Rasters are: The Raster Data Model. Cell location specified by: Why squares? Raster Data Models 9/25/2014. GEO327G/386G, UT Austin 1

Similar documents
The Raster Data Model

Raster Data Models 9/18/2018

The Raster Data Model

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

RASTER ANALYSIS GIS Analysis Fall 2013

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016

Georeferencing & Spatial Adjustment 2/13/2018

RASTER ANALYSIS GIS Analysis Winter 2016

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014

The GIS Spatial Data Model

MRR (Multi Resolution Raster) Revolutionizing Raster

By Colin Childs, ESRI Education Services. Catalog

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations.

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

Purpose: To explore the raster grid and vector map element concepts in GIS.

Alaska Department of Transportation Roads to Resources Project LiDAR & Imagery Quality Assurance Report Juneau Access South Corridor

Georeferencing & Spatial Adjustment

Chapter 3: Maps as Numbers

L7 Raster Algorithms

Raster Data. James Frew ESM 263 Winter

Geometric Rectification of Remote Sensing Images

Topic 5: Raster and Vector Data Models

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst

Maps as Numbers: Data Models

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities

v Importing Rasters SMS 11.2 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

Managing Imagery and Raster Data Using Mosaic Datasets

Map Analysis of Raster Data I 3/8/2018

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models

JPEG 2000 compression

Reality Check: Processing LiDAR Data. A story of data, more data and some more data

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

A Public Domain Tool for Wavelet Image Coding for Remote Sensing and GIS Applications

Representing Geography

ENVI Tutorial: Map Composition

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Terrain Analysis. Using QGIS and SAGA

Technical Specifications

Introduction to Computer Science (I1100) Data Storage

Files Used in this Tutorial

Using Imagery for Intelligence Analysis

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations,

Introduction to Image Processing

Unpacking Instructions

Maps as Numbers: Data Models

Spatial data and QGIS

INTRODUCTION TO GIS WORKSHOP EXERCISE

Managing Imagery And Raster Data Using Mosaic Dataset. Peter Becker & Cody Benkelman

Digital Elevation Models

Using LiDAR (Light Distancing And Ranging) data to more accurately describe avalanche terrain

1. (10 pts) Order the following three images by how much memory they occupy:

Smart GIS Course. Developed By. Mohamed Elsayed Elshayal. Elshayal Smart GIS Map Editor and Surface Analysis. First Arabian GIS Software

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

Map Library ArcView Version 1 02/20/03 Page 1 of 12. ArcView GIS

ENVI Classic Tutorial: 3D SurfaceView and Fly- Through

Lecture 20 - Chapter 8 (Raster Analysis, part1)

GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst

Creating Contours using ArcMap

DATA MODELS IN GIS. Prachi Misra Sahoo I.A.S.R.I., New Delhi

Questions and Answers

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK

Terrain and Imagery Tutorial. Contents. By: Brian Zager

ERDAS Image Web Server Datasheet

ENVI Classic Tutorial: Multispectral Analysis of MASTER HDF Data 2

Introduction to GIS 2011

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Understanding Geospatial Data Models

APPENDIX E2. Vernal Pool Watershed Mapping

Caching Imagery Using ArcGIS

PART 1. Answers module 6: 'Transformations'

Lab 5: Georeferencing, Digitization, and Processing

Introduction to the Google Earth Engine Workshop

User Guide to the ESG MrSID Tools for ER Mapper

Review of Cartographic Data Types and Data Models

MARS v Release Notes Revised: May 23, 2018 (Builds and )

Alberta-wide ALOS DSM "ALOS_DSM15.tif", "ALOS_DSM15_c6.tif"

GSSHA WMS Basics Loading DEMs, Contour Options, Images, and Projection Systems

Exercise # 6: Using the NHDPlus Raster Data Sets Last Updated 3/28/2006

GY301 Geomorphology Lab 5 Topographic Map: Final GIS Map Construction

Oracle Database 10g: Managing Spatial Raster Data Using GeoRaster. An Oracle Technical White Paper May 2005

What s New in Imagery in ArcGIS. Presented by: Christopher Patterson Date: September 12, 2017

Computer Graphics Fundamentals. Jon Macey

Web Map Caching and Tiling. Overview David M. Horwood June 2011

Main concepts of ILWIS 3.0

Spatial Interpolation - Geostatistics 4/3/2018

Managing Image Data on the ArcGIS Platform Options and Recommended Approaches

Imagery and Raster Data in ArcGIS. Abhilash and Abhijit

Lecture 2: GIS Data Sources, Data Types and Representation. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Accessing Data Where it Lives

Data Representation From 0s and 1s to images CPSC 101

Introduction to SAGA GIS

Airborne Hyperspectral Imaging Using the CASI1500

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Lecture 23 - LiDAR. GEOL 452/552 - GIS for Geoscientists I. Scanning Lidar. 30 m DEM. Lidar representations:

Introducing ArcScan for ArcGIS

Files Used in this Tutorial

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

ERDAS IMAGINE.img Files

Transcription:

5 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 The Raster Data Model Rasters are: Regular square tessellations Matrices of values distributed among equalsized, square cells 565 573 582 590 575 580 595 600 579 581 597 601 Llano River, Mason Co., TX 580 600 620 632 9/25/2014 GEO327G/386G, UT Austin 1 9/25/2014 GEO327G/386G, UT Austin 2 Why squares? Cell location specified by: Computer scanners and output devices use square pixels Bit-mapping technology/theory can be adapted from computer sciences 1-to-1 mapping to grid coordinate systems! 9/25/2014 GEO327G/386G, UT Austin 3 Row/column (R/C) address Origin is upper left cell (1,1) Relative or geographic coordinates can be specified 1 1,1 2 1 2 3 4 3 4,3 4 6005180 510400 UTM coordinates 510520 6005300 9/25/2014 GEO327G/386G, UT Austin 4 GEO327G/386G, UT Austin 1

Registration to world coordinates Registration to world coordinates 0 0 6005300 510400 Y rows X columns 510400 6005300 y 30 m Unregistered Registered Image Space Map Space Requires world file : Specify coords. of upper left corner x Specify ground dimensions of cell, in same units 9/25/2014 GEO327G/386G, UT Austin 5 9/25/2014 GEO327G/386G, UT Austin 6 World File DRG example Spatial Resolution 2.43840000000000 CELL SIZE IN X DIRECTION (m) 0.00000000000000 ROTATION TERM 0.00000000000000 ROTATION TERM -2.43840000000000 CELL SIZE IN Y DIRECTION (m) 487988.64154709835000 UTM EASTING OF UPPER LEFT CORNER (m) 3401923.72301301550000 UTM NORTHING OF UPPER LEFT CORNER (m) /* UTM Zone 14 N with NAD83 /* This world file shifts the upper left image coordinate to the corresponding /* NAD83 location, resulting in an approximated NAD83 image. /* Map Name: Art /* Map Date: 1982 /* Map Scale: 24000 Defined by area or dimension of each cell o Spatial Resolution = (cell height) X (cell width) o High resolution: cell represent small area o Low resolution: cell represent larger area Defined by size of one edge of cell (e.g. 30 m DEM ) For fixed area, file size increases with resolution Low Res. Hi Res. 40 m 100 m 2 25 m 2 10 m 5 m 40 m 9/25/2014 GEO327G/386G, UT Austin 7 9/25/2014 GEO327G/386G, UT Austin 8 GEO327G/386G, UT Austin 2

30 m vs. ~90 m pixel size Resolution constraint o Resolution of 30 m data is 9 times better than 90 m data Packsaddle Mountain Cell size should be less than half of the size of the smallest object to be represented ( Minimum mapping unit; MMU ) 30 m 90 m (50 m contours, vector data layer) 9/25/2014 GEO327G/386G, UT Austin 9 Cell size = MMU Cell size ~ ½ MMU 9/25/2014 GEO327G/386G, UT Austin 10 e.g. DOQQ resolutions Resolution is size of sampled area on ground, not MMU 1 m 1/3 m Raster Dimension: Number of rows x columns o E.g. Monitor with 1028 x765 pixels 565 573 582 590 1 m resolution raster data (E. Mall Circle Drive) 1/3 m resolution raster data Dimension = 4 x 4 575 580 595 600 579 581 597 601 1 m 2 1/3 m 580 600 620 632 MMU= 2 m MMU= ~ 2/3 m 9/25/2014 GEO327G/386G, UT Austin 11 9/25/2014 GEO327G/386G, UT Austin 12 GEO327G/386G, UT Austin 3

Raster Attributes Integer Code Attributes Two types: 1. Integer codes assigned to raster cells E.g. rock type, land use, vegetation Codes are technically nominal or ordinal data 2. Measured real values Can be integer or floating-point (decimal) values; technically interval or ratio data E.g. topography, em spectrum, temperature, rainfall, concentration of a chemical element 9/25/2014 GEO327G/386G, UT Austin 13 Code is referenced to attribute via a look-up table or value attribute table VAT Commonly many cells with the same code Different attributes must be stored in different raster layers 5 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 Nominal Coded Raster VAT Value Count Rock Type 2 21 Marble 5 37 Gneiss 8 6 Granite 9/25/2014 GEO327G/386G, UT Austin 14 Mixed Pixel Problem Severity is resolution dependant Rules to assign mixed pixels include: edge pixels : not assigned to any feature define a new class Assign to feature that comprises most of pixel Coded Value Raster Types Single-band: Thematic data o Black & White: binary (1 bit) (0 = black, 1 = white) o Panchromatic ( Grayscale ) (8 bit): 0 (black) 255 (white) or graduated color ramps (e.g. blue to red, light to dark red) o Colormaps ( Indexed Color ): code cells by values that match prescribed R-G-B combinations in a lookup table B & W Panchromatic Color Map Lookup/index table 9/25/2014 GEO327G/386G, UT Austin 15 Figures from: Modeling our World, ESRI press 9/25/2014 GEO327G/386G, UT Austin 16 GEO327G/386G, UT Austin 4

Single Band Examples Black & White (Grayscale) Single Band Example Color Map (Indexed Color) E.g. Austin East 7.5 Digital Raster Graph Black & White - 1 bit 54 (10 of 12 values shown) Grayscale 8 bit; black, white & 254 shades of gray Each pixel contains one of 12 unique values, each corresponding to a prescribed color (Red, Green & Blue combination) 9/25/2014 GEO327G/386G, UT Austin 17 9/25/2014 GEO327G/386G, UT Austin 18 Measured, Real Value Attributes Commonly stored as floating point values Different attributes must be stored in different layers, e.g. spectral bands in satellite imagery Compression techniques for rasters of integer-valued cells, but not floating point (see below) 9/25/2014 GEO327G/386G, UT Austin 19 Red Green Blue Multiband Image Raster Attributes Multi-band Spectral Data Band 3 Attribute values 0-255 Figures from: Modeling our World, ESRI press RGB Composite 255 0 Band 1 Band 2 Visible Spectrum Band = segment of Em spectrum Map intensities of each band as red, green or blue. Display alone or as composite 9/25/2014 GEO327G/386G, UT Austin 20 GEO327G/386G, UT Austin 5

Multiband Image 8 bits/band, 3 Band RGB Cell values apply to: E.g. Austin East 7.5 Color Infrared Digital Orthophotograph ( CIR DOQ ) Band 1 Band 2 Band 3 Middle of cell, e.g. Digital Elevation Models (DEM) Whole cell, e.g. most other data Source: Modeling our World, ESRI press 9/25/2014 GEO327G/386G, UT Austin 21 9/25/2014 GEO327G/386G, UT Austin 22 Digital Elevation Model Airborn Magnetic (TFI) Map TFI Pixel values Southern Tetons, Wyoming Southern Tetons, Wyoming 9/25/2014 GEO327G/386G, UT Austin 23 9/25/2014 GEO327G/386G, UT Austin 24 GEO327G/386G, UT Austin 6

How are rasters projected? Raster File Size Problem: Square cells must remain square after projection. Solution: Resampling (interpolation); add, remove, reassign cells to conform to new spatial reference. fixed by dimension, not information 8 x 8 8 x 8 At 1 bit/cell, file size = 8 x 8 x 1 = 64 bits (8 bytes) 9/25/2014 GEO327G/386G, UT Austin 25 9/25/2014 GEO327G/386G, UT Austin 26 Raster File Size = Rows x columns x bit-depth Bit depth: number of bits used to represent pixel value 8-bit data can represent 256 values (2 8 ) 16-bit data (2 16 ) allows 65,536 values 32-bit data allows ~4.3 billion values 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 8 x 8 raster File Structure Header: (dimension, max. cell value) + resolution, coordinate of one corner pixel, etc. 5 8, 8, 8 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 Data File (linear array) 5 9/25/2014 GEO327G/386G, UT Austin 27 9/25/2014 GEO327G/386G, UT Austin 28 GEO327G/386G, UT Austin 7

Zoom Out File Compression File Compression E.g. Run-length encoding 5 5 5 5 5 5 5 5 5 5 5 2 2 5 5 2 2 2 2 2 2 8 8 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 2 2 2 5 5 5 5 Before: 64 characters 5 Row, Run Freq., Value 1,1 8,5 2,3 4,5 2,2 2,5 3,3 4,5 2,2 2,8 4,3 4,5 2,2 2,8 5,2 6,2 2,8 6,2 2,2 6,5 7,2 4,2 4,5 8,3 1,5 3,2 4,5 After: 46 characters (28% reduction; ratio of 1.4: 1) 9/25/2014 GEO327G/386G, UT Austin 29 E.g. Block encoding 1 2 3 4 5 6 7 8 Block Size Value Coordinates 1 5 5 5 5 5 5 5 5 1 5 5,1 6,1 3,6 4,6 8,6 8,7 1,8 8,8 2 5 5 5 5 2 2 5 5 1 8 7,5 6,5 3 1 2 3,5 4,5 1,7 2,7 2,8 4 4 5 7,1 5 2 2 2 2 2 2 8 8 4 2 5,2 5,4 1,5 3,7 6 2 2 5 5 5 5 5 5 4 8 7,3 7 2 2 2 2 5 5 5 5 9 5 5,6 8 5 2 2 2 5 5 5 5 16 5 1,1 Before: 64 characters After: 61 characters (5% reduction ratio of 1.05: 1) 9/25/2014 GEO327G/386G, UT Austin 30 MrSID or ECW (wavelet) compression - Multi-resolution Seamless Image Database commercialized by LizardTech Compression ratios of 15-20:1 for single band 8-bit images Ratios of 2-100:1 (!) for multiband color images also ECW by ER Mapper Ltd. (now Intergraph/ERDAS) *** Enormous raster data sets now manageable on PCs and across web with this technology *** 9/25/2014 GEO327G/386G, UT Austin 31 Raster Pyramids Store reduced-resolution copies of a raster for rapid display e.g ArcGIS, Google, many others Often combined with image tiling for rapid rendering of images 8 x 8 4 x 4 2 x 2 Source: Modeling our World, ESRI press 9/25/2014 GEO327G/386G, UT Austin 32 Zoom In GEO327G/386G, UT Austin 8

Image Tiling Lossy vs. Lossless Compression Split raster into smaller contiguous rectangular or square areas = tiles Display only the tile required upon zooming Level 0 = 100% of image = 16 low res. tiles Level 1 = higher res. (parts of 4 med. res. tiles) Level 2 = highest res. (1 high res. tile) Techniques that combine similar attribute information to reduce file size are lossy e.g. JPEG, GIFF, PNG, MrSID Lossless formats; TIFF, BMP, GRID Level 0 Level 1 Level 2 9/25/2014 GEO327G/386G, UT Austin 33 9/25/2014 GEO327G/386G, UT Austin 34 Supported Raster Formats See ArcCatalog>Tools> Options Each explained in Help o 24 supported formats Vector or Raster? Spatially continuous data = raster Modeling of data with high degree of variability = raster Objects with well defined boundaries = vector Geographic precision & accuracy = vector Topological dependencies = vector or raster 9/25/2014 GEO327G/386G, UT Austin 35 9/25/2014 GEO327G/386G, UT Austin 36 GEO327G/386G, UT Austin 9

Raster or Vector? Raster Simple data structure Ease of analytical operation Format for scanned or sensed data easy, cheap data entry But. Less compact Querry-based analysis difficult Coarser graphics More difficult to transform & project Vector Compact data structure Efficient topology Sharper graphics Object-orientation better for some modeling But. More complex data structure Overlay operations computationally intensive Not good for data with high degree of spatial variability Slow data entry 9/25/2014 GEO327G/386G, UT Austin 38 GEO327G/386G, UT Austin 10