Lecture 5: Simplicial Complex

Similar documents
Basics of Combinatorial Topology

Lecture 0: Reivew of some basic material

Simplicial Complexes: Second Lecture

Lecture notes for Topology MMA100

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

66 III Complexes. R p (r) }.

4. Simplicial Complexes and Simplicial Homology

Lecture 5 CLASSIFICATION OF SURFACES

Simplicial Objects and Homotopy Groups. J. Wu

Elements of Combinatorial Topology

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Pacific Journal of Mathematics

Simplicial Hyperbolic Surfaces

Homology of Simplicial Complexes

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Coxeter Groups and CAT(0) metrics

1 Euler characteristics

The Cyclic Cycle Complex of a Surface

4.2 Simplicial Homology Groups

Surfaces Beyond Classification

Geom/Top: Homework 1 (due Monday, 10/08/12)

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns.

Homology and Persistent Homology Bootcamp Notes 2017

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee

Introduction to Algebraic and Geometric Topology Week 5

Diffusion Maps and Topological Data Analysis

Algebraic Topology: A brief introduction

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY

Homological and Combinatorial Proofs of the Brouwer Fixed-Point Theorem

Euler s Theorem. Brett Chenoweth. February 26, 2013

THE RISE, FALL AND RISE OF SIMPLICIAL COMPLEXES. Andrew Ranicki (Edinburgh) aar Warwick 2nd February, 2018

Elementary Combinatorial Topology

Lecture 1 Discrete Geometric Structures

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

751 Problem Set I JWR. Due Sep 28, 2004

Classifications in Low Dimensions

arxiv: v1 [math.co] 12 Aug 2018

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

Cell-Like Maps (Lecture 5)

6.3 Poincare's Theorem

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

Lecture 18: Groupoids and spaces

Topological Perspectives On Stratification Learning

Effective Computational Geometry for Curves and Surfaces. Chapter 7 Computational Topology: An Introduction

Brian Hamrick. October 26, 2009

Point-Set Topology II

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

Geometric structures on 2-orbifolds

Part 3. Topological Manifolds

Exact discrete Morse functions on surfaces. To the memory of Professor Mircea-Eugen Craioveanu ( )

Math 734 Aug 22, Differential Geometry Fall 2002, USC

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

The Simplicial Lusternik-Schnirelmann Category

AUTOMORPHISMS OF THE GRAPH OF FREE SPLITTINGS

References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds.

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

An introduction to simplicial sets

Lectures on topology. S. K. Lando

CAT(0)-spaces. Münster, June 22, 2004

1 Introduction and Review

Lecture 11 COVERING SPACES

Combinatorics I (Lecture 36)

Lecture 15: The subspace topology, Closed sets

Heegaard splittings and virtual fibers

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

MA651 Topology. Lecture 4. Topological spaces 2

MATH 215B MIDTERM SOLUTIONS

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College

MATH 890 HOMEWORK 2 DAVID MEREDITH

A non-partitionable Cohen-Macaulay simplicial complex

GEOMETRY OF THE HOMOLOGY CURVE COMPLEX

CLASSIFICATION OF SURFACES

Observing Information: Applied Computational Topology.

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry

Dual Complexes of Cubical Subdivisions of R n

Generalized Moment-Angle Complexes

A convexity theorem for real projective structures

Topic: Orientation, Surfaces, and Euler characteristic

arxiv: v1 [cs.cg] 7 Oct 2017

Lecture 3: Convex sets

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

Chapter 4 Concepts from Geometry

Bull. Math. Soc. Sci. Math. Roumanie Tome 59 (107) No. 3, 2016,

The Charney-Davis conjecture for certain subdivisions of spheres

Final Exam, F11PE Solutions, Topology, Autumn 2011

FAST POINT LOCATION, RAY SHOOTING AND INTERSECTION TEST FOR 3D NEF POLYHEDRA

SOCIAL CHOICE AMONG COMPLEX OBJECTS:MATHEMATICAL TOOLS

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Lecture 2 - Introduction to Polytopes

THE BASIC THEORY OF PERSISTENT HOMOLOGY

Orientation of manifolds - definition*

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Transcription:

Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex. 1 2-Manifolds 1.1 Comparing Curves Given two curves P, Q on a 2-manifold M. Measure the similarity between P and Q is an interesting problem. Traditional metric, like Hausdroff distance, is not suitable here. As can be seen in Figure 1, the Hausdroff distance between P and Q can be very small while they are of great difference. We need other similarity measurements. Fréchet distance is a good similarity measurement for curves in Euclidean space. It can be simply described by a daily example. Suppose a dog and its owner are walking along two different paths (curves), connected by a leash. Both of them are moving continuously and forwards only, at any speed or even stop. Then length of the shortest leash is the Fréchet distance between the two paths (curves). Fréchet distance is a good similarity measurement for curves in Euclidean space. For curves on surfaces, distance between two points can be hard to compute. P Q Figure 1: Two greatly different curves have a small Hausdroff distance Another way is using the minimal area swept when continuously deforming P and Q into one as their distance. However, it has the same problem as Fréchet distance when handling curves on surfaces. This measurement also requires P and Q to share the same start point and end point, i.e., they form a loop. If they do not, we can connect their start points and end points, respectively, to get a loop. To handle curves on surfaces, we can map them to a space where similarity measurements like Fréchet distance or minimal deformation area are easy to be computed. Recall that the universal cover of M is planar, which is computation friendly to Fréchet distance and minimal deformation area. We can map P and Q to the universal cover of M, and use the distance between their images to measure the similarity of P and Q. However, not any two curves on M can be measured in this way. For example, as Figure 2 shows, P and Q can not be deformed to each other, because they are not homotopic. 1.2 Homotopy Q P Figure 2: P and Q can not be continuously deformed to each other. Definition 1.1 Let X and Y be two topological spaces. Two continuous maps f, g : X Y are homotopic if there exist a continuous map H : [0, 1] X Y such that H(0, ) = f and H(1, ) = g, denoted as f g. The continuous map H is called a homotopy between f and g. Consider [0, 1] as a time interval, f and g are homotopic means we can find a family of maps H such that f and g are continuously deformed: at time 0 we have f, and at time 1 we have g. 1

Definition 1.2 Two topological spaces X and Y are homotopic equivalent if there exist two continuous maps f : X Y and g : Y X, such that f g id Y and g f id X. Definition 1.3 Given a topological space X, and its subspace A X. A continuous map f : [0, 1] X A is a deformation retraction from X onto A if for any x X and any a A, there is f(0, x) = x, f(1, x) A and f(1, a) = a. A is called a deformation retract of X. We can consider a deformation retraction f as a continuous deformation process squeezing X to A. A well known example of deformation retraction is to deforming an annulus to a cycle, as Figure 3 shows. All points in the annulus moves straightly towards center until reach the inner cycle boundary. Notice that this deformation retraction is irreversible. 2 Simplicial Complex Simplicial complex provides an good way for representing topological structures in computers. It is also an interesting topic of algebraic topology due to its combinatorial nature. In following lectures, we will know simplicial complex is the basis of simplicial homology. A simplicial complex is built by gluing its blocks, called simplex, together. 2.1 Simplex Figure 3: Deforming an annulus to a cycle A given set of points {p 0, p 1,..., p d } IR d is geometrically independent if the set of vectors {p i p 0 } is linearly independent. Here, two vectors v i, v j are linearly independent if there does not exist two constant a i, a j such that a i v i + a j v j = 0 and either a i or a j should be non-zero. In IR d we can have at most d 1 geometrically independent points. A combination x = d i=0 a ip i is a convex combination, if d i=0 a i = 1 and all a i are non-negative. The convex hull of a given point set {p 0, p 1,..., p d } is the set of all convex combinations, denoted as CH({p 0, p 1,..., p d }) = { d i=0 a ip i d i=0 a i = 1 and a i 0}. Definition 2.1 A d-simplex σ is the convex hull of d + 1 geometrically independent points {p 0, p 1,..., p d }, i.e., σ = CH({p 0, p 1,..., p d }). We also say the point set {p 0, p 1,..., p d } spans σ. d is called dimension of σ, denoted as dim σ = d. First few low dimensional simplices have their own names: 0-simplex, 1-simplex, 2-simplex and 3- simplex are also called vertex, edge, triangle and tetrahedron, respectively. Figure 4 shows them. Figure 4: From left to right show a vertex, an edge, a triangle and a tetrahedron Any non-empty subset A of a point set {p 0, p 1,..., p d } spans a simplex σ A σ. σ A is called a face of σ. If A is a proper subset, then σ A is called a proper face of σ. The boundary of σ, denoted as σ, is the union of all proper faces of σ. From its definition, we know a d-simplex σ must be convex. It also has many good topological properties: σ is homeomorphic to a B d ; its boundary is homeomorphic to S d 1 ; and the interior of σ is homeomorphic to IR d, i.e., σ \ σ IR d. Actually, all d-simplex are homeomorphic. 2

Definition 2.2 Let σ be a d-simplex defined on {p 0, p 1,..., p d }, then any point p σ can be represented as p = d i=0 a ip i, where a i 0 and d i=0 a i = 1. The vector a 0, a 1,..., a d is called the barycentric coordinate of p. 2.2 Simplicial Complex Definition 2.3 A simplicial complex K is a collection of simplices such that (1) If σ K, then for any face σ of σ, we have σ K; (2) For two simplices σ 1, σ 2 K, σ 1 σ 2 is either or a face of both σ 1 and σ 2. From its definition, we can see K is a combinatorial representation of a topological space. All simplices in K meet nicely and have no improper intersection in K. The dimension of K is the highest dimension of any of K s simplices. The set of simplices shown in Figure 5a is a simplicial complex, whereas the one in Figure 5b is not a simplicial complex. (a) (b) Figure 5: (a) A simplicial complex. (b) Not a simplicial complex Definition 2.4 j-skeleton of K, denoted as K (j), is the collection {σ K dim (σ) j}. From the definition we know 0-skeleton is the set of vertices, 1-skeleton is the set of vertices and edges, 2-skeleton is the set of vertices, edges and triangles and so on. Definition 2.5 A subcomplex of K is a subset K K which itself is still a simplicial complex. Topological spaces studied in previous lectures are continuous. However, from the above discussion we can see simplical complex is discrete. The underlying space K of K, which is defined as K = {x σ σ K}, associates the discrete simplical complex with continuous topological space. Two simplicial complices are equivalent if their underlying space are homeomorphic. The star of a 0-simplex v K is defined as the set of all simplices having v as a face, denoted as St(v) = {σ K v σ}. Notice that v is a face of itself, so v St(v). The closed star (or closure) of v, St(v), is the smallest subcomplex of K containing St(v). The link of v, Lk(v), is defined as Lk(v) = St(v) St(v). St(v) can be considered as a open neighborhood of v in topological space, then St(v) corresponds to the concept of closed neighborhood and Lk(v) is the boundary of St(v). Figure 6 show the star, closed star and link of a vertex. Notice that the concepts of star, closed star and link for a 0-simplex are just special cases of a set of d-simplices. Please refer to [1] for their definitions. Definition 2.6 An abstract simplicial complex is a finite collection of sets K such that if a set σ K, then for any subset σ σ, σ K. 3

(a) (b) (c) (d) Figure 6: (a) A vertex v. (b) St(v). (c) St(v). (d) Lk(v). Loosely speaking, abstract simplicial complex is a simplicial complex without the associated geometric information. It it pure combinatorial. With embedded geometry, an abstract simplicial complex K becomes a geometric simplicial complex K, and such K is called a geometric realization of K. K can be embedded in Euclidean space. The following theorem tells us abstract simplicial complex does not does not mess up geometric information. Theorem 2.7 Any abstrct d-dimensional simplicial complex has a geometric realization in Euclidean space IR 2d+1. Proof: Let K be a d-dimensional abstract simplicial complex, f be an injection f : K IR 2d+1. We need to prove f(k) is a geometric realization of K. Obviously, f preserves the topological structure of K, i.e., if a simplex σ K and τ σ, then f(τ) f(σ) f(k). We only need to show there is no improper intersection in f(k). Let σ 0 and σ 1 be two simplices in K with a 0 = dim (σ 0 ), a 1 = dim (σ 1 ). We have cardinality of union of the two simplices is card (σ 0 σ 1 ) = card (σ 0 ) + card (σ 1 ) a 0 + 1 + a 1 + 1 2d + 2. This means points in f(σ 0 σ 1 ) are geometrically independent. Then any convex combination of points in f(σ 0 σ 1 ) has a unique barycentric coordinate. Consider f is injective, we have f(σ 0 ) f(σ 1 ) = f(σ 0 σ 1 ). If f(σ 0 ) f(σ 1 ), then any convex combination x f(σ 0 ) f(σ 1 ) iff x is a convex combination of f(σ 0 σ 1 ). That is to say, CH(f(σ 0 ) f(σ 1 )) = CH(f(σ 0 σ 1 )). We already know CH(f(σ 0 σ 1 )) is a simplex, so the intersection of f(σ 0 ) and f(σ 1 ) is either empty or a simplex. This proves there is no improper intersection in f(k). In sum, f(k) is a geometric realization of K. By this theorem, we know a Klein bottle can be embedded in IR 5. Actually, it can be embedded in IR 4, so the bound is not tight. 2.3 Push operation We already know deformation retraction does not change topological structure (homotopy type) while transforming one topological space to another. There is a similar process for simplicial complex. Given a simplicial complex K, a simplex σ K is free if σ K. Push free faces of σ towards its non-free faces, under certain conditions, is essentially a deformation retraction. 4

Definition 2.8 Push operation for a d-dimensional simplicial complex continuously deforms the set of free faces of a simplex onto the set of its non-free faces, if both sets are homeomorphic to B d 1. Push operation forms a deformation retraction of the input simplex. Performing a sequence of push operations to the input simplicial complex does not change its homotopy type, and can be used to somewhat simplify a simplicial complex. References [1] H. Edelsbrunner and J. Harer. Computational topology: an introduction. 2009. 5