Human Identification at a Distance Using Body Shape Information

Similar documents
Performance analysis of robust road sign identification

Optimization Model of K-Means Clustering Using Artificial Neural Networks to Handle Class Imbalance Problem

Undercut feature recognition for core and cavity generation

Fast Learning for Big Data Using Dynamic Function

Gender Classification Technique Based on Facial Features using Neural Network

cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry

Spoofing Face Recognition Using Neural Network with 3D Mask

Neural Network Based Threshold Determination for Malaysia License Plate Character Recognition

Head Frontal-View Identification Using Extended LLE

One type of these solutions is automatic license plate character recognition (ALPR).

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers

Altering Height Data by Using Natural Logarithm as 3D Modelling Function for Reverse Engineering Application

Webpage: Volume 3, Issue VII, July 2015 ISSN

Optimizing Number of Hidden Nodes for Artificial Neural Network using Competitive Learning Approach

A System for Joining and Recognition of Broken Bangla Numerals for Indian Postal Automation

DEVELOPMENT OF VISION-BASED HANDICAPPED LOGO REGONITION SYSTEM FOR DISABLED PARKING

Conveyor Performance based on Motor DC 12 Volt Eg-530ad-2f using K-Means Clustering

Cursive Handwriting Recognition System Using Feature Extraction and Artificial Neural Network

Automatic Machinery Fault Detection and Diagnosis Using Fuzzy Logic

Hole Feature on Conical Face Recognition for Turning Part Model

Unit V. Neural Fuzzy System

Pan-Tilt Modelling for Face Detection

Study on road sign recognition in LabVIEW

Countermeasure for the Protection of Face Recognition Systems Against Mask Attacks

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg

Leaf Shape Recognition using Centroid Contour Distance

Using the rear projection of the Socibot Desktop robot for creation of applications with facial expressions

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Classification of stroke disease using convolutional neural network

Device Activation based on Voice Recognition using Mel Frequency Cepstral Coefficients (MFCC s) Algorithm

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Simulation of rotation and scaling algorithm for numerically modelled structures

Method for designing and controlling compliant gripper

A New Algorithm for Shape Detection

Optimization of vehicle licence plate segmentation and symbol recognition

Finger Vein Biometric Approach for Personal Identification Using IRT Feature and Gabor Filter Implementation

OFFLINE SIGNATURE VERIFICATION

Mouse Pointer Tracking with Eyes

Designing of robotic production lines using CAx software

Experimental study of UTM-LST generic half model transport aircraft

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur

AUTOMATED THRESHOLD DETECTION FOR OBJECT SEGMENTATION IN COLOUR IMAGE

Facial Keypoint Detection

Human Face Classification using Genetic Algorithm

Fabric Defect Detection Based on Computer Vision

Keyword Extraction from Multiple Words for Report Recommendations in Media Wiki

Face Recognition Technology Based On Image Processing Chen Xin, Yajuan Li, Zhimin Tian

Offline Signature verification and recognition using ART 1

Volume 1, Issue 3 (2013) ISSN International Journal of Advance Research and Innovation

AGE RANK DETECTION USING GENERALIZED FEED FORWARD (GFF) NEURAL NETWORK

Age Group Estimation using Face Features Ranjan Jana, Debaleena Datta, Rituparna Saha

Simulation of Zhang Suen Algorithm using Feed- Forward Neural Networks

Defect Detection of Regular Patterned Fabric by Spectral Estimation Technique and Rough Set Classifier

Expanding gait identification methods from straight to curved trajectories

Direction-Length Code (DLC) To Represent Binary Objects

Edge Detection and Template Matching Approaches for Human Ear Detection

Facial Expression Recognition using Principal Component Analysis with Singular Value Decomposition

Classification with Diffuse or Incomplete Information

The Rack-Gear Tool Generation Modelling. Non-Analytical Method Developed in CATIA, Using the Relative Generating Trajectories Method

Computing the relations among three views based on artificial neural network

Face Tracking. Synonyms. Definition. Main Body Text. Amit K. Roy-Chowdhury and Yilei Xu. Facial Motion Estimation

European Journal of Science and Engineering Vol. 1, Issue 1, 2013 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR

CHAPTER 3 FUZZY RULE BASED MODEL FOR FAULT DIAGNOSIS

The recognition of female voice based on voice registers in singing techniques in real-time using hankel transform method and macdonald function

Vehicle Identification using Fuzzy Adaline Neural Network

Speech Driven Synthesis of Talking Head Sequences

Fabric Defect Detection by using Neural Network technique

A FACE RECOGNITION SYSTEM BASED ON PRINCIPAL COMPONENT ANALYSIS USING BACK PROPAGATION NEURAL NETWORKS

NEURAL NETWORK-BASED SEGMENTATION OF TEXTURES USING GABOR FEATURES

COMBINING NEURAL NETWORKS FOR SKIN DETECTION

CS6220: DATA MINING TECHNIQUES

An automation of design and modelling tasks in NX Siemens environment with original software - generator module

Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Blood Vessel Segmentation in Angiograms using Fuzzy Inference System and Mathematical Morphology

CHAPTER 3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition

Liquefaction Analysis in 3D based on Neural Network Algorithm

Selecting Models from Videos for Appearance-Based Face Recognition

Automatic Gait Recognition. - Karthik Sridharan

Implementation of Optical Flow, Sliding Window and SVM for Vehicle Detection and Tracking

A Novel Technique to Detect Face Skin Regions using YC b C r Color Model

In this assignment, we investigated the use of neural networks for supervised classification

Publications. Books. Journal Articles

A Combined Method for On-Line Signature Verification

CS 231A Computer Vision (Winter 2014) Problem Set 3

Practice Exam Sample Solutions

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION

Simulation of Back Propagation Neural Network for Iris Flower Classification

View Invariant Movement Recognition by using Adaptive Neural Fuzzy Inference System

Shape Model-Based 3D Ear Detection from Side Face Range Images

Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics

Machine Learning 13. week

AUTOMATIC VIDEO INDEXING

Human Identification System based on Face using Active Horizontal Levels (AHLs) Feature

Recognition of the smart card iconic numbers

Computer Science Faculty, Bandar Lampung University, Bandar Lampung, Indonesia

Journal of Applied Research and Technology ISSN: Centro de Ciencias Aplicadas y Desarrollo Tecnológico.

FACE RECOGNITION USING FUZZY NEURAL NETWORK

Identification of Multisensor Conversion Characteristic Using Neural Networks

Dynamic skin detection in color images for sign language recognition

Transcription:

IOP Conference Series: Materials Science and Engineering OPEN ACCESS Human Identification at a Distance Using Body Shape Information To cite this article: N K A M Rashid et al 2013 IOP Conf Ser: Mater Sci Eng 53 012058 Related content - Zero motion fringe identification M R Wall - IDENTIFICATION OF A CONSTELLATION FROM A POSITION Nancy G Roman - LINES IDENTIFICATIONS IN THE SPECTRUM OF HR 1100 S Malaroda View the article online for updates and enhancements This content was downloaded from IP address 14825123283 on 15/09/2018 at 15:27

Human Identification at a Distance Using Body Shape Information N K A M Rashid 1, M F Yahya and A A Shafie Department of Mechatronics Engineering, Faculty of Engineering, International Islamic University Malaysia, 53100, Kuala Lumpur, Malaysia E-mail: nahrul@iiumedumy Abstract Shape of human body is unique from one person to another This paper presents an intelligent system approach for human identification at a distance using human body shape information The body features used are the head, shoulder, and trunk Image processing techniques for detection of these body features were developed in this work Then, the features are recognized using fuzzy logic approach and used as inputs to a recognition system based on a multilayer neural network The developed system is only applicable for recognizing a person from its frontal view and specifically constrained to male gender to simplify the algorithm In this research, the accuracy for human identification using the proposed method is 775% Thus, it is proved that human can be identified at a distance using body shape information 1 Introduction Human identification is critical in today s society for enhancing public safety and privacy protection Many methods published so far for human identification at a distance focused on face and gait like [1], [2], and [3] However, these methods have their own vulnerabilities such as face is prone to fake facial images as demonstrated in [4] and gait is susceptible to occlusion as in [5] For that reason, developing a new algorithm by utilizing information other than the face or gait is highly anticipated One of the available information if seen from a far is the shape of human body Basically, the shape of human body offers distinctive features not only at the upper part of the body which is the shape of the head but also the slant of the shoulder and the physique of the trunk These distinctive features when combined form a set of body features which are unique from one person to another In this paper, an intelligent system approach by utilizing fuzzy logic and multilayer neural network is developed to recognize human at a distance based from their body shape information 2 Methodology The development of the proposed human identification system consists of three stages At the initial stage, the process is concerned about extracting body features data from human subjects (ie data of the head, shoulder, and trunk) In the second stage, based on the acquired data, fuzzy logic is utilized in a way such that each body feature is classified into its respective classes The classes are determined based on the shape of the head, the slant of the shoulder, and the physique of the trunk Then, in the final stage, the information gained from the fuzzy logic implementation is fed into an artificial neural network This is so that the network can learn and recognize the pattern of the information which belongs to that of a specific human subject 1 To whom any correspondence should be addressed Content from this work may be used under the terms of the Creative Commons Attribution 30 licence Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI Published under licence by Ltd 1

21 Human subject body features data acquisition In order for a system to perform human recognition, it needs a priori data about the human subject The priori data is collected based on the body features of human specifically the head, shoulder, and trunk The head, shoulder, and trunk are detected using a developed set of image processing techniques Figure 1 shows the original image, the detected shape of body features and their corresponding parameters which will be processed further for recognition purposes Parameters,,, and in figure 1 (b) symbolize the width of the head, the height of the head, the accumulation of black pixels, and the accumulation of white pixels in the bounding box which encloses the head respectively In figure 1 (c), parameter represents the topmost angle of the marked triangle and figure 1 (d) shows and which are the parameters which represent the width and the height of the trunk respectively (a) (b) (c) (d) Figure 1 Images used to obtain the priori data of a human subject: (a) original image (b) head (c) shoulder (d) trunk 22 Body features classification using fuzzy logic Since human have ambiguous body shape, the accurate mathematical models for classifying their features are difficult to establish Fortunately, fuzzy logic provides an alternative approach for modeling problems which are imprecisely defined by mathematical models In this research, the overall application of fuzzy logic concepts is utilized using a fuzzy inference system (FIS) A FIS defines a nonlinear mapping of the input data vector of body features into a scalar output (the type of body feature) Three FISs are developed for classifying the shape of the head, the slant of the shoulder, and the physique of the trunk Additionally, triangular membership function is utilized for all of the developed membership functions 221 The shape of the head From cropping and observing several processed images of human head, its shape can be classified either as oval vertical, square, circle, or oval horizontal as shown in figure 2 (a) (b) (c) (d) Figure 2 The shape of the head: (a) oval vertical (b) square (c) circle (d) oval horizontal From the figure, there are two parameters which can be used to determine the different type of head which are the aspect ratio and the deviation of its shape to the bounding box which encloses the head The head aspect ratio is defined as 2

and the head shape deviation to the bounding box is defined as For both of the parameters and, their linguistic variables are {Small, Medium, Big} Then, the rules are as tabulated in table 1 Table 1 FIS rules for head classification Deviation Ratio Small Medium Big Small Oval_Vertical Square Oval_Horizontal Medium Oval_Vertical Circle Oval_Horizontal Big Oval_Vertical Circle Oval_Horizontal Output of the FIS is a defuzzification value from 1 to 4 where 1, 2, 3, and 4 represent oval vertical, square, circle, and oval horizontal respectively 222 The slant of the shoulder Shoulder slant can be either one of the three classes of very concave down, concave down, or straight as shown in figure 3 (a) (b) (c) Figure 3 The slant of the shoulder: (a) very concave down (b) concave down (c) straight The slant of the shoulder is determined by making use of the constructed triangular geometry using three points between the neck and shoulder of a person From basic triangular geometry as shown in figure 4, the angle plays an important role to classify shoulder to its respective classes Figure 4 Triangular geometry The angle at of the triangle by using the law of cosine is found to be 3

The shoulder angle is defined as For the input, let indicates the shoulder slant angle with linguistic variable be {Small, Medium, Big} For the output membership function (the shoulder type), it has linguistic variable set to {Very_Concave_Down, Concave_Down, Straight} The rules are stated as : If Angle is Small Then Shoulder Type is Very_Concave_Down : If Angle is Medium Then Shoulder Type is Concave_Down : If Angle is Big Then Shoulder Type is Straight Output of the FIS is a defuzzification value from 1 to 3 where 1, 2, and 3 represent very concave down, concave down, and straight respectively 223 The physique of the trunk In this research, it is discovered that the physique of the trunk can be classified into five classes of very thin, thin, slim, fat, and very fat as depicted in figure 5 (a) (b) (c) (d) (e) Figure 5 The physique of the trunk: (a) very thin (b) thin (c) slim (d) fat (e) very fat The physique of the trunk can be determined by using the aspect ratio of the bounding box which encloses the trunk The trunk aspect ratio is defined as The input to the FIS is defined as with its subsequent linguistic variable be {Very_Small, Small, Medium, Big, Very_Big} The output membership function (the trunk type) has linguistic variable term set to {Very_Thin, Thin, Slim, Fat, Very_Fat} The rules statement for classifying the type of trunk are stated as : If Aspect Ratio is Very_Small Then Trunk Type is Very_Thin : If Aspect Ratio is Small Then Trunk Type is Thin : If Aspect Ratio is Medium Then Trunk Type is Slim : If Aspect Ratio is Big Then Trunk Type is Fat : If Aspect Ratio is Very_Big Then Trunk Type is Very_Fat Output of the FIS is a defuzzification value from 1 to 5 where 1, 2, 3, 4, and 5 represent very thin, thin, slim, fat, and very fat respectively 23 Training of artificial neural network In this research, since there are multiple inputs of body features information and multiple outputs of Boolean algebra sequence (assigned to each of the human subjects initially), a multilayer network 4

architecture is best suited to perform mapping of inputs to outputs Figure 6 shows an architectural design of the network The network basically consists of three layers; one input layer L, one hidden layer L, and one output layer L L 2 L 1 L 3 x 1 1 y 1 x 2 1 y 2 y 3 x n 1 Input Layer Hidden Layer Output Layer Figure 6 A three-layer feed-forward network x x x signify the input (from the defuzzification values of the head, shouder, and trunk) to the multilayer neural network Each neuron uses sigmoid activation function because it is smooth and bounded function The output of the network is y y y or combination of Boolean algebra set to,,,, Backpropagation learning algorithm is used to train the network since the inputs (body features information) are non-linearly separable During training, it is found out that the optimum network have 001 mean-squared error with 7078 epochs for which the network is set to have 10 hidden neurons This network is selected to undergone a test for accuracy of the developed human identification system 3 Results and Discussion The human identification accuracy is defined as n n where n is the number of successful identification and n is the total number of identification Before the accuracy test can be performed, the analysis requires experimental setup A total of 20 video sequences each for 8 people are recorded, where one sequence last for approximately 15 seconds During the recording, each person was instructed to go towards the camera from multiple directions and stop at a distance of about 2 meters in front of the camera Then, the images from the video are captured to go through the body features data acquisition stage and afterwards the body features classification using fuzzy logic stage The initial 10 processed datasets are used as continuous input to train a neural network and another 10 processed datasets are used to test the network Table 2 shows the tabulated result for successful identification of the human subject 5

Table 2 Successful human identification Human subject Successful identification (out of 10) HS001 7 HS002 7 HS003 9 HS004 8 HS005 8 HS006 8 HS007 7 HS008 8 Based on table 2, the final calculated accuracy is found to be 775% 4 Summary In this paper, an intelligent system approach for human identification at a distance using the body shape information is proposed The system utilizes three body characteristics of human: the shape of the head, the slant of the shoulder, and the physique of the trunk The shape of the head can be categorized into four different classes: oval vertical, square, circle, and oval horizontal The slant of the shoulder can be either one of the class of very concave down, concave down, or straight The physique of the trunk classes are very thin, thin, slim, fat, and very fat By using FIS, those classes can be represented as linguistic variables which may yield a unique single value representing each class of body feature These values are then fed into an artificial neural network to generalize the pattern of given inputs during training process For testing purposes, the response outputs of neural network are converted into combination of Boolean algebra values to represent or identify specific human subject During testing of the proposed system, the successful identification rate of 775% is achieved Thus, it is concluded that human can be recognized from a distance using body shape information References [1] Bhanu B and Zhou X 2006 Feature fusion of face and gait for human recognition at a distance in video Int Conf on Pattern Recognition vol 4 pp 529-532 [2] Almohammad Manhal Saleh, Salama Gouda Ismail and Mahmoud Tarek Ahmed 2012 Human identification system based on feature level fusion using face and gait biometrics Int Conf on Engineering and Technology (ICET) pp 1-5 [3] Kale Amit, Roychowdhury A K and Chellappa R 2004 Fusion of gait and face for human identification Proc IEEE Conf on Acoustics, Speech, and Signal Processing vol 5 pp 901-904 [4] tt, Hadid A and Pietikainen M 2012 Face spoofing detection from single images using texture and local shape analysis IET Biometrics vol 1 pp 3-10 [5] Hofmann M, Wolf D and Rigoll G 2001 Identification and reconstruction of complete gait cycles for person identification in crowded scenes Proc Int Conf on Computer Vision Theory and Applications (VISAPP) 6