Infra-Red WLAN Performance Evaluation in 1 Mbps and 2 Mbps Using OPNET for GRP

Similar documents
OPNET based Investigation and Simulation Evaluation of WLAN Standard with Protocols using Different QoS

Different QoS Based TORA Reactive Routing Protocol using OPNET 14.5

OPNET based Performance Evaluation of WIMAX Network with WIMAX Management using Different QoS

Simulation and Performance Analysis of OLSR Routing Protocol Using OPNET

Performance Comparison of Routing Protocols for Remote Login in MANETs

Simulation and Comparison of AODV, DSR and TORA under Black Hole Attack for Videoconferencing Application

Effects of Caching on the Performance of DSR Protocol

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Simulative Investigation of Zigbee Network Coordinator Failure with Different QoS

Performance Tuning of OLSR and GRP Routing Protocols in MANET s using OPNET

Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through OLSR & AODV

Scalability Performance of AODV, TORA and OLSR with Reference to Variable Network Size

OPNET BASED SIMULATION AND INVESTIGATION OF WIMAX NETWORK USING DIFFERENT QoS

COMPARISON OF DSR PROTOCOL IN MOBILE AD-HOC NETWORK SIMULATED WITH OPNET 14.5 BY VARYING INTERNODE DISTANCE

Comprehensive Study and Review Various Routing Protocols in MANET

Performance Analysis Of Qos For Different MANET Routing Protocols (Reactive, Proactive And Hybrid) Based On Type Of Data

SIMULATION BASED ANALYSIS OF OLSR AND GRP PERFORMANCE IN MOBILE AD HOC NETWORKS

Performance Analysis of Various Application Protocols for MANET

Simulation Study to Observe the Effects of Increasing Each of The Network Size and the Network Area Size on MANET s Routing Protocols

COMPARE AND CONTRAST OF AODV ROUTING PROTOCOL WITH E-AODV FOR WIRELESS MOBILE ADHOC NETWORK

Performance Of OLSR Routing Protocol Under Different Route Refresh Intervals In Ad Hoc Networks

Performance Evaluation of Routing Protocols in Wireless Mesh Networks. Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela

Keywords: AODV, MANET, WRP

Network traffic based assessment of reactive, proactive and hybrid MANET protocols

Performance Analysis of MANET Routing Protocols OLSR and AODV

IMPACT OF DIFFERENT NETWORK SIZE ON MANET ROUTING PROTOCOLS WITH DATABASE & METRICS USING OPNET TOOL

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014

Throughput Analysis of Many to One Multihop Wireless Mesh Ad hoc Network

Routing Protocols in MANET: Comparative Study

Simulation and Performance Analysis of Throughput and Delay on Varying Time and Number of Nodes in MANET

Performance Analysis of Routing Protocols in MANETs Using OPNET 14.0

Impact of Pause Time on the Performance of DSR, LAR1 and FSR Routing Protocols in Wireless Ad hoc Network

Evaluation of Mobility Models with AODV & OLSR Protocol by Varying Node Speed in MANET

Impact of Node Velocity and Density on Probabilistic Flooding and its Effectiveness in MANET

A STUDY ON AODV AND DSR MANET ROUTING PROTOCOLS

Adapting SIP for Enabling Voice Calls in MANET

Estimate the Routing Protocols for Internet of Things

Gurleen Kaur Walia 1, Charanjit Singh 2

Simulation & Performance Analysis of Mobile Ad-Hoc Network Routing Protocol

A Review Paper on Routing Protocols in Wireless Sensor Networks

Performance Evaluation and Statistical Analysis of MANET routing Protocols for RPGM and MG

COMPARATIVE ANALYSIS AND STUDY OF DIFFERENT QOS PARAMETERS OF WIRELESS AD-HOC NETWORK

Caching Strategies in MANET Routing Protocols

Keywords Mobile Ad hoc Networks, Multi-hop Routing, Infrastructure less, Multicast Routing, Routing.

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

A Study on Issues Associated with Mobile Network

II. ROUTING CATEGORIES

Performance Evaluation of Various Routing Protocols in MANET

Overview (Advantages and Routing Protocols) of MANET

A Comparative Study of Routing Protocols for Mobile Ad-Hoc Networks

A Survey - Energy Efficient Routing Protocols in MANET

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET)

STUDY AND ANALYSIS OF DSDV AND OLSR

GSM Based Comparative Investigation of Hybrid Routing Protocols in MANETS

A Comparative Analysis of Energy Preservation Performance Metric for ERAODV, RAODV, AODV and DSDV Routing Protocols in MANET

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model

CHAPTER 4. The main aim of this chapter is to discuss the simulation procedure followed in

MANET With ADMEN SIMULATION

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE

Performance Analysis and Enhancement of Routing Protocol in Manet

Performance Analysis of Routing Protocols in Mobile Ad-hoc Network (MANET)

Performance Evaluation of Optimized Link State Routing Protocol over TCP Traffic in Mobile Ad- Hoc Networks

A Study on the Behaviour of SAODV with TCP and SCTP Protocols in Mobile Adhoc Networks

The General Analysis of Proactive Protocols DSDV, FSR and WRP

A Comparative Analysis of Traffic Flows for AODV and DSDV Protocols in Manet

Performance Evaluation of Routing Protocols for Mobile Ad Hoc Networks

PERFORMANCE COMPARISON OF TCP VARIANTS FOR WIRELESS SENSOR NETWORKS

2013, IJARCSSE All Rights Reserved Page 85

Investigation on OLSR Routing Protocol Efficiency

A New Approach for Energy Efficient Routing in MANETs Using Multi Objective Genetic Algorithm

Simulation and Analysis of AODV and DSDV Routing Protocols in Vehicular Adhoc Networks using Random Waypoint Mobility Model

Review paper on performance analysis of AODV, DSDV, OLSR on the basis of packet delivery

A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs

An Efficient Broadcast Algorithm To Transmit Data In Multi-hop Relay MANETs Fathima Sana 1, Dr. M. Sudheep Elayidom 2

Figure 1: Ad-Hoc routing protocols.

Improved Local Route Repair And Congestion Control In Self Organizing Networks

COMPARITIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE ADHOC NETWORKS

Impact of Hello Interval on Performance of AODV Protocol

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET

Performance Evaluation of Routing Protocols (AODV, DSDV and DSR) with Black Hole Attack

Optimizing Performance of Routing against Black Hole Attack in MANET using AODV Protocol Prerana A. Chaudhari 1 Vanaraj B.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Performance analysis of QoS-Oriented Distributed Routing protocols for wireless networks using NS-2.35

Design and Analysis of Fragmentation Threshold and Buffer Size of Wireless LAN using OPNET Modeler

Quantitative Performance Evaluation of DSDV and OLSR Routing Protocols in Wireless Ad-hoc Networks

ANALYSIS OF DIFFERENT REACTIVE, PROACTIVE & HYBRID ROUTING PROTOCOLS: A REVIEW

AN ADAPTIVE ENERGY MANAGING ROUTING PROTOCOL TO IMPROVE ENHANCED THROUGHPUT IN WSN

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes

QoS Based Evaluation of Multipath Routing Protocols in Manets

CLASSIFICATION OF ROUTING Routing. Fig.1 Types of routing

A NOVEL APPROACH OF AODV FOR STABILITY AND ENERGY EFFICIENT ROUTING FOR MANET USING IPV6

International Journal of Advance Research in Computer Science and Management Studies

MOBILITY REACTIVE FRAMEWORK AND ADAPTING TRANSMISSION RATE FOR COMMUNICATION IN ZIGBEE WIRELESS NETWORKS

Performance Evaluation of AODV DSDV and OLSR Routing Protocols with Varying FTP Connections in MANET

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks

Pardeep Mittal Assistant Professor, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, Haryana, India.

Performance Comparison of MANETs Routing Protocols for Dense and Sparse Topology

A Comparative and Performance Study of On Demand Multicast Routing Protocols for Ad Hoc Networks

Transcription:

Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 1, January 2015, pg.140 148 RESEARCH ARTICLE ISSN 2320 088X Infra-Red WLAN Performance Evaluation in 1 Mbps and 2 Mbps Using OPNET for GRP Vineet Bansal 1, Ravi Antil 2, Jonish 3 ¹M-Tech Department of ECE, MSIT, Sonepat, Haryana, India ²Assistant Professor, Department of ECE, MSIT, Sonepat, Haryana, India ³Department of CSE, Sonepat, Haryana, India 1 vineetbansal19@gmail.com; 2 antilravi6519@gmail.com; 3 sbit.cse08420@gmail.com Abstract In this paper analysis and performance of Infra-Red WLAN is done for 1 and 2 mbps data rate for GRP. We used OPNET Simulation tool we created a network containing 20 mobile nodes with data rate 1 Mbps and 2 Mbps with transmission power 0.005 watts and buffer size 1024000 bits each node moves randomly in the network and simulation time was 1500 sec. Infra-Red WLAN is compared in terms of 1 Mbps and 2 Mbps for different QOS s using GRP protocol. According to the resulted performance we can say that infrared wireless LAN might do a better job of satisfying requirements for mobile applications. The simulation result of the research has practical reference value for further study. Keywords GRP, IRLAN, INFRA RED, MANET, QOS, OPNET I. INTRODUCTION Mobile ad hoc Network is a dynamic distributed network. Due to the dynamic nature the network topology keep changes randomly. The mobility of nodes in MANETs results in frequent changes of network topology making routing in MANETs a challenging task. GRP collects network information at a source node with a small amount of control overheads. According to the information collected, source node can find routes and continuously transmit data even if the current route is disconnected. The result of this approach is achieving fast transfer with less overhead of control massages [1]. This approach is widely known as hybrid routing protocol, because it can simultaneously use the strengths of reactive routing and proactive routing protocols. The source node computes the best route according to collected information and then immediately starts to transmit data packets. Wireless LAN is the major issue in data communication s performance of MANET. Hence, Wireless LAN required is to be effective and accurate so as to handle mobility of nodes and to give best utilization to technology. Routing protocol 2015, IJCSMC All Rights Reserved 140

is a standard that determines how nodes find the way to forward packets between devices in the network. In this paper performance of Infra Red Wireless LAN is evaluated by using FTP and Email application type and GRP as Ad hoc Routing Protocol of IEEE 802.11a/b/g WLAN Standard. [2] TABLE I IEEE 802.11 CLASSIFICATIONS Standard IEEE 802.11a IEEE 802.11b IEEE802.11g Release Sept 1999 Sept 1999 Jun 2003 Bandwidth(MHz) 20 20 20 Frequency(GHz) 0.5 2.4 2.4 Data Rate(Mbit/s) 6,9,12,18,24,36,48,54 5.5,11 6,9,12,18,24,36,48,54 Modulation OFDM DSSS OFDM,DSSS II. RELATED WORK Jonish [1] analyzed the performance of TORA and GRP routing protocol with the use of OPNET simulation tool, they created a 50 mobile nodes network on data rate 1 and 2 Mbps and transmission power 0.005 watts with buffer size 256000 bits the time of simulation was 1500 sec. TORA and GRP routing protocols were compared in terms of Download Response Time, Upload Response Time, Delay, Load and Media Access Delay in scenario for the simulation analysis and performances. Anjali [2] analyzed the performance of AODV, OLSR and GRP routing protocols is evaluated for FTP based application traffic on IEEE 802.11 WLAN Standard and 48 Mbps data rate. The network performance is evaluated by using OPNET simulator based on various quantitative metrics- Network Load, Throughput, Retransmission Attempts and Media Access Delay by varying physical characteristics and number of nodes. A comparative performance analysis of these protocols have been carried out in this paper and in the last conclusion will be presented which demonstrate that performance of routing protocols differs by varying the network and selection of accurate routing protocol according to the network ultimately influences the efficiency of the network in a magnificent way. Kuldeep vats [5] analyzed the performance of DSR, OLSR and GRP routing protocols. They used OPNET simulation tool. They created a network containing 150 mobile nodes with the data rate of 18 mbps and transmit power of 0.11 watts. Each node moves randomly within the network range 10,000 sq m and Simulation time was 1000 sec. According to their simulation result OLSR presented the best performance and GRP presented low to OLSR and high to DSR or finally DSR presented the low performance (DSR<GRP<OLSR) is analyzed. III. IR WIRELESS LAN The primary IEEE 802.11 standards in use today are 802.11a and 802.11b, which both use radio waves for transferring information wirelessly over a network. Few people realize, however, that the 802.11 standard also includes the 802.11 Infrared (IR) Physical Layer 802.11 IR defines 1Mbps and 2Mbps operation by bouncing light off ceilings and walls to provide connectivity within a room or small office. The reason that 802.11 IR is unheard of is that there are no known vendors that sell products compliant with 802.11 IR. Some offer infrared-based wireless LANs that come close to the standard. For example Spectrix, once the chair of the 802.11 IR group, offers wireless LAN products that implement diffused optical technologies very similar to 802.11 IR. The primary difference between infrared and radio wireless LANs is the frequency of the transmitted signal. Don't become complacent with radio frequency (RF) technologies, 2015, IJCSMC All Rights Reserved 141

such as 802.11a and 802.11b, as the only option for wireless LANs. An infrared wireless LAN might do a better job of satisfying requirements for mobile applications. IV. SIMULATION SETUP This research used software known as OPNET Modeler, Which is a tool provided by the OPNET Technologies in order to undertake the experimental evaluation; the version named OPNET Modeler 14.5 has been adopted for study [12]. It is easy to work with GUI interface and the OPNET provides us the GUI interface to work. And it is easy to built model of working in GUI Virtual environment. OPNET is one of the most extensively used commercial simulators based on Microsoft Windows platform, which incorporates most of the MANET routing parameters compared to other commercial simulators. It simulates the network graphically and gives the graphical structure of actual networks and network components. TABLE II SIMULATION PARAMETERS Simulation Parameter Value Simulator OPNET Modular 14.5 Area 1500*1500 Network Size 20 Nodes Data Rate 1, 2 Mbps Mobility Model Random waypoint Traffic Type FTP, Email Simulation Time 1500 sec Address Mode IPV4 Standard IEEE 802.11 INFRA RED Routing Protocol GRP TABLE III GRP PARAMETERS Attribute Hello Interval(Sec) Neighbor Expiry Time(Sec) Value Distance Moved(Meters) 1000 Position Request Timer(Sec) 5.0 Backtrack Option Routes Export Number Of Initial Floods 1 Uniform(4.9,5.0) Constant(10) Enabled Disabled TABLE IV WIRELESS LAN PARAMETERS Attribute Value Physical Characteristics INFRA RED Data Rate 1,2 Mbps Short Retry Limit 9 Long Retry Limit 7 Max Receive Lifetime (sec) 0.5 Buffer Size(bits) 1024000 Roaming Capability Enabled 2015, IJCSMC All Rights Reserved 142

Fig. 1 shows the simulation environment of scenario containing 20 WLAN mobile nodes, one fixed WLAN Server, Application definition, Profile definition and Mobility config. We configure the nodes in the scenario to work with 1 Mbps and 2 Mbps data rate. Fig. 1 Network Model for 20 Nodes scenario A. Email Download Response Time (sec) V. PERFORMANCE METRICS Time elapsed between sending a request and receiving the response packet. Measured from the time a client application sends a request to the server to the time it receives a response packet. Every response packet sent from a server to an Email application is included in this statistic. B. FTP Upload Response Time (sec) Time elapsed between sending a file and receiving the response. The response time for responses sent from any server to an FTP application is included in this statistic. 2015, IJCSMC All Rights Reserved 143

C. GRP Total No. of Backtracks It is the total no of Backtracks taken during the simulation till the full process completes for different data transmission rates D. WLAN Retransmission Attempts (packets) It is the total number of retransmission attempts by all WLAN MACs in the network until either packet is successfully transmitted or it is discarded as a result of reaching short or long retry limit. E. WLAN Media Access Delay (sec) It represents the global statistic for the total of queuing and contention delays of the data, management, delayed Block-ACK and Block-ACK Request frames transmitted by all WLAN MACs in the network. VI. SIMULATION RESULTS AND ANALYSIS Figure (2-6) below shows Email Download Response Time(sec), FTP Upload Response Time (sec), GRP Total No. of Backtracks, WLAN Retransmission Attempts (packets) and WLAN Media Access Delay (sec) in 20 mobile nodes scenario for IEEE 802.11 Infra Red standard at 1 Mbps and 2 Mbps data rate with GRP. The color scheme is showing the protocols behavior in different graphs which gives the average values. From these average values we will conclude the behavior of the IRWLAN. A. Email Download Response Time (sec) Fig. 2 Sample Sum for Email Download Response Time (sec) in 1 and 2 Mbps for IRWLAN GRP According to simulation, as we can see in Fig. 2, Email Download response time in Infra Red WLAN GRP 1 Mbps is more than 2 Mbps. This shows 2 Mbps works well than 1 Mbps in Infra Red WLAN GRP in terms of Email Download Response time. 2015, IJCSMC All Rights Reserved 144

B. FTP Upload Response Time (sec) Fig. 3 Sample Sum for FTP Upload Response Time (sec) for 1 and 2 Mbps for IRWLAN GRP According to simulation, as we can see in Fig. 3, FTP Upload Response time in Infra Red WLAN GRP 1 Mbps is higher than in 2 Mbps. This shows 2 Mbps works well than 1 Mbps in Infra Red WLAN GRP in terms of FTP Upload Response time. C. GRP Total No. of Backtracks Fig. 4 Sample Sum for GRP Total No. of Backtracks for 1 and 2 Mbps for IRWLAN GRP According to simulation, as we can see in Fig. 4, GRP Total No. of Backtracks in Infra Red WLAN GRP 2 Mbps is higher than in 1 Mbps. This shows 1 Mbps works well than 2 Mbps in Infra Red WLAN GRP in terms of Total no. of Backtracks. 2015, IJCSMC All Rights Reserved 145

D. WLAN Retransmission Attempts (packets) Fig. 5 Sample Sum for Retransmission Attempts in packets for 1 and 2 Mbps for IRWLAN GRP According to simulation, as we can see in Fig. 5, Wireless LAN Retransmission Attempts in Infra Red WLAN GRP 1 Mbps is higher than in 2 Mbps. This shows 1 Mbps works well than 2 Mbps in Infra Red WLAN GRP in terms of FTP Retransmission Attempts. E. WLAN Media Access Delay (sec) Fig. 6 Sample Sum for Media Access Delay for 1 and 2 Mbps for IRWLAN GRP 2015, IJCSMC All Rights Reserved 146

According to simulation, as we can see in Fig. 6, Mac Delay in Infra Red WLAN GRP 1 Mbps is higher than in 2 Mbps. This shows 2 Mbps works well than 1 Mbps in Infra Red WLAN GRP in terms of Media Access Delay. VII. CONCLUSION In this paper performance of Infra Red WLAN is evaluated with the use of GRP Protocol for metrics like Email Download Response Time (sec), FTP Upload Response Time (sec), GRP Total No. of Backtracks, WLAN Retransmission Attempts (packets) and WLAN Media Access Delay (sec) by using 20 nodes scenario with IEEE 802.11 Infra Red WLAN Standard in 1 Mbps and 2 Mbps. From the above discussion we find out that Infra Red 1 Mbps performs better in terms of GRP Total No. of Backtracks and WLAN Retransmission Attempts (packets) and Infra Red 2 Mbps performs better in terms of Email Download Response Time (sec), FTP Upload Response Time (sec) and WLAN Media Access Delay (sec). TABLE IV RESULTING VALUES S. NO. PERFORMANCE METRICS IR WLAN GRP (1 Mbps) IR WLAN GRP (2 Mbps) 1 EMAIL DOWNLOAD RESPONSE TIME MORE LESS 2 FTP UPLOAD RESPONSE TIME MORE LESS 3 GRP TOTAL NO. OF BACKTRACKS LESS MORE 4 RETRANSMISSION ATTEMPTS MORE LESS 5 WLAN MEDIA ACCESS DELAY MORE LESS Infra Red WLAN have large no of possibilities to be worked on. An infrared wireless LAN might do a better job of satisfying requirements for mobile applications. The simulation result of the research has practical reference value for further study. REFERENCES [1] Jonish, Kapil Chawla, Different QOS Based Simulation Evaluation of TORA and GRP Routing Protocol Based on Frequency Hopping, IJCSMC, Vol. 3, Issue. 11, November 2014, pg. 523 531. [2] Anjali, Maninder Singh, Performance Analysis of Proactive, Reactive and Hybrid MANET Routing Protocols on IEEE 802.11 Standard, International Journal of Computer Applications,pp.1-8,Volume 54-No.12,September 2012. [3] Anjali, Maninder Singh, Simulation and Performance Analysis of AODV, OLSR, GRP Routing Protocol by considering IEEE 802.11Standard, IJARCSSE, Volume2, issue 6, pp-171-178,june 2012. 2015, IJCSMC All Rights Reserved 147

[4] Ravinder Ahuja, Simulation based Performance Evaluation and Comparison of Reactive, Proactive and Hybrid Routing Protocols based on Random Waypoint Mobility Model, International Journal of Computer Applications, Vol. 7, No.11, pp. 20-24, Oct. 2010. [5] Kuldeep Vats, Monika Sachdeva and Dr. Krishan Saluja, Simulation and performance Analysis of OLSR, GRP, DSR Routing Protocol using OPNET, International Journal of Emerging trends in Engineering and Development, Vol.2,Issue 2, pp 390-404, March-2012. [6] Pravin GhoseKar, Girish Katkar and Dr. Pradip Ghorpade, Mobile Ad Hoc Networking: Imperatives and Challenges,IJCA, pp. 153-158, 2010. [7] Xiaoyan Hong, Kaixin Xu and Mario Gerla, Scalable Routing Protocols for Mobile Ad Hoc Networks, IEEE Network, vol. 16, issue 4, pp 11-21, Aug.2002. [8] Mostafa Fazeli, Assessment Of Throughput Performance Under OPNET Modeler Simulation Tools In Mobile Ad Hoc Networks (MANETs) 3rd ICCI,CSN, IEEE 2011. [9] Ashish Shrestha and Firat Tekiner, On MANET Routing Protocols for Mobility and Scalability. In International Conference on Parallel and Distributed Computing, Applications and Technologies, p.p. 451-456, November 2009. IEEE Computer Society. [10] Guo, L, and Peng, Y. (2010) Performance evaluation for on-demand routing protocol based on OPNET modules in wireless mesh network Computer and Electrical Engineering (Elsevier), vol. 37(2011), pp. 106-114. [11] T.H. Clausen, The optimized link state routing protocol evaluating through experiments and simulation mind pass centre for distributed system, Aalborg university,denmark. [12] Opnet Technologies, Inc. Opnet Simulator, Internet: www.opnet.com. 2015, IJCSMC All Rights Reserved 148