A HYBRID SEMI-PRIMITIVE SHOCK CAPTURING SCHEME FOR CONSERVATION LAWS

Similar documents
Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

A Review on the Numerical Solution of the 1D Euler Equations. Hudson, Justin. MIMS EPrint:

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Medical Image Segmentation using Level Sets

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow

AN ADAPTIVE MESH REDISTRIBUTION ALGORITHM FOR CONVECTION-DOMINATED PROBLEMS. Zheng-Ru Zhang and Tao Tang

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

IMPICE Method for Compressible Flow Problems in Uintah.

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD

CS205b/CME306. Lecture 9

Concepts and Application of Time-Limiters to High Resolution Schemes

On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes

Level Set Methods and Fast Marching Methods

On the order of accuracy and numerical performance of two classes of finite volume WENO schemes

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain

ISSUES IN ADAPTIVE MESH REFINEMENT IMPLEMENTATION

WENO scheme with subcell resolution for computing nonconservative Euler. equations with applications to one-dimensional compressible two-medium flows

This is an author-deposited version published in: Eprints ID: 4362

Example 13 - Shock Tube

Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations

Lecture 1: Finite Volume WENO Schemes Chi-Wang Shu

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

On the high order FV schemes for compressible flows

Partial Differential Equations

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015

Discontinuous Fluctuation Distribution

A Moving Mesh Method for Time dependent Problems Based on Schwarz Waveform Relaxation

Numerical Methods for Hyperbolic and Kinetic Equations

Numerical Methods for (Time-Dependent) HJ PDEs

Discontinuous Galerkin Spectral Element Approximations for CFD

High Order Weighted Essentially Non-Oscillatory Schemes for Convection. Dominated Problems. Chi-Wang Shu 1

A Moving Mesh Method for Time Dependent Problems based on Schwarz Waveform Relaxation

A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes. Abstract

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

A New Trouble-Cell Indicator for Discontinuous Galerkin Methods for. Hyperbolic Conservation Laws ABSTRACT

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly!

GENUINELY MULTIDIMENSIONAL NON-DISSIPATIVE FINITE VOLUME SCHEMES FOR TRANSPORT

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

Application of A Priori Error Estimates for Navier-Stokes Equations to Accurate Finite Element Solution

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

An Introduction to Viscosity Solutions: theory, numerics and applications

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI

A Comparison of Some Numerical Methods for the Advection-Diffusion Equation

An iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities

Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured mesh 1

Modeling Unsteady Compressible Flow

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

1.2 Numerical Solutions of Flow Problems

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Modeling External Compressible Flow

A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws

A high order moving boundary treatment for compressible inviscid flows 1. Abstract

A Toolbox of Level Set Methods

Non-Newtonian Transitional Flow in an Eccentric Annulus

Imaging of flow in porous media - from optimal transport to prediction

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

The Level Set Method applied to Structural Topology Optimization

A CONSERVATIVE FRONT TRACKING ALGORITHM

Control Volume Finite Difference On Adaptive Meshes

Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes

IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL RESERVOIR SIMULATIONS USING THE CIP SCHEME WITH THIRD-ORDER ACCURACY

i.e. variable extrapolation along the characteristic propagation directions. This leads to a family of rst and second-order accurate schemes with an i

Introduction to ANSYS CFX

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon

Robust and Efficient Adaptive Moving Mesh Solution of the 2-D Euler equations

Traffic flow optimization on roundabouts

arxiv: v1 [math.na] 26 Jun 2014

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Finite difference methods

Fluent User Services Center

Shallow Water Equations:Variable Bed Topography Adam Riley Computer Science (with Industry) 2011/2012

Moving Interface Problems: Methods & Applications Tutorial Lecture II

DAM-BREAK FLOW IN A CHANNEL WITH A SUDDEN ENLARGEMENT

Unlabeled Data Classification by Support Vector Machines

Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach

OPEN CHANNEL FLOW. An Introduction. -

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

NUMERICAL PERFORMANCE OF COMPACT FOURTH ORDER FORMULATION OF THE NAVIER-STOKES EQUATIONS

Hierarchical Reconstruction for Spectral Volume Method on Unstructured Grids

Test functions for optimization needs

ACCURACY OF NUMERICAL SOLUTION OF HEAT DIFFUSION EQUATION

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

Numerical and theoretical analysis of shock waves interaction and reflection

Computation of Fictitious Gas Flow with Euler Equations

Computing Nearly Singular Solutions Using Pseudo-Spectral Methods

Efficient implementation of WENO Scheme on structured meshes

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

Observations on the fifth-order WENO method with non-uniform meshes

A NURBS-BASED APPROACH FOR SHAPE AND TOPOLOGY OPTIMIZATION OF FLOW DOMAINS

Transcription:

Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conf. 9 (), pp. 65 73. ISSN: 7-669. URL: http://ejde.math.tstate.edu or http://ejde.math.unt.edu ftp ejde.math.tstate.edu A HYBRID SEMI-PRIMITIVE SHOCK CAPTURING SCHEME FOR CONSERVATION LAWS RITESH KUMAR DUBEY Abstract. A hybrid semi-primitive shock capturing scheme is presented for hyperbolic problems. Upwind based construction is done using eplicit information on the wave propagation direction associated with the problem. This scheme captures the shock waves at right location but shows unphysical sonic epansion shock. This phenomena of unphysical epansion shock in the presence of epensive sonic point is not surprising and it is common for the wave based upwind schemes. A hybrid scheme approach using an iteration criteria based on sonic entropy fi is proposed to avoid such epansion shocks. Numerical results for scalar test problems are presented which show that proposed scheme captures the shock accurately.. Introduction In this work we consider the hyperbolic differential equations in the following primitive (non-conservative) form, t + α(u) (u) =, (, t) R R+, (.) together with the appropriate boundary and initial conditions. In (.), the unknown variable u R can be a physically conserved variable and in such situation the characteristic speed α(u) = f where, f = f(u) be the physical flu and (.) can be written in conservative form as t + f(u) =. (.) It is well known that even if the initial condition is smooth enough, various kind of discontinuity e.g, shock wave, contact discontinuity and epansion fan may arise in the solution of such hyperbolic problems. Looking at literature to solve hyperbolic problems numerically one can eperience an imbalance in between the number of available conservative schemes and primitive (non-conservative) schemes. The main reason for this imbalance seems to be the possible occurrence of shock waves in the solution of (.) and it is shown in [] that conservative form is mandatory for capturing the shock at right location while the primitive form captures the shock Mathematics Subject Classification. 35L65, 65M6, 65M. Key words and phrases. Hyperbolic conservation laws; primitive scheme; upwind difference; hybrid schemes. c Teas State University - San Marcos. Published September 5,. 65

66 R. K. DUBEY EJDE/CONF/9 at wrong position and primitive schemes often converge to wrong week solution. In fact, most of the numerical schemes developed for hyperbolic problems are conservative. A state of art detail on various conservative numerical schemes for solving (.) can be found in [6, 7, 8,, 3]. On the other hand primitive or semi-primitive schemes work well for the smooth solution, discontinuities such as contact, shear waves and mild shocks [] but these methods are simply discarded. Recently few attempts are made to construct primitive schemes. Primitive schemes based on upwinding are given in [, 4] and centered schemes are proposed in []. In this work our main aim is to construct a primitive scheme which can capture the shock waves at right location. In order to do this we look for a primitive scheme which changes into conservative form around discontinuities so that it can capture shock accurately as suggested in []. The scheme is designed based on upwinding by using the eplicit information on characteristic speed α = f (u) of primitive form (.). Thus constructed semi-primitive scheme captures the shock wave correctly but in the presence of epensive sonic point where wave speed changes its sign, produces entropy violating solution. In order to overcome this, we use the idea of hybrid schemes and use entropy satisfying La-Friedrichs in the presence of sonic point. To decide upon iterations a criteria is given using an entropy fi approach.. Primitive scheme formulation We define semi-primitive (semi-conservative) schemes as a scheme which remains primitive (non-conservative) for the region of smooth solution and locally corrected into conservative form around discontinuities. For the simplicity of presentation, consider the wave equation t + a =, a R. (.) We discretize the domain with fied space and time step sizes, t respectively. Integrating (.) over the rectangle [ i, i+ ] [tn, t n+ ] and introducing the definitions of the spatial and temporal cell averages U n i = i+ i u(, t n )d, U i± = t t n+ one can obtain a primitive difference scheme of the form ( ) U n+ i = Ui n aλ U i+ U i u( i±, t)dt, (.) t n (.3) where λ = t, U i± are intermediate states defined on the cell interfaces i±. Note that for constant wave speed a, the difference scheme (.3) can be written in conservative form, ( ) U n+ i = Ui n λ H i+ i (.4) where H i± = au n i± is the numerical flu function. It is well-known that the first order upwind approimation for (.) can be obtained by using the following intermediate states U i± in (.3) U i+ = U i, a, U i+, a. (.5)

EJDE-/CONF/9/ A HYBRID SCHEME 67 Consider the primitive form (.) of hyperbolic problem (.) t + α(u) =, (.6) On comparison with (.) and utilizing the eplicit information of the characteristic speed α(u) we can construct a primitive upwind scheme so that it respects physical hyperbolicity property associated with (.). Analogous to first order accurate primitive difference scheme for linear equation (.), we propose a first order primitive upwind scheme for non-linear equation (.6) which can be written as U n+ i = Ui n λ s i Ui+ U } i (.7) where U i± are intermediate states on the cell interface at i± and defined similar to (.5) as follows, U i+ = Ui, a i+, Fi+ F i U i+, a i+,, a i+ = U i+ U i, U i+ U i, α(u i ), U i+ = U i. where F i = f(u i ). Numerical wave speed s i in (.7) is the local linearized approimation for α(u) in the i th cell. We define the numerical wave speed using intermediate states in such a way that the resulting scheme changes into conservative form in the vicinity of shock as follows, F i+ F i U s i = i+ U, if U i i+ U i, (.8) f i = f (U i ), if U i+ = U i, Note that, in the vicinity of shock discontinuity, proposed scheme gives conservative approimation. For this, let shock discontinuity be locally in the i th cell then U i+ U i and (.7), (.8) yield a conservative approimation U n+ i = Ui n λ(f i+ F i ). (.9) This shows that proposed semi-primitive scheme is locally corrected by a conservative scheme, hence can capture shocks accurately []. Presented numerical results also validate this feature. 3. Hybrid Scheme We have observed that the proposed semi-primitive scheme captures the shock discontinuity correctly but in presence of epansive sonic point where wave speed changes its sign, produces entropy violating solution which shows the less dissipative nature of semi-primitive scheme near epensive sonic point (see Fig. 3 Left). This phenomena is not new for the wave propagation based upwind schemes and it is well known in the literature that one need to use an entropy fi in the solution region where wave speed changes its sign [3, 5]. In order to apply proposed method for the problem with epensive sonic point we use hybrid schemes approach. The idea is to use entropy satisfying La-Friedrichs centered scheme in the region of sonic point. We propose an iteration approach based of the entropy fi formula for residual distribution scheme given in [9] as follows, ( ) Ui λᾱ i Ui+, si δ i, U n+ i = U i (U i++u i ) λ (f(u i+) f(u i )), s i < δ i. (3.)

68 R. K. DUBEY EJDE/CONF/9 where δ i = γ ma(, (ã i+ ã i )), γ, ã i = f (U i ). (3.) Remarks () One can also use other entropy fi formulas for numerical computation [3, 5]. () For non-linear problem (.), the proposed scheme is different from the classical conservative upwind scheme though for the linear problem (.) it can be written as classical upwind scheme. In fact, in smooth solution region the proposed scheme (.7) may give primitive approimation to (.). 4. Numerical Results Remarks () In all our numerical results, we denote the results obtained using proposed semi-primitive scheme (without entropy iteration) by SP scheme and with entropy iteration that is hybrid scheme by HSP scheme. For all numerical simulation of HSP, a fied value γ = is taken in (3.). ()The proposed SP scheme works very well for most of the case but fails to capture centered epansion fan. Hence for safer side HSP scheme should always be used. For some tests results are given only for SP/HSP as similar results are obtained with proposed HSP/SP scheme. (3) One can easily show that proposed scheme is stable for linear problem (.) under the CFL condition aλ this is why we use CFL like stability condition λ α for non-linear problems. 4.. Conve Flu function: Inviscid Burgers Equation. We consider the inviscid Burgers equation t + ( u ) =, t >, (4.) with periodic boundary conditions. It is well known that the solutions of inviscid Burgers equation may contain shocks [6]. We present three different test cases to show the accuracy and shock capturing at correct location using the proposed scheme. 4... Case : Pre-/Post-Shock: In this eample, we take smooth sinusoidal initial condition, u(, ) = sin(), [, π]. (4.) In this test case the final solution beginning from smooth initial conditions contains a shock discontinuity after a breaking time t =.. In Fig., approimate solutions obtained by proposed semi-primitive scheme SP are presented at pre-shock time t =.5,.75 when the solution remains smooth and at post shock time t =.5 when the shock is completely developed. Graph shows that SP gives good approimation for the smooth solution and captures the shock at right location. 4... Case : Moving Shock: Here we consider the Burgers equation (4.) with the initial condition, for, u(, ) = (4.3), for >. This test case has no sonic point in its solution. The initial shock discontinuity at = propagates without losing its initial shape with time. In Figure we compare

EJDE-/CONF/9/ A HYBRID SCHEME 69 t=.5 t=.75 t=.5.5.5 3 4 5 6 Figure. Computed solution by semi-primitive (SP) scheme for various pre and post shock time with CF L =.6 the solution obtained with SP at different time level which shows that the scheme is able to capture the shock at right location within grid point. Similar results are obtained with HSP..5.5 t =4 t =8 t =.5 4 6 8 Figure. Shock capturing feature of proposed SP scheme for C =.5, =. at various time level 4..3. Case 3: Sonic epansion fan in presence of sonic point: Consider the Burgers equation (4.) with the initial condition, for <, u(, ) = (4.4), for. The eact solution is an epansion fan emanating from the sonic point at =. In Figure 3, numerical solutions are compared with eact reference solution at time t =.4 on a uniform grid with points. The solution computed by proposed SP scheme shows an epansion shock while the entropy fi based HSP scheme removes the epansion shock very satisfactorily.

7 R. K. DUBEY EJDE/CONF/9.5 (A) Eact SP.5.5.8.6.4...4.6.8 (B) Eact HSP.5.5.5.8.6.4...4.6.8 Figure 3. Sonic epansion: semi-primitive scheme (A) and hybrid semi-primitive scheme (B) for data C =.8, =. at time t =.4 4.. Conve-Concave flu: Buckley Leverett Equation. A more demanding test eample for the scalar one-dimensional problem is the Buckley-Leverett equation. This equation models the two phase flows that arise oil-recovery problems and physically represents a miture of oil and water through the porous medium. In conservative form (.) the flu function for this problem is given by a conveconcave (S-shaped) function f(u) = u u + ν( u). (4.5) Here ν is viscosity ratio and u represents the saturation of water and lies between and. and initial con- 4... One moving shock [3]. Consider the flu (4.5) with ν = dition, <, u(, ) =, >. (4.6)

EJDE-/CONF/9/ A HYBRID SCHEME 7 The solution involves one single moving shock followed by a rarefaction wave. Numerical results using proposed hybrid semi-primitive scheme (HSP) are presented in Fig. 4. HSP sharply captures the moving shock at right location and rarefaction wave accurately. =.5 t =. =.5.8.6.4..5.5.5.5 Figure 4. Solution profile for data C =.4, =. at time t =.5,.,.5 4... Two moving shock []. Consider the flu (4.5) with ν = 4 and subject to initial condition,.5, u(, ) = (4.7), elsewhere. The solution involves two moving shocks, each followed by an rarefaction wave. Numerical result is given in Fig. 5 which shows that the HSP sharply captures both the fast and slow shocks. The rarefaction waves are also accurately approimated by HSP. Eact HSP.8.6.4..8.6.4...4.6.8 Figure 5. Solution profile using C =.4, =. at time t =.5

7 R. K. DUBEY EJDE/CONF/9 4.3. Flu Sine problem: Moving and Stationary Shock. We consider third scalar Riemann problem with non-conve sinusoidal flu function which is introduced by Leveque in [8]. It is given by with the initial condition t + (sin(u)) = (4.8) π u(, ) = 4, <, 5π 4, >. (4.9) The solution consists one stationary shock at the origin, one moving shock followed by an epansion wave and one moving epansion wave. In Fig 6 solution obtained by HSP is shown for time t =.. Figure 6 shows that HSP capture the stationary shock as well moving shocks nicely with a nice resolution for the two epansion waves. 4 Eact HSP 8 6 4.8.6.4...4.6.8 Figure 6. Solution profile using C =.6, =. at time t =. Conclusion and future work. In this work, we define the semi-primitive scheme by considering the primitive form of conservation law. Primitive scheme is constructed in such a way that it becomes conservative in the vicinity of discontinuity. Proposed scheme captures the shock with high accuracy but yields rarefaction shocks in the presence of sonic point. A hybrid scheme approach is proposed based on entropy fi iteration. Presented numerical eamples show that hybrid scheme captures shock at right location and resolves the epansion fan. Etension for the hyperbolic system and high order accurate hybrid semi-primitive scheme is under investigation. References [] Xin, J.; Flaherty, J. E.; Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws, App. Num. Math. 56 (6), 444-458. [] Hou, T.Y.; LeFloch, P.G.; Why non-conservative schemes converge to wrong solutions: error analysis, Mathematics of Computation, 6(994), 497-53. [3] Harten, A.; Hyman, J. M.; Self-Adjusting Grid Methods for One-Dimensional Hyperbolic Conservation Laws, J. of Comput. Physics, 5(983), 35-69.

EJDE-/CONF/9/ A HYBRID SCHEME 73 [4] Karni, S.; Multicomponent flow calculations using a consistent primitive algorithm. J. Comp. Phys. ( 994), 3-43. [5] Kermani, M. J.; Plett, E. G.; Modified Entropy Correction Formula for the Roe Scheme, AIAA - 83. [6] Laney, C. B.; Computational Gas-dynamics (Ist edn). Cambridge University press: Cambridge, 998. [7] Leveque, R. J.; Numerical methods for conservation Laws, Lectures in Mathematics, ETH Zurich, Birkhauser, 999. [8] Leveque, R. J.; Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge,. [9] Sermeus, K.; Deconinck, H.; An entropy fi for multi dimensional upwind residual distribution schemes, Computers and Fluids, 34(5), 67-64. [] Toro, E. F.; Silviglia, A.; PRICE: primitive centered schemes for hyperbolic systems, Int. J. Num. Meth. Fluids, 4(3), 63-9. [] Toro, E. F.; Riemann solvers and numerical methods for fluid dynamics, A practical introduction nd edition, Springer, 999. [] Toro, E. F.; Primitive, conservative and adaptive schemes for hyperbolic conservation laws. In Numerical Methods for Wave Propagation. Toro E. F., Clarke J. F. (eds). Kluwer Academic Publishers: Dordrecht, 998; 33-385. [3] Wesseling, P.; Principles of computational fluid dynamics, Springer. Ritesh Kumar Dubey Institut de Mathématiques de Toulouse, Université Paul Sabatier, 8 route de Narbonne, F-36 Toulouse Cede 9, Fance E-mail address: riteshkd@gmail.com