Advanced Vision System Integration. David Dechow Staff Engineer, Intelligent Robotics/Machine Vision FANUC America Corporation

Similar documents
Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Advanced Vision Guided Robotics. David Bruce Engineering Manager FANUC America Corporation

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EE795: Computer Vision and Intelligent Systems

Biomedical Image Analysis. Mathematical Morphology

Digital Image Processing COSC 6380/4393

Discuss Proven technologies that addresses

Ch 22 Inspection Technologies

Anno accademico 2006/2007. Davide Migliore

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

Outline 7/2/201011/6/

Using Edge Detection in Machine Vision Gauging Applications

Keywords: Thresholding, Morphological operations, Image filtering, Adaptive histogram equalization, Ceramic tile.

Fundamentals of Digital Image Processing

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5

Digital Image Processing, 2nd ed. Digital Image Processing, 2nd ed. The principal objective of enhancement

Advanced Image Processing, TNM034 Optical Music Recognition

Introduction to Video and Image Processing

SECTION 5 IMAGE PROCESSING 2

11. Gray-Scale Morphology. Computer Engineering, i Sejong University. Dongil Han

Detection of Edges Using Mathematical Morphological Operators

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

EE795: Computer Vision and Intelligent Systems

Filtering Images. Contents

Chapter 9 Morphological Image Processing

Lecture 6: Edge Detection

COMPUTER AND ROBOT VISION

Practice Exam Sample Solutions

Robot vision review. Martin Jagersand

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

Digital Image Processing COSC 6380/4393

A Visual Programming Environment for Machine Vision Engineers. Paul F Whelan

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

CS4733 Class Notes, Computer Vision

Ulrik Söderström 16 Feb Image Processing. Segmentation

EE 584 MACHINE VISION

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

OCR and OCV. Tom Brennan Artemis Vision Artemis Vision 781 Vallejo St Denver, CO (303)

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Digital Image Processing

CS 223B Computer Vision Problem Set 3

CS 231A Computer Vision (Fall 2012) Problem Set 3

CITS 4402 Computer Vision

Broad field that includes low-level operations as well as complex high-level algorithms

ECG782: Multidimensional Digital Signal Processing

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

Counting Particles or Cells Using IMAQ Vision

Announcements. Hough Transform [ Patented 1962 ] Generalized Hough Transform, line fitting. Assignment 2: Due today Midterm: Thursday, May 5 in class

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Digital Image Processing. Image Enhancement - Filtering

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

ECG782: Multidimensional Digital Signal Processing

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Flexible Visual Inspection. IAS-13 Industrial Forum Horizon 2020 Dr. Eng. Stefano Tonello - CEO

Lumaxis, Sunset Hills Rd., Ste. 106, Reston, VA 20190

COMPUTER AND ROBOT VISION

Chapter 3 Image Registration. Chapter 3 Image Registration

Topic 4 Image Segmentation

Exterior Orientation Parameters

International Journal of Computer Engineering and Applications, Volume XII, Issue I, Jan. 18, ISSN

Real-Time Detection of Road Markings for Driving Assistance Applications

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16

Review for the Final

3D Modeling of Objects Using Laser Scanning

Model-Based Segmentation of Impression Marks

Matrox Imaging White Paper

Biomedical Image Analysis. Point, Edge and Line Detection

Digital image processing

Akrometrix Testing Applications

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm

Morphological Image Processing

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

ENG 7854 / 9804 Industrial Machine Vision. Midterm Exam March 1, 2010.

Computer Graphics and Image Processing Introduction

Operation of machine vision system

Credit Card Processing Using Cell Phone Images

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

EEM 463 Introduction to Image Processing. Week 3: Intensity Transformations

EXAM SOLUTIONS. Computer Vision Course 2D1420 Thursday, 11 th of march 2003,

3D-OBJECT DETECTION METHOD BASED ON THE STEREO IMAGE TRANSFORMATION TO THE COMMON OBSERVATION POINT

AutoVISION Software User Manual

Lecture 7: Most Common Edge Detectors

University of Minnesota Nano Fabrication Center Standard Operating Procedure

Image Processing: Final Exam November 10, :30 10:30

Computer and Machine Vision

Machine Vision Tools for Solving Auto ID Applications

A New Technique of Extraction of Edge Detection Using Digital Image Processing

BIN PICKING APPLICATIONS AND TECHNOLOGIES

Range Sensors (time of flight) (1)

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

Analysis of Binary Images

Requirements for region detection

Computational Foundations of Cognitive Science

Transcription:

Advanced Vision System Integration David Dechow Staff Engineer, Intelligent Robotics/Machine Vision FANUC America Corporation

Advanced Vision System Integration INTRODUCTION AND REVIEW

Introduction and Overview What is Machine Vision Machine vision is the substitution of the human visual sense and judgment capabilities with a video camera and computer to perform an inspection task. It is the automatic acquisition and analysis of images to obtain desired data for controlling or evaluating a specific part or activity. Key Points: Automated/Non-Contact Acquisition Analysis Data

Introduction and Overview Integration and Prerequisites Machine vision integration Machine vision systems integration is the process where significant value is added to a machine vision component by the incorporation of software, peripheral hardware, mechanical devices, materials and engineering. The machine vision marketplace contains General purpose systems Application Specific Machine Vision (ASMV) solutions Specialty inspection devices Tutorial focus: primarily general purpose systems

Introduction and Overview Integration Inspection Components, Lighting and Optics Application Analysis Project Specification System Specification Configuration and Programming Results and Acceptance Criteria Integration with Automation Components Successful Machine Vision Solution

Advanced Vision System Integration SUCCESSFUL PROJECT ANALYSIS AND SPECIFICATION Making systems work the first time Analyzing the needs of the project Specifying and designing for success Successful implementation

Making systems work the first time Risk and reward no gambling allowed The obvious and hidden impact Costs, project delay, customer relationships Future business, impression of machine vision as a viable flexible automation technology Key to success: competent application analysis and project specification

Analyzing the needs of the project Application Analysis The purpose for thoroughly evaluating an application is to arrive at the solution that best improves the customer s process results

Analyzing the needs of the project Ask all the right questions What needs does the automation or inspection system fulfill in the overall process? Are there alternatives to the stated procedures? How will the system benefit the process? Is there a way to do it differently from the current request that will produce better results or be more efficient?

Analyzing the needs of the project What are we working with here? Develop a thorough description of the parts, components, and assemblies that are to be processed by the proposed system. What are the possible styles and how might they change in the future? What variations in size, shape, geometry, structure, color, etc. might be expected in the course of normal operation? Define special characteristics that might affect handling, processing, inspection and other system functions.

Analyzing the needs of the project Process Examine the broader production process. How is the part, component, assembly manufactured? What are the required processing rates and number of shifts? What is the impact if the proposed system mishandles, damages, incorrectly inspects the target part or assembly? What are the overall benefits of the proposed system to the process?

Analyzing the needs of the project Be the expert in the room Don t wait for information to appear seek out critical specifications that will further affect the project Observe and Investigate some tips from an expert outside of machine vision

Specifying and designing for success Project/application definition Communicate the function of the system Don t just layout the operation; design Prove technology and system capability first

Specifying and designing for success Project Specification Understand the technology let technological capability drive the application Define the resolution that will produce the required results Define software, processing, and interfacing requirements Design systems that are flexible, but focus on critical application requirements. Standardize on machine vision, but not on components.

Specifying and designing for success Project Specification Once the constraints of the application are fully identified, system performance can be quantified. The performance criteria of the system should include Actual inspection capability (measurement tolerance, feature detection, etc.) with respect to the target application Throughput and speed of inspection Anticipated lighting and imaging methodology General overview of the operation of the inspection system Description of the automation and appropriate performance related a specific process if applicable

System Specification Project Specification The Critical Path components In project management the things that dictate the project schedule regardless of the timing of other tasks In industrial application design and integration the technology or component that dictates the success of the entire system. A component that, if it fails to perform as needed in the system, might thwart the overall operation of the entire project. Machine vision is often a critical component but often not treated as such

Specifying and designing for success The Critical Path components Machine vision is often a critical component but often not treated as such

System Specification Project Specification Exceptions and limitations The project specification must identify all non-obvious exceptions and limitation to the performance of the system Include all possible unknowns

Specifying and designing for success Project Specification Acceptance criteria Proving that the inspection is functioning properly How to resolve differences in opinion regarding machine function Clearly state acceptance criteria AND methodology in quantifiable terms Acceptance will be based on stated performance criteria

Specifying and designing for success Project Specification Business issues Scope of supply/deliverables; who is responsible for what Engineering: design, integration, shipping, installation Hardware components Warranties Documentation and training Contractual items Performance guarantees Terms IP ownership

Top Ten (+1) Best Practices Have a formal process for application analysis Specify success Spend 80% of your design time on imaging Try before you buy Design or modify automation and parts to support automated inspection Optimize communication with other components Use all of the tools Minimize or eliminate end-user parameter adjustment Refine not design online Test on a statistically significant sample set Have a validation plan

Advanced Vision System Integration INTEGRATION Keys to Successful Integration Use and application of basic machine vision tools Advanced Application Notes Selecting and Working with Systems Integrators

Keys to Successful Integration Integration is the part of the project where someone has to make the system work. If the application has been well analyzed and specified, the integration task is easier.

Integration: applying technology successfully Work from the plan Work in segments Use all of the tools Test in stages not at the end Process steps System design» Mechanical, electrical, software» Includes design for component interconnect and communications Fabrication/build Programming/configuration of devices Testing/debug of the system Installation/start-up Run-off and acceptance Training

Keys to Successful Integration Process steps System design Mechanical, electrical, software Includes design for component interconnect and communications Fabrication/build Programming/configuration of devices Testing/debug of the system Installation/start-up Run-off and acceptance Training

Some best-practices machine vision tools

Image Transformation Geometric manipulation of the image Shifting Rotating Mirroring Inverting Unwrapping

Histogram Analysis An image histogram shows the count of pixels at each grayscale within either the image or a specified region. The list can yield a variety of statistical information about the image or ROI.

Histogram Analysis Integration

Image statistics Mean 51.89 SDev 76.79 Median 141.5 Mode 255 Count 228 Min 28 Max 255 Skew 0.05 Kurtosis -1.66 Mean 78.43 SDev 40.42 Median 142.5 Mode 67 Count 214 Min 35 Max 255 Skew 2.38 Kurtosis 5.79

Other Histogram Measures Bi-modality Relative contrast level Relative brightness (white) level Applications of Histogram Statistics Thresholding Image equalization Feature presence/absence Surface analysis Color/grayscale analysis Lighting/camera status

Image Processing and Enhancement Algorithms that change the image by physically replacing pixel values Morphology Filtering/convolutions Image Averaging Pixel operations Typical use Eliminate noise Create better contrast Extract edge features Otherwise manipulate the image

Morphology Simple, fast, binary or gray-scale processing Changes the value of a target pixel based upon the value of neighboring pixels Morphology changes an object s geometric shape Terminology Erosion Shrinks light areas/expands dark areas Dilation Shrinks dark areas/expands light areas Opening Erosion then dilation Closing Dilation then erosion Structured morphology Non-symmetrical processing: skeleton, thinning, thickening, directional

Morphology Basic implementation is to replace each pixel with the Minimum (erosion) or Maximum (dilation) value of a group of neighboring pixels May be performed using a structuring element : see Minkowski set theory May be performed on a gray-scale or binary image Original Image 24 48 69 45 57 84 81 79 98 Result after one dilation step on a single pixel 24 48 69 45 98 84 81 79 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

Common Parameters Size, shape of structuring element Number of processing iterations Morphology Uses Reduce image noise Eliminate undesired features Cursory size verification

Spatial Filters Also called gradient filters, convolutions Goal is to reduce noise, enhance features Convolutions change pixel values by applying matrix arithmetic operations using a filter with the original image

Spatial Filters example-step 1 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 A * B Operation (0*1) + (0*3) + (1*1)

Spatial Filters example-step 2 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 A * B Operation (0*1) + (1*3) + (2*1)

Spatial Filters example-step 3 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 10 A * B Operation (1*1) + (2*3) + (3*1)

Spatial Filters example-step 4 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 10 13 A * B Operation (2*1) + (3*3) + (2*1)

Spatial Filters example-step 5 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 10 13 10 A * B Operation (3*1) + (2*3) + (1*1)

Spatial Filters example-step 6 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 10 13 10 5 A * B Operation (2*1) + (1*3) + (0*1)

Spatial Filters example-step 7 Original Image Filter or Template Result Image 0 1 2 3 2 1 0 1 3 1 1 5 10 13 10 5 1 A * B Operation (1*1) + (0*3) + (0*1)

Spatial Filters result Original Image 0 1 2 3 2 1 0 Result Image 1 5 10 13 10 5 1

Common Filters Edge extraction Sobel Laplacian Roberts Noise reduction, enhancement High-pass Sharpening Low-pass Typical Parameters Number of iterations Size of filter kernel, custom kernel

Connectivity (particle analysis) Extraction and analysis of 2-dimensional connected shapes (blobs) Connectivity can be a very useful and powerful tool Success often depends upon the image and the level of preprocessing Suited for images with high contrast and consistent color levels Steps in Processing Blobs Convert image or ROI to binary representation Scan area for pixels with neighbors of the same value Label and combine connected regions into blobs Perform geometric and statistical analysis on the blobs

Typical Connectivity Parameters Threshold value or method for auto-thresholding Size filters limit detected objects based upon min and max area Number of blobs to detect, sorting typically done by area Uses for Connectivity Object location, identification Cursory gauging Presence/absence

Edge Detection/Analysis Edge detection is the process of isolation of significant local changes in contrast within the image Edge tools locate whole or sub-pixel edge points (231.651, 172.295)

Edge Detection/Analysis Basic operation happens on a line of image pixels

Edge Extraction on a Gray-scale Line of Pixels 255 255 102 76 43 41 40 41 40 41 45 81 97 251 255-1 0 1-153 -179-59 -35-3 0 0 0 5 40 52 170 158

Localized Peaks are the Edge Positions Further processing is done to provide sub-pixel position estimation

Edge Tool ROIs often have the Ability to Combine Lines of Data Image Data is Combined into a Single Line as a Projection of the Area of the ROI Projection

Projection can create interesting results if the tool is not perpendicular to edge surface or if there exist small features

Calipers pairs of edges Typical Edge Tool Parameters Filter Size, steepness Edge direction Contrast Min level, edge strength Feature matching Edge pair distance, position, strength Uses for Edge Tools Gauging Feature presence, verification Other Edge Tools Line, curve or object approximation Regressions Hough transformation

Geometric Search Locates features within an image Based upon geometric structure, feature relationships Also called pattern matching Known by a variety of product names: PatMax, Smart. The search pattern is trained from an image or may be synthesized. Geometric search pattern is a mathematical representation of the target object, not an actual image Training and search process both use contour (e.g. edge) image Process allows for fast, reliable search with full transformation and rotation.

Geometric Search Considerations and problems For best performance, the image must be tuned to eliminate undesired edges Pattern confusion Localized variations Perspective distortion with low focal length lenses

Geometric Search Considerations and problems Train on repeatable features with unambiguous geometric structure

Geometric Search Considerations and problems Use rotation, scaling, aspect and warping parameters carefully use caution with confusing backgrounds

Geometric Search Considerations and problems Features that dictate part location must be unique and have enough relative size to overcome normal variation in other areas of the part

+RVision Processes and Command Tools Geometric Search Ensure accuracy by considering the effect of parallax on location tools

Geometric Search Common Search Parameters Search minimum match Various training parameters Typical Uses Guidance Feature location Part verification

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Methods for acquiring 3D information Stereo or multiple cameras Structured illumination Light pattern projection Multiple images with variation in illumination shape, color, or direction Time of flight Height from focus, shape, shading, or sensing Phase shifting Interferometry

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Stereo (binocular) camera pair or multiple cameras Typical returned data Discrete points Point cloud (in some cases)

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Structured Illumination sheet of light Typical returned data Point cloud (requires scanning) Discrete object points with planar orientation

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Structured Illumination - Light Pattern Projection Typical returned data Point cloud No scanning, may require multiple images Granularity issues

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Structured Illumination shape or color variation Typical returned data Point cloud No scanning, may require multiple images Improved granularity Combine with stereo cameras Reduce the correspondence problem to improve accuracy and feature extraction

Machine Vision Technical Overview Advanced Application Notes 3D Imaging Time of Flight Typical returned data Point cloud No scanning, may require multiple images Limited height resolution Phase modulation vs. pulsed

Advanced Application Notes 3D Imaging 3D Concepts 3D point Image reconstruction Full point cloud

Advanced Application Notes 3D Imaging Calibration is the key component to 3D imaging Machine vision techniques remain critical for feature identification 3D imaging for machine vision <> computer graphics! Calibration Stereo Calibration Stereo Imaging Your Text Stereo Reconstruction Camera 1 x,y point Camera 2 x,y point

Advanced Application Notes Robotic Guidance Robotic guidance is the act of communicating a worldcalibrated point from a machine vision system to a robot controller 2D or 3D guidance depending upon the application Data available X, Y, rotation about z (2D) X, Y, Z, rotation about z (3D)» Standard 2D image with height of feature included X, Y, Z, yaw, pitch roll (3D)» All degrees of motion (6-axes) Dependent upon imaging methodology and application Machine vision considerations still drive the application

Advanced Application Notes Robotic Guidance Guidance applications Discrete part pick single or multiple generally known stable resting states Bin picking random orientation

Selecting and Working with System Integrators As an end user can the integration be done in-house? Key questions when deciding to use in-house resources or outsourced integration services Do we have or are we prepared to fully develop all of the technical skills this project requires? Can we maintain the skills developed in-house and benefit from the experience of integrating a machine vision system? Do we have sufficient time and resources available to see the project through to success? If the project turns out to have unexpected challenges, how will we meet them? Are we able and willing to retain ownership of the system for the long term with respect to maintenance, support, service, and upgrades or re-configuration?

Selecting and Working with System Integrators Selecting the right outside integrator Purposes of outsourcing integration tasks: cost reduction and mitigation or transferal of project risk Sources: publications, referrals Types of capabilities Consultation Software, system configuration Application specific integration Fixturing, robots and vision integration Complete machine integration

Selecting and Working with System Integrators Choosing an integrator Develop subjective criteria Evaluate technical capability relative to the project Determine competence based upon response to specification. Look for a system guarantee with turnkey installations. Cost is not the defining factor

Conclusions Machine Vision can be Successful Prepare and Plan Analyze the application and collect information about the required inspections and process Prepare a viable specification for an inspection that will deliver the appropriate results Integrate Execute the proposed specification Don t cut corners Train appropriate support staff

Contact Information David Dechow Staff Engineer, Intelligent Robotics/Machine Vision FANUC America Corporation 3900 W. Hamlin Road Rochester Hills, Michigan 48309 USA Phone: +1 248-276-4058 Cell: +1 517-449-5173 Email: david.dechow@fanucamerica.com www.fanucamerica.com