For Intuition about Scene Lighting. Today. Limitations of Planar Shadows. Cast Shadows on Planar Surfaces. Shadow/View Duality.

Similar documents
Last Time. Why are Shadows Important? Today. Graphics Pipeline. Clipping. Rasterization. Why are Shadows Important?

Last Time. Reading for Today: Graphics Pipeline. Clipping. Rasterization

Real-Time Shadows. Last Time? Today. Why are Shadows Important? Shadows as a Depth Cue. For Intuition about Scene Lighting

Real-Time Shadows. MIT EECS 6.837, Durand and Cutler

Real-Time Shadows. Last Time? Schedule. Questions? Today. Why are Shadows Important?

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today!

Texture Mapping II. Light maps Environment Maps Projective Textures Bump Maps Displacement Maps Solid Textures Mipmaps Shadows 1. 7.

Real-Time Shadows. Computer Graphics. MIT EECS Durand 1

Shadows. Real-Time Hard Shadows. Collected by Ronen Gvili. Most slides were taken from : Fredu Durand Stefan Brabec

Shadows. Shadows. Spatial relationship between objects. Shadows as depth cue. Spatial relationship between objects

Computer Graphics Shadow Algorithms

Shadows. Shadows. Thanks to: Frédo Durand and Seth Teller MIT. Realism Depth cue

The Traditional Graphics Pipeline

Shadows. Shadows. Spatial relationship between objects. Shadows as depth cue. Spatial relationship between objects

The Traditional Graphics Pipeline

Lecture 17: Shadows. Projects. Why Shadows? Shadows. Using the Shadow Map. Shadow Maps. Proposals due today. I will mail out comments

Shadow Rendering EDA101 Advanced Shading and Rendering

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Shadows in the graphics pipeline

Acknowledgement: Images and many slides from presentations by Mark J. Kilgard and other Nvidia folks, from slides on developer.nvidia.

Shadows. COMP 575/770 Spring 2013

Computergrafik. Matthias Zwicker. Herbst 2010

The Traditional Graphics Pipeline

Computer Graphics 10 - Shadows

Advanced Shading I: Shadow Rasterization Techniques

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

Overview. A real-time shadow approach for an Augmented Reality application using shadow volumes. Augmented Reality.

Computer Graphics. Shadows

Robust Stencil Shadow Volumes. CEDEC 2001 Tokyo, Japan

Shadow Algorithms. CSE 781 Winter Han-Wei Shen

What for? Shadows tell us about the relative locations. Vienna University of Technology 2

6.837 Introduction to Computer Graphics Quiz 2 Thursday November 20, :40-4pm One hand-written sheet of notes allowed

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes

Graphics Hardware and Display Devices

Volume Shadows Tutorial Nuclear / the Lab

Rasterization Overview

Pipeline Operations. CS 4620 Lecture 10

Fondamenti di Grafica 3D The Rasterization Pipeline.

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

Movie: For The Birds. Announcements. Ray Tracing 1. Programming 2 Recap. Programming 3 Info Test data for part 1 (Lines) is available

CS451Real-time Rendering Pipeline

In- Class Exercises for Shadow Algorithms

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February

CS 354R: Computer Game Technology

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

EECS 487: Interactive Computer Graphics

Shadow Volume History (1) Shadow Volumes. Shadow Volume History (2) Shadow Volume History (3) Shadow Volume Basics. Shadow Volume History (4)

Intro to Ray-Tracing & Ray-Surface Acceleration

Real Time Reflections Han-Wei Shen

CS4620/5620: Lecture 14 Pipeline

Last Time: Acceleration Data Structures for Ray Tracing. Schedule. Today. Shadows & Light Sources. Shadows

Advanced Shading and Texturing

Shadow Mapping. Marc Stamminger, University of Erlangen-Nuremberg

The Graphics Pipeline

Pipeline Operations. CS 4620 Lecture 14

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping

Shadow Techniques. Sim Dietrich NVIDIA Corporation

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz

CHAPTER 1 Graphics Systems and Models 3

Shadows in Computer Graphics. by Björn Kühl im/ve University of Hamburg, Germany

Optimized Stencil Shadow Volumes. Cass Everitt & Mark J. Kilgard

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS

Illumination and Geometry Techniques. Karljohan Lundin Palmerius

Topic #1: Rasterization (Scan Conversion)

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:

Computer Graphics. Lecture 9 Environment mapping, Mirroring

CS 464 Review. Review of Computer Graphics for Final Exam

Enabling immersive gaming experiences Intro to Ray Tracing

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Level of Details in Computer Rendering

Introduction to Computer Graphics with WebGL

Models and Architectures

Getting fancy with texture mapping (Part 2) CS559 Spring Apr 2017

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Computer Graphics I Lecture 11

lecture 19 Shadows - ray tracing - shadow mapping - ambient occlusion Interreflections

FRUSTUM-TRACED RASTER SHADOWS: REVISITING IRREGULAR Z-BUFFERS

Rasterization. MIT EECS Frédo Durand and Barb Cutler. MIT EECS 6.837, Cutler and Durand 1

DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/

3D Rasterization II COS 426

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS452/552; EE465/505. Clipping & Scan Conversion

Real-time Shadow Mapping

Stencil Shadow Volumes

CSE4030 Introduction to Computer Graphics

Practical Shadows. Outline

Computer Graphics Introduction. Taku Komura

Multi-View Soft Shadows. Louis Bavoil

A Shadow Volume Algorithm for Opaque and Transparent Non-Manifold Casters

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care?

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students)

Image Formation. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Direct Rendering of Trimmed NURBS Surfaces

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012.

Transcription:

Last Time Modeling Transformations Illumination (Shading) Real-Time Shadows Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Graphics Pipeline Clipping Rasterization Scan Conversion (Rasterization) Visibility / Display Reading for Today: Today Ray Tracing on Programmable Graphics Hardware Purcell, Buck, Mark, & Hanrahan SIGGRAPH 22 Why are Shadows Important? Shadows as a Depth Cue Why are Shadows Important? Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Depth cue Scene Lighting Realism Contact points 1

For Intuition about Scene Lighting Today Why are Shadows Important? Planar Shadows Projective Texture Shadows Position of the light (e.g. sundial) Hard shadows vs. soft shadows Colored lights Directional light vs. point light Shadow View Duality Texture Mapping Shadow Maps Shadow Volumes Cast Shadows on Planar Surfaces Limitations of Planar Shadows Draw the object primitives a second time, projected to the ground plane Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc. Shadow/View Duality Texture Mapping A point is lit if it is visible from the light source Don't have to represent everything with geometry Shadow computation similar to view computation 2

Fake Shadows using Projective Textures Projective Texture Shadow Limitations Separate obstacle and receiver Compute b/w image of obstacle from light Use image as projective texture for each receiver Must specify occluder & receiver No self-shadows Resolution Image from light source BW image of obstacle Final image Figure from Moller & Haines Real Time Rendering Questions? Figure from Moller & Haines Real Time Rendering Reading for Today: Shadow Algorithms for Computer Graphics, Frank Crow, SIGGRAPH 1977 Today Shadow Maps In Renderman Why are Shadows Important? Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes (High-end production software) 3

Shadow Mapping Shadow Map Look Up Texture mapping with depth information Requires 2 passes through the pipeline: Compute shadow map (depth from light source) Render final image, check shadow map to see if points are in shadow We have a 3D point (x,y,z) WS How do we look up the depth from the shadow map? Use the 4x4 perspective projection matrix from the light source to get (x',y',z') LS ShadowMap(x',y') < z'? (x',y',z') LS (x,y,z) WS Foley et al. Computer Graphics Principles and Practice Foley et al. Computer Graphics Principles and Practice Limitations of Shadow Maps 1. Field of View 2. Bias (Epsilon) 3. Aliasing 1. Field of View Problem What if point to shadow is outside field of view of shadow map? Use cubical shadow map Use only spot lights! 2. The Bias (Epsilon) Nightmare For a point visible from the light source ShadowMap(x,y ) z 2. Bias (Epsilon) for Shadow Maps ShadowMap(x,y ) + bias < z Choosing a good bias value can be very tricky How can we avoid erroneous self-shadowing? Add bias (epsilon) Correct image Not enough bias Way too much bias 4

3. Shadow Map Aliasing 3. Shadow Map Filtering Under-sampling of the shadow map Reprojection aliasing especially bad when the camera & light are opposite each other Should we filter the depth? (weighted average of neighboring depth values) No... filtering depth is not meaningful 3. Percentage Closer Filtering 3. Percentage Closer Filtering Instead filter the result of the test (weighted average of comparison results) But makes the bias issue more tricky 5x5 samples Nice antialiased shadow Using a bigger filter produces fake soft shadows Setting bias is tricky Projective Texturing + Shadow Map Shadows in Production Often use shadow maps Ray casting as fallback in case of robustness issues Light s View Depth/Shadow Map Eye s View Images from Cass Everitt et al., Hardware Shadow Mapping NVIDIA SDK White Paper 5

Hardware Shadow Maps Questions? Can be done with hardware texture mapping Texture coordinates u,v,w generated using 4x4 matrix Modern hardware permits tests on texture values Today Why are Shadows Important? Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes The Stencil Buffer Stencil Buffer Tag pixels in one rendering pass to control their update in subsequent rendering passes "For all pixels in the frame buffer" "For all tagged pixels in the frame buffer" Can specify different rendering operations for each case: stencil test fails stencil test passes & depth test fails stencil test passes & depth test passes frame buffer depth buffer stencil buffer Stencil Buffer Real-time Mirror Shadow Volumes Clear frame, depth & stencil buffers Draw all non-mirror geometry to frame & depth buffers Draw mirror to stencil buffer, where depth buffer passes Set depth to infinity, where stencil buffer passes Draw reflected geometry to frame & depth buffer, where stencil buffer passes See NVIDIA's stencil buffer tutorial http://developer.nvidia.com also discusses blending, multiple mirrors, objects behind mirror, etc without stencil buffer: reflected geometry Explicitly represent the volume of space in shadow For each polygon Pyramid with point light as apex Include polygon to cap Shadow test similar to clipping 6

Shadow Volumes Shadow Volumes If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light Cost of naive implementation: #polygons * #lights Shoot a ray from the eye to the visible point Increment/decrement a counter each time we intersect a shadow volume polygon (check z buffer) If the counter, the point is in shadow -1 Shadow Volumes w/ the Stencil Buffer If the Eye is in Shadow... Initialize stencil buffer to Draw scene with ambient light only Turn off frame buffer & z-buffer updates Draw front-facing shadow polygons If z-pass increment counter Draw back-facing shadow polygons If z-pass decrement counter Turn on frame buffer updates Turn on lighting and redraw pixels with counter = +2... then a counter of does not necessarily mean lit 3 Possible Solutions: 1. Explicitly test eye point with respect to all shadow volumes 2. Clip the shadow volumes to the view frustum -1 3. "Z-Fail" shadow volumes -1 1. Test Eye with Respect to Volumes 2. Clip the Shadow Volumes Adjust initial counter value Expensive Clip the shadow volumes to the view frustum and include these new polygons Messy CSG 7

3. "Z-Fail" Shadow Volumes 3. "Z-Fail" Shadow Volumes Start at infinity... Draw front-facing shadow polygons If z-fail, decrement counter Draw back-facing shadow polygons If z-fail, increment counter Introduces problems with far clipping plane Solved by clamping the depth during clipping... Optimizing Shadow Volumes Use silhouette edges only (edge where a back-facing & front-facing polygon meet) Limitations of Shadow Volumes Introduces a lot of new geometry Expensive to rasterize long skinny triangles Limited precision of stencil buffer (counters) for a really complex scene/object, the counter can overflow Objects must be watertight to use silhouette trick Rasterization of polygons sharing an edge must not overlap & must not have gap Homework 4 Create some geometry Reflected object & floor Silhouette edges Shadow polygons Make sure your polygons aren t doubled up Make sure your polygons are oriented consistently Mess with the stencil buffer Don t just blindly copy code from the tutorial Use the web to read the man page for each instruction & its parameters Be creative with shaders Hopefully everyone can get the examples to compile & run (we were not 1% successful last year) Questions? From a previous quiz: Check the boxes to indicate the features & limitations of each technique 8

Reading for Tuesday: Chris Wyman, "An Approximate Image-Space Approach for Interactive Refraction, SIGGRAPH 25 and catch up on the other readings 9