Analysis of Different Reference Plane Setups for the Calibration of a Mobile Laser Scanning System

Similar documents
Development of a Test Field for the Calibration and Evaluation of Kinematic Multi Sensor Systems

Development of a Portable Mobile Laser Scanning System with Special Focus on the System Calibration and Evaluation

Analysis of Different Reference Plane Setups for the Calibration of a Mobile Laser Scanning System*

Estimation of elevation dependent deformations of a parabolic reflector of a large radio telescope

Adaptive Extended Kalman Filter for Geo-Referencing of a TLS-based Multi-Sensor-System

Investigating the Applicability of Standard Software Packages for Laser Scanner Based Deformation Analyses

Rigorous Scan Data Adjustment for kinematic LIDAR systems

A Comparison of Laser Scanners for Mobile Mapping Applications

Chapters 1 9: Overview

GNSS/INS for High Accuracy Mobile Mapping. Olaf Gross 11 th Terrasolid European User Event Kittilä, Finland

Third Rock from the Sun

Boresight alignment method for mobile laser scanning systems

Chapter 1: Overview. Photogrammetry: Introduction & Applications Photogrammetric tools:

Synchronization aspects of sensor and data fusion in a research multi-sensor-system

Dot-to-dot recent progress in UAS LiDAR: calibration, accuracy assessment, and application

Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots

Detecting rigid body movements from TLS-based areal deformation measurements

AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS

CE 59700: LASER SCANNING

Exterior Orientation Parameters

High Resolution Tree Models: Modeling of a Forest Stand Based on Terrestrial Laser Scanning and Triangulating Scanner Data

PERFORMANCE EVALUATION OF suas EQUIPPED WITH VELODYNE HDL-32E LiDAR SENSOR

ifp Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report

Master Thesis: Extraction of Vectorial Information and Accuracy Analysis of Railway Mapping

Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems

Sensor Integration and Image Georeferencing for Airborne 3D Mapping Applications

CCNS and AEROcontrol: Products for Efficient Photogrammetric Data Collection

Automatic camera to laser calibration for high accuracy mobile mapping systems using INS

There are an increasing number

The Applanix Approach to GPS/INS Integration

Efficient and Large Scale Monitoring of Retaining Walls along Highways using a Mobile Mapping System W. Lienhart 1, S.Kalenjuk 1, C. Ehrhart 1.

PERFORMANCE ANALYSIS OF FAST AT FOR CORRIDOR AERIAL MAPPING

Berlin Institute of Technology Department of Geodesy and Geoinformation Science. Plane Based Free Stationing for Building Models

Runway Centerline Deviation Estimation from Point Clouds using LiDAR imagery

COMPARATIVE ANALYSIS OF DIFFERENT LIDAR SYSTEM CALIBRATION TECHNIQUES

Application of GPS/INS-Systems with the HRSC A Comparison of APPLANIX POS/AV-510 and IGI AEROcontrol-IId. F. Scholten*, S. Sujew**, K.

Quality assurance and calibration tasks in the scope of multi-sensor systems

THE RANGER-UAV FEATURES

Graph based INS-camera calibration

Robotics (Kinematics) Winter 1393 Bonab University

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

DEVELOPMENT AND EVALUATION OF A UAV BASED MAPPING SYSTEM FOR REMOTE SENSING AND SURVEYING APPLICATIONS

OUTDOOR AND INDOOR NAVIGATION WITH MICROSOFT KINECT

Beate Klinger and Torsten Mayer-Gürr Institute of Geodesy NAWI Graz, Graz University of Technology

Precise Kinematic GPS Processing and Rigorous Modeling of GPS in a Photogrammetric Block Adjustment

Offline Simultaneous Localization and Mapping (SLAM) using Miniature Robots

Accuracy Assessment of POS AVX 210 integrated with the Phase One ixu150

Automating Data Alignment from Multiple Collects Author: David Janssen Optech Incorporated,Senior Technical Engineer

Information page for written examinations at Linköping University TER2

ADS40 Calibration & Verification Process. Udo Tempelmann*, Ludger Hinsken**, Utz Recke*

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

3D MODELING OF CLOSE-RANGE OBJECTS: PHOTOGRAMMETRY OR LASER SCANNING?

TERRESTRIAL LASER SYSTEM TESTING USING REFERENCE BODIES

Iwane Mobile Mapping System

Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras

Automating Data Accuracy from Multiple Collects

NEW RIEGL. Triple Scanner Mobile Mapping System Specifically Designed for Rail Application. Typical Applications


FULL AUTOMATIC REGISTRATION OF LASER SCANNER POINT CLOUDS

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG

James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA

Camera Drones Lecture 2 Control and Sensors

IP-S2 HD. High Definition 3D Mobile Mapping System

THE ISPRS/EUROSDR BENCHMARK ON MULTI-PLATFORM PHOTOGRAMMETRY: RESULTS AND LESSON LEARNT FRANCESCO NEX AND MARKUS GERKE

Smartphone Video Guidance Sensor for Small Satellites

Acoustic/Lidar Sensor Fusion for Car Tracking in City Traffic Scenarios

Measurements using three-dimensional product imaging

Stereo Imaging and Geolocation

Test Report iµvru. (excerpt) Commercial-in-Confidence. imar Navigation GmbH Im Reihersbruch 3 D St. Ingbert Germany.

Direct Sensor Orientation of a Land-Based Mobile Mapping System

Improving Vision-Based Distance Measurements using Reference Objects

Processing of airborne laser scanning data

Development of a UAV-LiDAR System with Application to Forest Inventory

Airborne Direct Georeferencing of Frame Imagery: An Error Budget

Building a 3D reference model for canal tunnel surveying using SONAR and LASER scanning

Airborne LIDAR borsight error calibration based on surface coincide

ICC experiences on Inertial / GPS sensor orientation. A. Baron, W.Kornus, J.Talaya Institut Cartogràfic de Catalunya, ICC

CALIBRATION OF A MULTI-BEAM LASER SYSTEM BY USING A TLS-GENERATED REFERENCE

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION

APN-078: Configuring SPAN for Hydrographic Applications in OEM7

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI Desk

Lukas Paluchowski HySpex by Norsk Elektro Optikk AS

REMOTE SENSING LiDAR & PHOTOGRAMMETRY 19 May 2017

3D Modeling using multiple images Exam January 2008

Automatic registration of terrestrial laser scans for geological deformation monitoring

TRAINING MATERIAL HOW TO OPTIMIZE ACCURACY WITH CORRELATOR3D

LMS Sound Camera and Sound Source Localization Fast & Versatile Sound Source Localization

ROAD-SCANNER COMPACT APPLICATION FIELDS MAIN FEATURES

COMBINED BUNDLE BLOCK ADJUSTMENT VERSUS DIRECT SENSOR ORIENTATION ABSTRACT

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

Combination of feature-based and geometric methods for positioning

KEY WORDS: Laser altimetry, Error recovery, Strip adjustment, Segmentation

Dynamic Modelling for MEMS-IMU/Magnetometer Integrated Attitude and Heading Reference System

Requirements for Generating. A Geometrically Correct Point Cloud

Robotic Perception and Action: Vehicle SLAM Assignment

SpatialFuser. Offers support for GNSS and INS navigation systems. Supports multiple remote sensing equipment configurations.

OPTI 421/521 Introductory Optomechanical Engineering. 6. Mirror matrices. Matrix formalism is used to model reflection from plane mirrors.

arxiv:hep-ex/ v1 24 Jun 1994

Transcription:

Analysis of Different Reference Plane Setups for the Calibration of a Mobile Laser Scanning System 18. Internationaler Ingenieurvermessungskurs Graz, Austria, 25-29 th April 2017 Erik Heinz, Christian Eling, Markus Wieland, Lasse Klingbeil and Heiner Kuhlmann University of Bonn, Germany

Outline I. Motivation II. Plane-based calibration approach III. Simulation and analysis of different plane setups IV. Application to a mobile laser scanning system Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 2

Motivation Paradigm change in engineering geodesy The surveying of the environment has changed manual vs. automatic single points vs. area-based static vs. kinematic single sensor vs. multi sensors [1] [2] 3D surveying by using kinematic multi sensor systems Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 3 [3]

Motivation Challenges of kinematic multi sensor systems Georeferencing (GNSS, IMU, odometer etc.) data fusion for trajectory estimation in a filter algorithm integration of stochastic models Object acquisition (laser scanners, cameras etc.) considering object characteristics, configuration, image processing, integration of stochastic models Time synchronization time stamping of the observations within a common time reference Calibration intrinsic calibration: calibration of individual sensor deviations extrinsic calibration: calibration of lever arms and boresight angles 3D point clouds Σ pp?? How good are the 3D point clouds in terms of precision and accuracy? result of complex processing steps Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 4

Calibration parameters Calibration of mobile laser scanning systems Calibration of single sensors GNSS IMU 2D laser scanner Installation position and orientation of sensors lever arms boresight angles IMU GNSS Scanner intrinsic calibration IMU GNSS Scanner extrinsic calibration [4] [5] [6] Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 5

Mobile Laser Scanning System GNSS/IMU unit imar inav-fji-lsurv multi-frequency GNSS, fiber-optic gyroscopes and accelerometers σ Position = cm, σ Attitude < 0.025 GNSS Master Station Mobile Laser Scanning System 2D laser scanner 2D laser scanner Z+F Profiler 9012 A phase-based 2D laser scanner point accuracies of mm GNSS/IMU unit GNSS Antenna Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 6

Outline I. Motivation II. Plane-based calibration approach III. Simulation and analysis of different plane setups IV. Application to a mobile laser scanning system Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 7

Calibration Approach Problem: Determination of calibration parameters lever arm Δx, Δy, Δz and boresight angles α, β, γ between GNSS/IMU unit and 2D laser scanner range offset d 0 of the 2D laser scanner x e y e z e = t x t y t z n + R b φ, θ, ψ x y z b + R s α, β, γ 0 (d + d 0 ) sin b (d + d 0 ) cos b georeferenced scan point position/attitude (GNSS/IMU unit) extrinsic calibration scan point (laser scanner) + intrinsic calibration Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 8

Calibration Approach Approach: Calibration field with reference planes Setup of reference planes 1) georeferencing (e.g. TLS + GNSS control points) 2) static scanning with the MSS 1 2 Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 9

Calibration Approach Solution: Parameter estimation georeferenced TLS points must fulfill the plane equations g 1 : s e sin z e cos h e s e sin z e sin h e s e cos z e T nx n y n z d P = 0 observations parameters georeferenced MSS points must fulfill the plane equations g 2 : t x t y n + R b φ, θ, ψ t z x y z b + R s α, β, γ 0 (d + d 0 ) sin b (d + d 0 ) cos b T nx n y n z d P = 0 adjustment of g 1 and g 2 in a Gauß-Helmert model Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 10

Outline I. Motivation II. Plane-based calibration approach III. Simulation and analysis of different plane setups IV. Application to a mobile laser scanning system Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 11

Calibration Results Simulation Simulation of different configurations What is a suitable configuration (setup of reference planes and how they are scanned with the mobile system) to obtain good calibration parameters (small variance, uncorrelated)? Simulation and analysis of 4 configurations, each with: 8 reference planes 6 stations of the mobile laser scanning system Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 12

Calibration Results Simulation Simulation of configurations F 1a and F 1b Configuration F 1a : identical attitude of MSS, plane rotation of 45 45 45 45 45 15-20 m Configuration F 1b : diametrical attitude of MSS, plane rotation of 45 45 45 45 45 15-20 m Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 13

Calibration Results Simulation Simulation of configurations F 2a and F 2b Configuration F 2a : identical attitude of MSS, plane rotation of 30 30 30 30 30 15-20 m Configuration F 2b : diametrical attitude of MSS, plane rotation of 30 30 30 30 30 15-20 m Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 14

Calibration Results Simulation Covariance matrix Σ ll of the observations manufacturer information no correlations TLS + GCP s h z 1σ (STD) 0.001 m 0.0025 0.0025 GNSS/IMU t x, t y, t z Φ, θ, ψ 1σ (STD) 0.01 m 0.01 2D scanner d b 1σ (STD) 0.0003 m 0.02 Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 15

Calibration Results Simulation Covariance matrix Σ xx of the parameters parameter accuracies depend on the accuracy of the GNSS/IMU unit and the number of MSS stations σ β and σ d0 vary for different configurations σ x, y, z = 0.01 m = 0.0041m 6 σ α,β,γ = 0.01 6 = 0.0041 σ Δx σ Δy σ Δz σ α σ β σ γ σ d0 F 1a ( I ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0046 0.0041 0.02 mm F 2a ( I ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0070 0.0041 0.02 mm F 1b ( I + II ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0042 0.0041 0.01 mm F 2b ( I + II ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0058 0.0041 0.01 mm Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 16

Calibration Results Simulation Correlation matrix of the parameters parameter correlations: diametrical scannning decorrelation of β and d 0 improving of σ β and σ d0 F 1a : F 1b : F 2a : F 2b : not scanned diametrically scanned diametrically Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 17

Calibration Results Simulation Why is σ β generally better in F 1 than in F 2? σ Δx σ Δy σ Δz σ α σ β σ γ σ d0 F 1a ( I ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0046 0.0041 0.02 mm F 2a ( I ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0070 0.0041 0.02 mm F 1b ( I + II ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0042 0.0041 0.01 mm F 2b ( I + II ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0058 0.0041 0.01 mm Question: How sensitive are the reference planes with respect to changes in the calibration parameters? Strategy: Simulation of parameter deviations for the boresight angles in F 1 and F 2 : α = 0.03 / β = 0.03 / γ = 0.03 Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 18

Calibration Results Simulation Sensitivity of the reference planes F 1 and F 2 Sensitivity in Field F 1 Sensitivity in Field F 2 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 19

Calibration Results Simulation Findings of the simulations configuration in the calibration field is crucial for the quality of the calibration results, which can worsen due to parameter correlations sensitivity of the reference planes analysis allows for a refinement of the network configuration [7] Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 20

Outline I. Motivation II. Plane-based calibration approach III. Simulation and analysis of different plane setups IV. Application to a mobile laser scanning system Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 21

Calibration Results Real System Realization of configuration F 1b TLS scan of reference planes (size of 0.6 x 0.9 m) georeferencing using 5 GCPs (statically measured for 2.5 h, residuals 2 mm) MSS scans of the planes (30 diametrical stations) static scanning (about 60 s per station: reduce noise, eliminate timing errors) GCP Reference Planes 3D Laser Scanner Mobile Laser Scanning System (Diametrical Stations) Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 22

Calibration Results Real System Calibration results confirm the simulation results Σ ll due to simulations (σ Pos = 0.01 m, σ Att = 0.01 ) accuracy of the calibration parameters: σ x, y, z = 0.01 m 30 = 0.0019m σ α,β,γ = 0.01 30 = 0.0019 no parameter correlations Δx Δy Δz α β γ d 0 Value -0.7957 m 0.0448 m 0.1731 m 0.2170 0.1799-0.1817 0.70 mm STD (1σ) 0.0019 m 0.0019 m 0.0019 m 0.0019 0.0019 0.0019 0.01 mm Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 23

Calibration Results Real System Repeatability of the calibration results subsampling of the observations into 5 blocks each block contains 6 stations from the original 30 stations Stations Δx Δy Δz α β γ d 0 all -0.7957 m 0.0448 m 0.1731 m 0.2170 0.1799-0.1817 0.70 mm 1-6 -0.7960 m 0.0451 m 0.1736 m 0.2143 0.1894 (-0.2036 ) 0.60 mm 7-12 -0.7961 m 0.0451 m 0.1730 m 0.2190 0.1636-0.1750 0.74 mm 13-18 -0.7951 m 0.0447 m 0.1732 m 0.2170 0.1782-0.1780 0.57 mm 19-24 -0.7953 m 0.0444 m 0.1713 m 0.2189 0.1761-0.1754 0.76 mm 25-30 -0.7961 m 0.0448 m 0.1748 m 0.2152 0.1885-0.1743 0.65 mm Max-Min 0.0010 m 0.0007 m 0.0035 m 0.0047 0.0258 0.0037 0.19 mm Simulation STD (1σ) 0.0041 m 0.0041 m 0.0041 m 0.0041 0.0042 0.0041 0.01 mm Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 24

System Evaluation Comparison of two kinematic scans two kinematic scans of the Poppelsdorfer Schloss opposite direction of movement mean distance of 15 20 m Error propagation of: observations: Σ ll calibration: Σ xx intensity-coded Expected accuracy of the point cloud: σ 3D = 2 cm. 25 m 20 m Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 25

System Evaluation Comparison of two kinematic scans two kinematic scans of the Poppelsdorfer Schloss M3C2-comparison in CloudCompare deviations δ have an RMS of 2.75 cm ( 2 cm 2) systematic effects at the facade (due to trajectory) # 3000 2000 1000 25 m 0 δ [cm] -7.5-5 -2.5 0 2.5 5 7.5 Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 26

Scientific achievements Conclusions analysis/refinement of the network configuration in a plane-based calibration field successful calibration of a mobile laser scanning system Future activities permanent test field and repetition of the calibration (repeatability?) refinement of the calibration method and trajectory estimation algorithm Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 27

Thank you for your attention Questions or comments? M.Sc. Erik Heinz Institute of Geodesy and Geoinformation University of Bonn, Germany Tel.: +49 228 / 73-3034 Email: e.heinz@igg.uni-bonn.de Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 28

List of Figures [1] http://www.leica-geosystems.de/thumbs/originals/mihq_2011.jpg (accessed: 24/04/17) [2] https://i.ytimg.com/vi/zlpojwhxno8/hqdefault.jpg (accessed: 24/04/17) [3] http://www.positionpartners.com.au/product_images/260_1442544472.jpg (accessed: 24/04/17) [4] http://www.geotron-moscow.ru/images/gps.png (accessed: 24/04/17) [5] http://www.imar-navigation.de/media/zoo/images/imu-fsas-ng_2_b988afc5632521b628c8 af9462365ee5.jpg (accessed: 24/04/17) [6] http://www.zf-laser.com/typo3temp/pics/profiler_9012_2d_laser_scanner_44c6933d71.png (accessed: 24/04/17) [7] https://t4.ftcdn.net/jpg/00/89/75/09/240_f_89750910_ybv8d9yfdmbqmyp5padcc8jcyd yzzszn.jpg (accessed: 24/04/17) Erik Heinz 18. Ingenieurvermessungskurs 2017, Graz, Austria Page 29