networks Spring 2017

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space that is provided.

The Internet Protocol (IP)

Lecture 8. Network Layer (cont d) Network Layer 1-1

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

Chapter 4: Network Layer

Networking interview questions

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

Network layer: Overview. Network Layer Functions

Internetwork Protocols

Chapter 09 Network Protocols

Lecture 11: IP routing, IP protocols

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang

INTERNET SYSTEM. Internet Protocol. Kent State University Dept. of Computer Science. CS 4/55231 Internet Engineering. Large Scale Networking

ET4254 Communications and Networking 1

Network Layer. The Network Layer. Contents Connection-Oriented and Connectionless Service. Recall:

Network Layer. Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control

ECE 435 Network Engineering Lecture 12

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi).

Cisco Cisco Certified Network Associate (CCNA)

IP Protocols. ALTTC/Oct

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

CS 455 Internet Architecture, Page 3 ffl By 1985, the ARPANET was heavily used and congested; the National Science Foundation (NSF) initiated the NSFN

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

PART X. Internetworking Part 1. (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution)

ECE4110 Internetwork Programming. Introduction and Overview

TCP/IP and the OSI Model

TCP/IP THE TCP/IP ARCHITECTURE

EEC-484/584 Computer Networks

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

7010INT Data Communications Lecture 7 The Network Layer

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

CS 348 Computer Networks. IP and Routing. Indian Institute of Technology, Bombay

The Interconnection Structure of. The Internet. EECC694 - Shaaban

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on

Data Communication Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 34 TCP/ IP I

Internet Protocol (IP)

EEC-684/584 Computer Networks

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

The Internet. The Internet is an interconnected collection of netw orks.

II. Principles of Computer Communications Network and Transport Layer

End-to-End Communication

Network Protocols - Revision

TCP/IP Protocol Suite

IP - The Internet Protocol

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Computer Networks (Introduction to TCP/IP Protocols)

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

TCP /IP Fundamentals Mr. Cantu

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Chapter 6: Network Communications and Protocols

CSCI-1680 Network Layer: IP & Forwarding John Jannotti

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IP Address Assignment

OSI Network Layer. Chapter 5

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

ARP, IP. Chong-Kwon Kim. Each station (or network interface) should be uniquely identified Use 6 byte long address

Chapter 16 Networking

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY

Introduction to Networks and the Internet

Network Layer: Internet Protocol

7th Slide Set Computer Networks

IP Addressing and Subnetting

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

AppleTalk. Chapter Goals. Introduction CHAPTER

CMPE 80N: Introduction to Networking and the Internet

This talk will cover the basics of IP addressing and subnetting. Topics covered will include:

Networking Fundamentals

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Chapter 5 Network Layer

CPEG514 Advanced Computer Networks. Atef Abu Salim University of Nizwa Spring 2013/2014

Transcription:

Lecture 11: Networks & Networking

Contents Distributed systems Network types Network standards ISO and TCP/IP network models Internet architecture IP addressing IP datagrams AE4B33OSS Lecture 11 / Page 2

Motivation Distributed system is a collection of loosely coupled processors interconnected by a communications network Processors variously called nodes, computers, machines, hosts Site is the location of the processor Reasons for distributed systems Resource sharing sharing and printing files at remote sites processing information in a distributed database using remote specialized hardware devices Computation speedup load sharing Reliability detect and recover from site failure, function transfer, reintegrate failed site Communication by message passing AE4B33OSS Lecture 11 / Page 3

A Distributed System AE4B33OSS Lecture 11 / Page 4

Types of Distributed Operating Systems Network Operating Systems Users are aware of multiplicity of machines. Access to resources of various machines is done explicitly by: Remote logging into the appropriate remote machine (telnet, ssh) Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism Distributed Operating Systems Features follow AE4B33OSS Lecture 11 / Page 5

Distributed Operating Systems Users not aware of multiplicity of machines Access to remote resources similar to access to local resources Data Migration transfer data by transferring entire file, or transferring only those portions of the file necessary for the immediate task Computation Migration transfer the computation, rather than the data, across the system Process Migration execute an entire process, or parts of it, at different sites Load balancing distribute processes across network to even the workload Computation speedup subprocesses can run concurrently on different sites Hardware preference process execution may require specialized processor Software preference required software may be available at only a particular site Data access run process remotely, rather than transfer all data to the local machine AE4B33OSS Lecture 11 / Page 6

Network Structure - LAN Local-Area Network (LAN) designed to cover small geographical area. Multiaccess bus, ring, or star network Speed 10 megabits/second, or higher Broadcast is fast and cheap Nodes: usually workstations and/or personal computers a few (usually one or two) mainframes AE4B33OSS Lecture 11 / Page 7

Network Structure - WAN Wide-Area Network (WAN) links geographically separated sites Point-to-point connections over long-haul lines (often leased from a phone company) Broadcast usually requires multiple messages Nodes: often a high percentage of mainframes AE4B33OSS Lecture 11 / Page 8

Network Topology Sites in the system can be physically connected in a variety of ways; they are compared with respect to the following criteria: Basic cost How expensive is it to link various sites in the system? Communication cost How long does it take to send a message from site A to site B? Reliability If a link or a site in the system fails, can the remaining sites still communicate with each other? The various topologies are depicted as graphs whose nodes correspond to sites An edge from node A to node B corresponds to a direct connection between the two sites AE4B33OSS Lecture 11 / Page 9

CESNET structure AE4B33OSS Lecture 11 / Page 10

Communication Structure The design of a communication network must address four basic issues: Naming and name resolution How do two processes locate each other to communicate? Routing strategies How are messages sent through the network? Connection strategies How do two processes send a sequence of messages? Contention The network is a shared resource, so how do we resolve conflicting demands for its use? AE4B33OSS Lecture 11 / Page 11

Naming and Name Resolution Name systems in the network Address messages with the process-identifier Identify processes on remote systems by <host-identifier, process-identifier> pair Domain name service (DNS) Specifies the naming structure of the hosts, as well as name to address resolution (Internet) AE4B33OSS Lecture 11 / Page 12

Routing Strategies Fixed routing - A path from A to B is specified in advance Path changes only if a hardware failure disables it Since the shortest path is usually chosen, communication costs are minimized Fixed routing cannot adapt to load changes Ensures that messages will be delivered in the order in which they were sent Virtual circuit - A path from A to B is fixed for the duration of one session. In different sessions messages from A to B may have different paths; Partial remedy to adapting to load changes Ensures that messages will be delivered in the order in which they were sent Dynamic routing The path used to send a message form site A to site B is chosen only when a message is sent Usually a site sends a message to another site on the link least used at that particular time Adapts to load changes by avoiding routing messages on heavily used path Messages may arrive out of order This problem can be fixed by sequentially numbering the messages AE4B33OSS Lecture 11 / Page 13

Connection Strategies Circuit switching - A permanent physical link is established for the duration of the communication (i.e., telephone system) Message switching - A temporary link is established for the duration of one message transfer (i.e., post-office mailing system) Packet switching - Messages of variable length are divided into fixed-length packets which are sent to the destination Each packet may take a different path through the network The packets must be reassembled into messages as they arrive Circuit switching requires setup time, but incurs less overhead for shipping each message, and may waste network bandwidth Message and packet switching require less setup time, but incur more overhead per message AE4B33OSS Lecture 11 / Page 14

Contention Several sites may want to transmit information over a link simultaneously. Techniques to avoid repeated collisions include: CSMA/CD - Carrier sense with multiple access (CSMA); collision detection (CD) A site determines whether another message is currently being transmitted over that link. If two or more sites begin transmitting at exactly the same time, then they will register a CD and will stop transmitting When the system is very busy, many collisions may occur, and thus performance may be degraded CSMA/CD is used successfully in the Ethernet system, the most common network system AE4B33OSS Lecture 11 / Page 15

Contention (Cont.) Token passing - A unique message type, known as a token, continuously circulates in the system (usually a ring structure) A site that wants to transmit information must wait until the token arrives When the site completes its round of message passing, it retransmits the token A token-passing scheme is used by some IBM and HP/Apollo systems Message slots - A number of fixed-length message slots continuously circulate in the system (usually a ring structure) Since a slot can contain only fixed-sized messages, a single logical message may have to be broken down into a number of smaller packets, each of which is sent in a separate slot This scheme has been adopted in the experimental Cambridge Digital Communication Ring General problem with the ring structure Ring break AE4B33OSS Lecture 11 / Page 16

Open Systems Interconnection (OSI) The communication network is partitioned into the following multiple layers: Physical layer handles the mechanical and electrical details of the physical transmission of a bit stream, voltages, layout of pins, line impedance, cable specification, Token ring, FDDI, IEEE 802.11, Bluetooth Data-link layer handles the frames, or fixed-length parts of packets, including any error detection and recovery that occurred in the physical layer, Ethernet IEEE 802.3 Network layer provides connections and routes packets in the communication network, including handling the address of outgoing packets, decoding the address of incoming packets, and maintaining routing information for proper response to changing load levels AE4B33OSS Lecture 11 / Page 17

Communication Protocol (Cont.) Transport layer responsible for low-level network access and for message transfer between clients, including partitioning messages into packets, maintaining packet order, controlling flow, and generating physical addresses Session layer implements sessions, or process-toprocess communications protocols Presentation layer resolves the differences in formats among the various sites in the network, including character conversions, and half duplex/full duplex (echoing) Application layer interacts directly with the users deals with file transfer, remote-login protocols and electronic mail, as well as schemas for distributed databases, etc. AE4B33OSS Lecture 11 / Page 18

The ISO/OSI Protocol Layers AE4B33OSS Lecture 11 / Page 19

Communication Via ISO/OSI Network Model AE4B33OSS Lecture 11 / Page 20

The TCP/IP Protocol Layers AE4B33OSS Lecture 11 / Page 21

Failure detection Detecting hardware failure is difficult To detect a link failure, a handshaking protocol can be used Assume Site A and Site B have established a link At fixed intervals, each site will exchange an I-am-up message indicating that they are up and running If Site A does not receive a message within the fixed interval, it assumes either (a) the other site is not up or (b) the message was lost Site A can now send an Are-you-up? message to Site B If Site A does not receive a reply, it can repeat the message or try an alternate route to Site B If Site A does not ultimately receive a reply from Site B, it concludes some type of failure has occurred Types of failures: Site B is down The direct link between A and B is down The alternate link from A to B is down The message has been lost However, Site A cannot determine exactly why the failure has occurred AE4B33OSS Lecture 11 / Page 22

Reconfiguration When Site A determines a failure has occurred, it must reconfigure the system: 1. If the link from A to B has failed, this must be broadcast to every site in the system 2. If a site has failed, every other site must also be notified indicating that the services offered by the failed site are no longer available When the link or the site becomes available again, this information must again be broadcast to all other sites AE4B33OSS Lecture 11 / Page 23

Design Issues Transparency the distributed system should appear as a conventional, centralized system to the user Fault tolerance the distributed system should continue to function in the face of failure Scalability as demands increase, the system should easily accept the addition of new resources to accommodate the increased demand Clusters a collection of semi-autonomous machines that acts as a single system AE4B33OSS Lecture 11 / Page 24

Example: Networking Link layer - the transmission of a network packet between hosts on an Ethernet network For link layer you can use alternative protocols for example PPP Point to Point protocol for connection of two nodes using HDLC frames Every host has a unique IP address and a corresponding Ethernet (MAC) address Communication requires both addresses Domain Name Service (DNS) can be used to acquire IP addresses Address Resolution Protocol (ARP) is used to map MAC addresses to IP addresses If the hosts are on the same network, ARP can be used If the hosts are on different networks, the sending host will send the packet to a router which routes the packet to the destination network AE4B33OSS Lecture 11 / Page 25

An Ethernet Packet Destination Source Frame Preamble Message data Checksum address address type 64 bits 48 bits 48 bits 16 bits 368-12000 bits 32 bits Preamble: 7 bytes [10101010] + 1 byte [10101011] used to synchronize the transfer rate 6 byte addresses (MAC addresses) World unique addresses If destination address = 0xFF-FF-FF-FF-FF-FF then broadcast Frame type indicates different standards: 0x0800 = the packet contains an IPv4 datagram 0x86DD indicates an IPv6 frame 0x0806 indicates an ARP frame Message data usually 1500 bytes Encapsulates packet with the transferred data AE4B33OSS Lecture 11 / Page 26

Internet Architecture Basic Internet properties Each host has its unique identification: the IP address IP address is composed by the network address and the host address within the network The applications and the network API behavior is independent of the LAN technology Basic architecture of the Internet (and general internetworking) gateway or gateway or LAN 1 LAN 2 LAN 3 router router Gateways and routers connect LAN s LAN s may be based on different technologies Gateways keep info on hosts belonging to LAN s they connect Routers maintain knowledge about networks Routers forward packets based on the network part of the IP address (the host part is ignored when forwarding) Units connecting LAN s usually merge gateway and router functionality IP protocols consider all LAN s as equivalent regardless of the technology AE4B33OSS Lecture 11 / Page 27

Internet addresses Current Internet v. 4 uses 32 bits addresses Convention: decimal numbers per 8 bits each 147.32.85.1 Internet v. 6 uses 128 bits addresses More details next lesson Not easy to switch from v4 to v6 Tunneling v6 through v4 World IPv6 day was 8 June 2011 You can test your IPv6 configuration on test-ipv6.com IP address Identifies each single network adaptor Host can have several adaptors ( multi-homed host) One adaptor can even have more addresses Is composed of two parts Identification (address) of the network netid (leftmost bits) Identification (address) of the host within the network hostid (rightmost bits) AE4B33OSS Lecture 11 / Page 28

Internet addresses (2) Primary IP address classes 0 1 2 3 4 8 16 24 31 Net Mask Address range 0.0.0.0 Class A 0 netid hostid 255.0.0.0 127.255.255.255 Class B 1 0 netid hostid 255.255.0.0 Class C 1 1 0 netid hostid 255.255.255.0 128.0.0.0 191.255.255.255 192.0.0.0 255.255.255.255 Reserved ranges: In A 0.0.0.0 0.255.255.255, 127.0.0.0 127.255.255.255, In B 128.0.0.0 128.0.255.255, 191.255.0.0 191.255.255.255, In C 192.0.0.0 192.0.0.255, 255.255.255.0 255.255.255.255 AE4B33OSS Lecture 11 / Page 29

Internet addresses (3) Convention: Network address netid is the full IP address with hostid = 0 Address composed by netid and the hostid part is full of "1" serves for addressing all hosts in the network (network broadcast address) Net maska: Address arithmetic IP _ Address NetMask netid IP _ Address ( NetMask ) hostid Special addresses 127.0.0.1 loopback address a host speaks to itself Private addresses may not spread over Internet routers must not forward datagrams containing these addresses 1 class A network: 10.0.0.0 10.255.255.255 16 class B networks: 172.16.0.0 172.31.255.255 256 class C networks: 192.168.0.0 192.168.255.255 Multicast addresses one host sends info to many subscribed hosts (e.g. Internet TV) range 224.0.0.0 238.255.255.255 AE4B33OSS Lecture 11 / Page 30

Internet addresses (4) CIDR addressing (= Classless Inter-Domain Routing) Address arithmetic enables for more efficient splitting netid hostid the border between netid and hostid may be anywhere Net mask may be any number composed of n (n=0... 32) leftmost 1 bits CIDR notation: IP_Address/n; e.g.: 147.32.85.128 147.32.85.191 = 147.32.85.128/26 Reserved ranges in CIDR notation: 0.0.0.0/8, 127.0.0.0 /8, 128.0.0.0/16, 191.255.0.0/16, 192.0.0.0/24, 255.255.255.0/24 LAN 192.168.200.64/30 contains 4 addresses: 192.168.200.64 = netid, 192.168.200.65=host 1, 192.168.200.66=host 2, 192.168.200.67 = LAN broadcast Saving IP addresses Using private addresses and their translation to public addresses (NAT = Network Address Translation) Many private addresses is translated into 1 public Problem with publicly available servers on the private address LAN (behind the NAT router) The principle of NAT is connected to IP protocols Internet 147.32.85.27 Router 192.168.100.1 with NAT LAN with private IP addresses AE4B33OSS Lecture 11 / Page 31

Internet datagrams Internet creates a virtual network and carries IP datagrams The network is a best effort delivery system Datagrams travel through Internet over different physicals LAN s Datagrams may not depend on the LAN technology Format of an IP datagram Frame header Datagram header Datagram data part Frame data part Encapsulating IP datagram into physical network frame AE4B33OSS Lecture 11 / Page 32

IP datagram header Every IP datagram has a header carrying information necessary for datagram delivery Fields 0 4 8 16 19 24 31 VERS HLEN SERVICE TYPE TOTAL LENGTH IDENTIFICATION FLAGS FRAGMENT OFFSET TIME TO LIVE PROTOCOL HEADER CHECKSUM SOURCE IP ADDRESS DESTINATION IP ADDRESS IP OPTIONS (IF ANY) DATA IP datagram format PADDING VERS: IP protocol version for IP v. 4 VERS = 4 HLEN: Header length in 32-bit words (standard 5) TOTAL LENGTH: of the datagram in bytes (header+data) max. 64 kb SOURCE IP ADDRESS: sender s IP address DESTINATION IP ADDRESS: IP address where to deliver IDENTIFICATION: usually sequential or a random number generated by the datagram sender AE4B33OSS Lecture 11 / Page 33

IP datagram header (cont.) PROTOCOL: Identification of the protocol carried in the IP datagram (UDP=17, ICMP=1, TCP=6,...). Defined in RFC 1060 FLAGS, FRAGMENT OFFSET: Information on datagram fragmentation TIME TO LIVE (TTL): Determines how long the datagram may travel through Internet. Every router decrements this value; if TTL==0 the datagram is discarded and the router sends an ICMP message to the sender SERVICE TYPE: 8-bit field commanding the datagram routing 0 1 2 3 4 5 6 7 PRECEDENCE D T R UNUSED Datagram precedence: 0=normal, 7=network control Low delay High throughput High reliability AE4B33OSS Lecture 11 / Page 34

Datagram fragmentation (1) MTU: (Maximum Transmission Unit) defines the maximum datagram size that can be transferred in a LAN Net type Implicit MTU Net type Implicit MTU PPP 296 X.25 576 Ethernet 1 500 FDDI 4 352 TokenRing 4Mb 4 464 TokenRing 16Mb 17 914 Internet a set of LAN s with different MTU s Whenever the datagram is larger than MTU it must be fragmented Host A Host B Net 1, MTU=1500 G 1 G 2 Net 3, MTU=1500 Net 2, MTU=620 AE4B33OSS Lecture 11 / Page 35

Datagram fragmentation (2) Fragmentation occurs anywhere during the datagram travel If the datagram is fragmented it is not defragmented on the way and the reconstruction is the task of the destination host Every fragment travels as a separate datagram: The following fields are copied from the original datagram header: VERS, HLEN, SERVICE TYPE, IDENTIFICATION, PROTOCOL, SOURCE IP ADDRESS, DESTINATION IP ADDRESS TOTAL LENGTH is changed to the fragment size a and the field FRAGMENT OFFSET determines the offset of the fragment in the original datagram Field FLAGS contains a bit more fragments. If this bit is 0 then the target host knows that the last fragment has been obtained. The target host reconstructs the original datagram using the FRAGMENT OFFSET and TOTAL LENGTH fields DATAGRAM HEADER FRAGMENT 1 HEADER FRAGMENT 2 HEADER FRAGMENT 3 HEADER Data_3 Data_1 600 bytes Data_1 Data_2 Data_2 600 bytes Fragment 1 (offset=0) 1400 bytes datagram fragmentation Data_3 200 bytes Fragment 2 (offset=600) Fragment 3 (offset=1200) AE4B33OSS Lecture 11 / Page 36

End of Lecture 11 Questions?