Unit 9 Light & Optics

Similar documents
LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

Light: Geometric Optics

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

Light: Geometric Optics (Chapter 23)

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Light travels in straight lines, this is referred to as... this means that light does not bend...

Algebra Based Physics

Light and Lenses Notes

What is it? How does it work? How do we use it?

Phys102 Lecture 21/22 Light: Reflection and Refraction

Chapter 26 Geometrical Optics

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

AP Physics: Curved Mirrors and Lenses

PHYS 219 General Physics: Electricity, Light and Modern Physics

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Reflection and Refraction. Chapter 29

4. Refraction. glass, air, Perspex and water.

Chapter 26 Geometrical Optics

Light & Optical Systems Reflection & Refraction. Notes

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

index of refraction-light speed

Chapter 5 Mirrors and Lenses

The Ray model of Light. Reflection. Class 18

Textbook Reference: Glencoe Physics: Chapters 16-18

Chapter 18 Ray Optics

Chapter 12 Notes: Optics

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them:

Light: Geometric Optics

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Refraction and Lenses. Honors Physics

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Homework Set 3 Due Thursday, 07/14

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

General Physics II. Mirrors & Lenses

1. What is the law of reflection?

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

Chapter 7: Geometrical Optics

Reflection and Refraction of Light

Science 8 Chapter 5 Section 1

M = h' h = #i. n = c v

Chapter 26 Geometrical Optics

The path of light is bent. Refraction and Lenses 5/3/2018. The angle of incidence equals the angle of reflection. Not so for refraction.

Reflection & refraction

Willis High School Physics Workbook Unit 7 Waves and Optics

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Chapter 5 Mirror and Lenses

AP* Optics Free Response Questions

Chapter 23. Light Geometric Optics

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Light, Photons, and MRI

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company

Physics 123 Optics Review

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

PSC20 - Properties of Waves 3

Physics 102: Lecture 17 Reflection and Refraction of Light

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Optics II. Reflection and Mirrors

Today s Topic: Refraction / Snell s Law

Physics 11 - Waves Extra Practice Questions

Ch. 25 The Reflection of Light

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

Refraction of Light. This bending of the ray is called refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

Reflections. I feel pretty, oh so pretty

What Is an Optical System?

General Physics (PHY 2130)

Optics: Laser Light Show Student Advanced Version

UNIT C: LIGHT AND OPTICAL SYSTEMS

Conceptual Physics 11 th Edition

On Fig. 7.1, draw a ray diagram to show the formation of this image.

OPTICS: Solutions to higher level questions

Physics 1230: Light and Color. Lecture 16: Refraction in more complex cases!

Physics 11 Chapter 18: Ray Optics

Light and Mirrors MIRRORS

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK:

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

TEAMS National Competition High School Version Photometry 25 Questions

Experiment 3: Reflection

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

Multiple Choice Identify the choice that best completes the statement or answers the question.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net

Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B

PHYSICS 213 PRACTICE EXAM 3*

Reflection and Refraction

Topic 7. Ray (Geometrical) Optics

Ch. 26: Geometrical Optics

Transcription:

Unit 9 Light & Optics 1

A quick review of the properties of light. Light is a form of electromagnetic radiation Light travels as transverse waves having wavelength and frequency. fλ=c The velocity of EMR is 3.00 x 10 8 m/s The greater the frequency the higher the EMR energy. Color is our perception of EMR between 400 700 nanometers. Light travels in straight lines we call rays. Similar to sound, light can reflect and refract. 2

Light rays travel in a straight line. A light beam is a stream of light energy radiating from a source. Label the diagrams of types of beams. ng Drag this to the target to reveal the answers. parallel converging diverging 3

Reflection of Light Rays The law of reflection states that the angle of reflection must equal the angle of incidence to the normal line. Law of Reflection θi = θr θi θr 32 o 32 o 4

5

Why does the pen appear bent when it is put into the glass? Click here for the answer 6

3. 1. Which substance is denser? Water or air? B B air A A water water 7

Imagine a car driving towards the sea at an angle. When the first front wheel hits the water, the resistance makes that wheel turn slower than the other wheel. As a result, the car rotates until the second wheel is also in the water. Then both wheels turn at the same time. The car stops rotating. 8

When the car comes out of the water, the righthand wheel turns faster than the left, so the car rotates again. When both wheels are out of the water, the car stops rotating and moves forward. This is exactly what happens when a light ray hits a denser medium. 9

So, light rays can either reflect or refract when striking a surface. θi θr air glass 10

Reflections produce virtual images. mirror x x w w The image looks like it is behind the mirror. This is a virtual image. virtual images 1. A virtual image doesn't exist 2. A virtual image is right side up 3. For mirrors, the image is reversed 11

A Real Image A Real Image 1. A real image really exist 2. A real image is upside down 3. A real image is reversed 12

Label the diagram of refraction. Click here for the answer 13

The following pages are answers to the tasks in the lesson activity. 14

Light changes direction as it moves through the water. It does this because water is denser than air, so it slows the light rays down. As a result, the light changes direction slightly, giving the impression the pen is bent. This is called refraction. Click here to go back 15

Label the diagram of refraction. incident ray angle of incidence angle of refraction refracted ray glass normal air Click here to go back 16

Ray Tracings Ray tracings allow us to analyze a system involving mirrors and lenses to determine the location and properties of the resulting image produced. It starts with placing the system onto a coordinate plane, identifying the position of the object and the focal point of the system. With that information, the position and properties of the resultant image can be determined. Symbols used in ray tracings. f = the focal length d o = the object distance from the lens or mirror h o = the object height from the focal line d i = the image distance from the lens or mirror h i = the image height from the focal line m = the magnification of the image 17

Ray Tracing Calculations The focal length, object distance, and image distance can be related by use of the "lens maker's formula." 1 f = 1 + d o 1 d i d i = f d o f d o To Calculate Magnification m = h i = h o d i d o 18

Virtual Image (from Wikipedia) In optics, a virtual image is an image in which the outgoing rays from a point on the object always intersect at a point. A simple example is a flat mirror where the image of oneself is perceived at twice the distance from oneself to the mirror. That is, if one is half a meter in front of the mirror, one's image will appear to be at a distance of 1 meter away (or half a meter inside or behind the mirror). To contrast, a real image is an image in which the outgoing rays from a point on the object pass through a single point. It is easiest to observe real images when projected on an opaque screen. A screen is not necessary for the image to form. When we look through a diverging lens (at least one concave surface) or look into a convex mirror, what we see is a virtual image. However, if we observe a focused image on a screen inside or behind a converging lens (at least one convex side) or in front of a concave mirror what we see on the screen is a real image because the image really is at the screen's location. If we position ourselves so that the screen is directly between ourselves and the optical device (mirror, lens, etc.), we can remove the screen and still observe the image. A converging lens and concave mirror are also capable of producing virtual images if the object is within the focal length. For example, a plane or convex mirror forms a virtual image positioned behind the mirror. Although rays of light seem to come from behind the mirror, light from the source spreads and exists only in front of the mirror. In drawings of optical systems, virtual rays are conventionally represented by dotted lines. Optical rays represent paths on which light actually travels. A virtual ray (the dotted lines) represent perceived paths as seen by an observer looking into the optical device. The light rays do not travel on these dotted paths. A point on the image is located where the virtual rays intersect. 19

Real Image (from Wikipedia) In optics, a real image is a representation of an object (source) in which the perceived location is actually a point of convergence of the rays of light that make up the image. If a screen is placed in the plane of a real image the image will generally become visible on the screen. Examples of real images include the image seen on a cinema screen (the source being the projector), the image produced on a detector in the rear of a camera, and the image produced on a human retina (the latter two pass light through an internal convex lens). In ray diagrams (such as the images on the right), real rays of light are always represented by full, solid lines; perceived or extrapolated rays of light are represented by dashed lines. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to converge. Real images can be produced by concave mirrors and converging lenses. When we look into a convex mirror or see through a concave lens, what we see is not a real image. This image, which appears to be on other side of the lens or mirror plane, is known as a virtual image. A real image is exemplified by a science toy/demonstration called "Mirage" which consists of two facing parabolic mirrors. One faces up, the other faces down one with a hole at its center. A real image of an object at the apex of the lower mirror appears just above the hole in the upper mirror. 20

Ray Tracing Steps for a Diverging Mirror Ray #1 Draw a line parallel from the object to the surface of the mirror. Then draw a dotted line to the focal point. Ray #2 Draw a solid line from the object to the center of the mirror at the focal line. Then draw a solid line reflecting away from the mirror. Continue this line behind the mirror using a dotted line. The intersection of the two dotted lines marks the location of the virtual image. 21

h o = d o = f = Diverging Mirrors 22

h o = d o = f = Diverging Mirrors 23

h o = d o = f = Diverging Mirrors 24

Now let's calculate the same values using the lens maker's and magnification formula. h o = 5 d o = 8 f = -10 d i = d i f d o f d o = ( 10)(8) = 4.444 8 ( 10) m = m d i = 4.44 d o 8 h i = 0.56 = h i = h o m = (5)(0.56) = 2.777 h o h i = d i = m = 25

Ray Tracing Steps for a Converging Mirror Object is Outside the Focal Point Ray #1 Draw a solid parallel line from the object to the mirror then through the focal point. Ray #2 Draw a solid line from the object to the center of the mirror then continue with the reflection. The intersect of these two rays will be the inverted real image. Object is at the Focal Point Ray #1 Draw a solid parallel line from the object to the mirror then through the focal point. Ray #2 Draw a solid line from the object to the center of the mirror then continue with the reflection. Since the two rays will not intersect, there is no image real or virtual. Object is Inside the Focal Point Ray #1 Draw a solid parallel line from the object to the mirror then through the focal point. Ray #2 Draw a solid line from the focal point through the object to the mirror. Then draw a dotted parallel line extending behind the mirror. The intersection of these two rays will be behind the indicating an upright virtual image. 26

h o = d o = f = Converging Mirrors 27

h o = d o = f = Converging Mirrors 28

h o = d o = f = Converging Mirrors 29

Ray Tracing for Diverging Lenses Ray #1 Draw a parallel line from the object to the center of the lens. The draw a diagonal line extending to the focal point on the same side as the object. Ray #2 Draw a line from the object through the center of the lens. The intersection of these two lines will produce a virtual image near the original object. 30

h o = d o = f = Diverging Lenses 31

Ray Tracing for Converging Lenses Ray #1 Draw a parallel line from the object to the center of the lens. The draw a diagonal line extending to the focal point on the opposite side of the lens. Ray #2 Draw a line from the object through the center of the lens. The intersection of these two lines will produce a real image. 32

h o = d o = f = Converging Lenses 33

d i = f d o f d o m = d i 34

h o = d o = f = Converging Lenses 35

h o = d o = f = Diverging Lenses 36

37

Optical Experiment #1 A) Index of Refraction Snell's Law The index of refraction is equal to the ratio of the sine of the angle of incidence and the sine of the angle of refraction. η = sin i sin r 38

Optical Experiment #1 B) Focal Length of Converging Lenses 39

Optical Experiment #1 C) Diffraction Pattern L = distance of diffraction grating to paper. d = distance marked on the DG plate x = distance between the dots on the paper n = the number of spaces between the dots 40

Internal Reflections & Fiber Optics http://www.usfacetersguild.org/articles/bob_keller/refractive_index/ http://www.tutorvista.com/topic/refractive index list Total internal reflections can be demonstrated using a semi circular glass block. A "ray box" shines a narrow beam of light onto the glass. The semi circular shape ensures that a ray pointing towards the centre of the flat face will hit the curved surface at a right angle; this will prevent refraction at the air/glass boundary of the curved surface. At the glass/air boundary of the flat surface, what happens will depend on the angle. Where θ c is the critical angle (measured normal to the surface): If θ < θ c, the ray will split. Some of the ray will reflect off the boundary, and some will refract as it passes through. If θ > θ c, the entire ray reflects from the boundary. None passes through. This is called total internal reflection. This physical property makes optical fibers useful and prismatic binoculars possible. It is also what gives diamonds their distinctive sparkle, as diamond has an extremely high refractive index. 41

Substance State Refractive Index Air Gas 1.000293 Ice Solid 1.31 Water Liquid 1.33 Ethyl Alcohol Liquid 1.36 Fluorite Solid 1.43 Quartz Solid 1.54 Salt Solid 1.54 Tourmaline Solid 1.62 Garnet Solid 1.73 1.89 Cubic Zirconia Solid 2.14 2.20 Diamond Solid 2.41 42

Internal Reflections & Fiber Optics Critical angle The critical angle is the angle of incidence above which total internal reflection occurs. The angle of incidence is measured with respect to the normal at the refractive boundary. The critical angle θ c is given by: η = 1 sin θcr 43

The Human Eye & Vision Correction 44

45

Which lens would help correct this problem? 46

Which lens would help correct this problem? 47

What is a stigmatism? 48