AUTOMATIC LOGO EXTRACTION FROM DOCUMENT IMAGES

Similar documents
A Novel Logo Detection and Recognition Framework for Separated Part Logos in Document Images

RESTORATION OF DEGRADED DOCUMENTS USING IMAGE BINARIZATION TECHNIQUE

HCR Using K-Means Clustering Algorithm

OCR For Handwritten Marathi Script

A New Approach to Compressed Image Steganography Using Wavelet Transform

A New Algorithm for Shape Detection

Volume 2, Issue 9, September 2014 ISSN

Tumor Detection and classification of Medical MRI UsingAdvance ROIPropANN Algorithm

Scene Text Detection Using Machine Learning Classifiers

DIGITAL IMAGE WATERMARKING BASED ON A RELATION BETWEEN SPATIAL AND FREQUENCY DOMAINS

INVARIANT CORNER DETECTION USING STEERABLE FILTERS AND HARRIS ALGORITHM

Text Extraction from Natural Scene Images and Conversion to Audio in Smart Phone Applications

I. INTRODUCTION. Figure-1 Basic block of text analysis

QR Code Watermarking Algorithm Based on DWT and Counterlet Transform for Authentication

Unsupervised Moving Object Edge Segmentation Using Dual-Tree Complex Wavelet Transform

Digital Image Steganography Techniques: Case Study. Karnataka, India.

AN EFFICIENT VIDEO WATERMARKING USING COLOR HISTOGRAM ANALYSIS AND BITPLANE IMAGE ARRAYS

Journal of Industrial Engineering Research

An Approach for Reduction of Rain Streaks from a Single Image

Facial Feature Extraction Based On FPD and GLCM Algorithms

Time Stamp Detection and Recognition in Video Frames

Texture Segmentation by Windowed Projection

Cursive Handwriting Recognition System Using Feature Extraction and Artificial Neural Network

IMAGE DIGITIZATION BY WAVELET COEFFICIENT WITH HISTOGRAM SHAPING AND SPECIFICATION

A Modified SVD-DCT Method for Enhancement of Low Contrast Satellite Images

International Journal of Electrical, Electronics ISSN No. (Online): and Computer Engineering 3(2): 85-90(2014)

Extracting Layers and Recognizing Features for Automatic Map Understanding. Yao-Yi Chiang

Layout Segmentation of Scanned Newspaper Documents

A Robust Wavelet-Based Watermarking Algorithm Using Edge Detection

Data Hiding in Binary Text Documents 1. Q. Mei, E. K. Wong, and N. Memon

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) volume1 issue7 September 2014

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

TEXT DETECTION AND RECOGNITION IN CAMERA BASED IMAGES

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination

Morphological Image Processing

Mouse Pointer Tracking with Eyes

Handwritten Devanagari Character Recognition Model Using Neural Network

Image Segmentation Based on Watershed and Edge Detection Techniques

Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms

A DWT, DCT AND SVD BASED WATERMARKING TECHNIQUE TO PROTECT THE IMAGE PIRACY

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

DEVELOPMENT OF VISION-BASED HANDICAPPED LOGO REGONITION SYSTEM FOR DISABLED PARKING

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

Contour Extraction & Compression from Watermarked Image using Discrete Wavelet Transform & Ramer Method

INTELLIGENT transportation systems have a significant

An Efficient Character Segmentation Based on VNP Algorithm

Handwritten Script Recognition at Block Level

Color Image Segmentation

Global Journal of Engineering Science and Research Management

OFFLINE SIGNATURE VERIFICATION

Segmentation of Isolated and Touching characters in Handwritten Gurumukhi Word using Clustering approach

A Robust Color Image Watermarking Using Maximum Wavelet-Tree Difference Scheme

Text Area Detection from Video Frames

Implementation of Random Byte Hiding algorithm in Video Steganography

Copyright Detection System for Videos Using TIRI-DCT Algorithm

Comparison of Wavelet Based Watermarking Techniques for Various Attacks

A Survey of Various Face Detection Methods

Comparative Study of ROI Extraction of Palmprint

Multilayer Data Embedding Using Reduced Difference Expansion

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation

Mr Mohan A Chimanna 1, Prof.S.R.Khot 2

Texture Image Segmentation using FCM

Color and Texture Feature For Content Based Image Retrieval

Comparative Study of Hand Gesture Recognition Techniques

Fundamentals of Digital Image Processing

Restoring Warped Document Image Based on Text Line Correction

Reversible Blind Watermarking for Medical Images Based on Wavelet Histogram Shifting

An Adaptive Color Image Visible Watermark Algorithm Supporting for Interested Area and its Application System Based on Internet

Comparative Analysis of 2-Level and 4-Level DWT for Watermarking and Tampering Detection

COLOR AND SHAPE BASED IMAGE RETRIEVAL

A reversible data hiding based on adaptive prediction technique and histogram shifting

Adaptive Wavelet Image Denoising Based on the Entropy of Homogenus Regions

DATA EMBEDDING IN TEXT FOR A COPIER SYSTEM

Color-Texture Segmentation of Medical Images Based on Local Contrast Information

Implementation of ContourLet Transform For Copyright Protection of Color Images

A New Algorithm for Detecting Text Line in Handwritten Documents

Finger Print Enhancement Using Minutiae Based Algorithm

Short Survey on Static Hand Gesture Recognition

A Fast Caption Detection Method for Low Quality Video Images

International Journal of Computer Engineering and Applications, Volume XII, Issue I, Jan. 18, ISSN

Texture Analysis of Painted Strokes 1) Martin Lettner, Paul Kammerer, Robert Sablatnig

Medical images, segmentation and analysis

EMBEDDING WATERMARK IN VIDEO RECORDS

A Survey on Feature Extraction Techniques for Palmprint Identification

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

A NEW ROBUST IMAGE WATERMARKING SCHEME BASED ON DWT WITH SVD

VARIABLE RATE STEGANOGRAPHY IN DIGITAL IMAGES USING TWO, THREE AND FOUR NEIGHBOR PIXELS

Fine Classification of Unconstrained Handwritten Persian/Arabic Numerals by Removing Confusion amongst Similar Classes

Bit-Plane Decomposition Steganography Using Wavelet Compressed Video

COMBINING NEURAL NETWORKS FOR SKIN DETECTION

IMAGE ENHANCEMENT in SPATIAL DOMAIN by Intensity Transformations

A Novel Secure Digital Watermark Generation from Public Share by Using Visual Cryptography and MAC Techniques

Robust biometric image watermarking for fingerprint and face template protection

Multi-scale Techniques for Document Page Segmentation

Palmprint Recognition Using Transform Domain and Spatial Domain Techniques

Digital Color Image Watermarking In RGB Planes Using DWT-DCT-SVD Coefficients

EE 584 MACHINE VISION

SEGMENTATION AND OBJECT RECOGNITION USING EDGE DETECTION TECHNIQUES

Subpixel Corner Detection Using Spatial Moment 1)

Comparative Study between DCT and Wavelet Transform Based Image Compression Algorithm

Transcription:

AUTOMATIC LOGO EXTRACTION FROM DOCUMENT IMAGES Umesh D. Dixit 1 and M. S. Shirdhonkar 2 1 Department of Electronics & Communication Engineering, B.L.D.E.A s CET, Bijapur. 2 Department of Computer Science and Engineering, B.L.D.E.A s CET, Bijapur. ABSTRACT Logo extraction plays an important role in logo based document image retrieval. Here we present a method for automatic logo extraction from the document images that works for scanned documents containing a logo. Proposed method uses morphological operations for logo extraction. It supports extraction of a logo with its gray level and color information KEYWORDS Document image, Preprocessing, Logo extraction 1. INTRODUCTION Logo is a graphic mark or emblem commonly used by commercial enterprises, organizations and even individuals to aid and promote instant public recognition. Logos consists of only graphic symbols or graphics and text indicating name of the organization. The logos can be classified as text logo, graphical logo and mixed logos. A text logo comprises only text information, graphical logos contain some symbols or graphics and a mixed logo includes both text and graphics. The Figure 1 shows examples of these types of logos from University of Maryland (UMD) logo database [1]. (a) Text logo (b) Graphic logo (c) Mixed logo Figure 1. Types of logos from UMD logo database The logo based document image retrieval has created a great interest among the research community of document image processing. Logo extraction includes recognizing, detecting and extracting a logo component from document image. However, automatic logo extraction is a challenging task to implement logo based document image retrieval. This paper presents a relatively faster method for automatic logo extraction from scanned documents. DOI: 10.5121/ijci.2015.4221 221

The rest of the paper is orgainized as follows: Section 2 of this paper describes the related work, Section 3 explains the proposed method, section 4 discuss about results and observations and finally section 5 concludes the paper. 2. RELATED WORK In 1997, Seiden et. al [2] presented logo detection system based on segmentation of the document image into smaller images using a top-down XY cut algorithm. In this approach they used connected components with sixteen features and then applied a rule based strategy for detection of a logo component. In 2001, Hsieh and Fan [3] proposed a technique based on region growing that segments the given input image into possible logo candidates. A logo from these candidates is identified based on color, shape and location. The method proposed in [4] works on feature selection principles to segment a logo. It selects suitable features such as area, deviation, symmetry, centralization, complexity and 2-level contour representation strings automatically for logo detection from document image. In 2003, Pham [5] presented a method for logo detection with an assumption that the spatial density of foreground pixels in a logo region will be more than that of non-logo regions. This method first converts the document into a binary form consisting of foreground and background pixels. Spatial density is then computed for each fixed size window (region) and the region that has highest spatial density is recognized as a logo region. In 2006, Hung et. al [6] proposed a shape-based similarity retrieval system based on database classification exploiting the contour and interior region of a shape efficiently. Angular radial transform (ART) region feature is used to compare the query with the candidate sets according to the priority order. In 2007, Zhu and Doermann [7] employed multi-scale boosting strategy for logo detection and extraction from document image. At coarse image scale they applied two-class Fisher classifier for each connected component. A cascade of simple classifier is then employed at finer image scale to find out a logo from possible set of logo candidates. In 2009, Wang and Chen presented [8] logo detection method based using boundary extension of feature rectangle. This method works on assumption that logos have white background and is independent of shape of logos. Decision tree is used to increase logo detection rate. It reduced the false positive from the logo candidate pool. Zhu and Doermann [9] proposed a logo-based document image retrieval system that uses a document containing logo as a query. In logo based document retrieval they used detected and segmented a logo by boosting a cascade of classifiers across multiple image scales. In 2010, Shirdhonkar and Kokare [10] employed discrete wavelet transform (DWT) for automatic logo detection and extraction from the document images. This method computes spatial density using the mean of the energy and standard deviation of the wavelet coefficients for extraction of a logo. In 2011, Hassanzadeh and Pourghassem [11] proposed a frame work for logo detection and recognition based on spatial and structural features. It considers some specifications of logo such as centroid coordinates and intersection of each logo s separated part in detection process. Separated parts of logos are merged using morphological dilation operation. A new feature based on histogram of object occurrence in a logo image is used for recognition purpose. In 2013, Jha et. al [12] proposed a method for watermark (logo) extraction from distorted watermarked images. Combined discrete wavelet trans- form (DWT) and dynamic stochastic 222

resonance (DSR) are used in this method. A logo which is hided in the distorted watermarked image is extracted in this work. In 2014, Jha et. al [13] presented a technique that employs a dynamic stochastic resonance (DSR) for blind watermark extraction in discrete cosine transform (DCT) domain. DSR is an iterative process that tunes the coefficients of the possibly attacked watermarked image so that the effect of noise is suppressed and hidden information is enhanced. This paper presents a simple logo extraction method using morphological close and median filtering operations. 3. PROPOSED METHODOLOGY The Figure 2 depicts steps used for logo extraction from document image. In this method we assume non-logo part of the document as noise and we remove the non-logo part of the document image with the help of morphological close operation and then apply median filtering. The different steps involved in logo extraction are gray-scale conversion, image binarization, Morphological close, Median filtering, Logo detection and extraction from original document. These steps are briefly explained below. Document Image Gray-scale Conversion Image Binarization Morphological Close Median filtering Draw a bounding box to find region(location) of the logo in binarized image Extract the logo region from original image Extracted Logo Figure 2. Flowchart of proposed method 223

Gray scale conversion and Binarization: The document image is captured using a scanner. The scanned image of a document may be a color image or gray scale image. If the image scanned is color image, it is first converted into gray level and then converted into binary image using threshold level. 0 if f(x,y)<t g(x,y) = 1 if f(x,y)>=t Where f(x,y) is gray scale image, g(x,y) is binarized image and T is appropriate threshold level used for binarization. Morphological Closing: Morphological closing of set A by structuring element B is denoted as A B and is given by equation (1). A B = (A B) ϴ B (1) In this step we apply morphological closing operation to a binarized image. We use square with size 10 as the structuring element. The size of the structure element square is chosen as 10 to convert characters and other small shapes with foreground color (black) in the document image to background color (white). Noise removal: This step applies median filter to remove non-logo part in the document. Mainly it removes impulse noise from the image left after morphological close operation. It keeps much of the logo part as it is in the document and converts remaining part of the document into background color. Logo detection and extraction: Now we draw a bounding box to the output obtained from the previous steps. This helps to find out location of a logo in the binarized image. The coordinate points of the bounding box in the binarized image are used to extract a logo from original gray scale/color image. 4. RESULTS AND DISCUSSION The method is tested for more than 50 logos from UMD logo database [1]. Testing is carried out by inserting logos from the in scanned documents. Figure 3 shows some sample logos used for testing and Figure 4 shows results of logo extraction. 224

Figure 3. Sample logos used for testing For testing of the proposed method, we considered two cases: Test 1: Here the method is tested for 50 documents each containing a different logo. The algorithm was able to extract logos from all scanned documents. Test 2: The same algorithm is also tested by inserting logos at various locations in the document. We found that the proposed algorithm successfully extracts the logos irrespective of its location in the document. Limitations: It is found that proposed method sometimes makes false detection if the document contains spatially dense components. This limitation can be overcome by further improvement in preprocessing and a suitable classifier. (a) Document-1 (b) Document-2 Figure 3. Samples of documents and logo extraction from documents 225

5. CONCLUSION This paper presents a simple logo extraction method based on morphological operations. The method works relatively faster and efficiently with few limitations. These limitations can be overcome by further improvement in preprocessing techniques. REFERENCES [1] The University of Maryland (UMD) logo database, http://lampsrv01.umiacs.umd.edu/projdb/project.php?id=47. [2] Seiden S., M. Dillencourt, S. Irani, R. Borrey and T. Murphy, Logo detection in document images, in Proc. Int. conf. Imaging science, Sys, and Tech, pp. 446-449, (1997). [3] Hsieh I.S. and K.C. Fan, Multiple Classifiers for Color Flag and Trademark Image Retrieval, IEEE Transactions on Image Processing, 10(6): pp. 938-950, (2001). [4] Yin P.Y and C.C. Yeh, Content-based retrieval from trademark databases, Pattern Recognition Letters, 23: pp. 113-126, (2002). [5] Pham T., Unconstrained logo detection in document images, Pattern recognition, 36: pp. 3023-3025, (2003). [6] Hung M.H., C.H. Hsieh, C.M. Kuo, Similarity retrieval of shape images based on database classification, Journal Vis. Communication and Image Representation, 17: pp. 970-985, (2006). [7] Zhu G. and D. Doermann, Automatic document logo detection, In conference on document analysis and recognition, pp. 864-868, (2007). [8] Wang H. Y. and Chen, Logo detection in document images based on boundary extension of feature rectangles, IEEE computer society,10th Int'l conference on document analysis and recognition, pp. 1335-1339, (2009). [9] Zhu, G. and D. Doermann, "Logo matching for document image retrieval", Int'l Conference on Document Analysis and Recognition, pp. 606-610, (2009). [10]M.S.Shirdhonkar and Manesh Kokare, Automatic Logo Detection in Document Images, in proceeding of 2010 IEEE International Conference on Computational Intelligence and Computer Research, held at TCE, Coimbatore, pp. 905-907, (2010). [11] Sina Hassanzadeh and Hossein Pourghassem, A Novel Logo Detection and Recognition Framework for Separated Part Logos in Document Images, Australian Journal of Basic and Applied Sciences, 5(9): pp. 936-946, (2011). [12] Rajib kumar Jha, Prabir Kumar Biswas, B.N.Chattarji, Logo extraction using combined discrete wavelet transform and dynamic stochastic resonance, International Journal of Image and Graphics, Vol. 1, 2013. [13] Rajib Kumar Jha, Rajlaxmi Chohan, Kiyoharu Aizawa, Dynamic stochastic resonance-based improved logo extraction in discrete cosine transform domain, Journal of Computers and Electrical Engineering, Vol. 40, Issue 6, pp. 1917-1929, 2014. AUTHORS Dr. M.S.Shirdhonkar has received B.E (CSE), M.E (CSE) from Shivaji University, Kolhapur and his Doctorate from Swami Ramanand Teerth, Marathwada University, Nanded, Maharashtra. He has 16 years of experience. His area of interest is Image processing, Document image retrieval and analysis and Pattern recognition. He has published more than 19 papers in national and international conferences and journals Mr. Umesh D. Dixit has received B.E (E&C) and M.Tech (CSE) from Visvesvaraya Technological University, Belagavi. He is having an experience of more than 12 years and his area of interest include Image processing, Document image processing, Embedded systems. Currently pursuing Ph.D under Visvesvaraya Technological University, Belagavi, Karnataka.. 226