Lecture 8. Network Layer (cont d) Network Layer 1-1

Similar documents
Lecture 3. The Network Layer (cont d) Network Layer 1-1

internet technologies and standards

Network Layer PREPARED BY AHMED ABDEL-RAOUF

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

CMPE 80N: Introduction to Networking and the Internet

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane

Router Architecture Overview

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CSC 401 Data and Computer Communications Networks

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Network Layer: Control/data plane, addressing, routers

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

internet technologies and standards

Master Course Computer Networks IN2097

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Chapter 4: Network Layer

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

TDTS06: computer Networks

Network layer: Overview. Network Layer Functions

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCI Computer Networks Fall 2016

Chapter 4: network layer

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

CSC 4900 Computer Networks: Network Layer

Chapter 4 Network Layer: The Data Plane

Network Layer: Data Plane 4-2

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

The Network Layer Forwarding Tables and Switching Fabric

Chapter 4 Network Layer: The Data Plane

Lecture 16: Network Layer Overview, Internet Protocol

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer: Router Architecture, IP Addressing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Chapter 4 Network Layer

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4 Network Layer

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Computer Networking Introduction

CS 3516: Computer Networks

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

CS 3516: Advanced Computer Networks

Chapter 4 Network Layer: The Data Plane

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

CSC 401 Data and Computer Communications Networks

Network Layer: Internet Protocol

NETWORK LAYER DATA PLANE

Chapter 4 Network Layer

HY 335 Φροντιστήριο 8 ο

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

Chapter 4 Network Layer

Network Layer: Chapter 4. The Data Plane. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Chapter 4 Network Layer: The Data Plane

Network Layer: outline

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Chapter 4 Network Layer: The Data Plane

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

Chapter 4 Network Layer

Chapter 4 Network Layer: The Data Plane

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

The Network Layer Forwarding Tables and Switching Fabric

Chapter 4 Network Layer

Chapter 4: Network Layer

Routers. Session 12 INST 346 Technologies, Infrastructure and Architecture

UNIT III THE NETWORK LAYER

Chapter 4 Network Layer

Review. Some slides are in courtesy of J. Kurose and K. Ross

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CMSC 332 Computer Networks Network Layer

Course on Computer Communication and Networks. Lecture 6 Network Layer part 1: Data Plane Chapter 4 (7/e) (6/e Ch4-first part)

Internet Protocol (IP)

EECS 3214: Computer Networks Protocols and Applications

Network layer. Key Network-Layer Functions. Network service model. Interplay between routing and forwarding. CSE 4213: Computer Networks II

Internetworking With TCP/IP

ECE 158A: Lecture 7. Fall 2015

COSC4377. TCP vs UDP Example Statistics

ECE 4450:427/527 - Computer Networks Spring 2017

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

RSC Part II: Network Layer 3. IP addressing (2nd part)

Network Layer. CMPS 4750/6750: Computer Networks

IPv4. Christian Grothoff.

Network Technology 1 5th - Network Layer. Mario Lombardo -

Internet protocol stack

CSE 3214: Computer Network Protocols and Applications Network Layer

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

EPL606. Internetworking. Part 2a. 1Network Layer

Transcription:

Lecture 8 Network Layer (cont d) Network Layer 1-1

Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network Address Translation IPv6 and Differences with IPv4 IP Tunneling Network Layer 1-2

Introduction to the Network Layer (Recall) transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side, delivers segments to transport layer network layer protocols in every host, router router examines header fields in all IP datagrams passing through it application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Network Layer 5-3

Two Key Network-Layer Functions (Recall) forwarding: move packets from router s input to appropriate router output routing: determine route taken by packets from source to dest. analogy: routing: process of planning trip from source to dest forwarding: process of getting through single interchange routing algorithms Network Layer 1-4

The Main Goal of the Network Layer The delivery of data packets to the intended final destination Network Layer 1-5

Router Architecture Overview Router Architecture Overview Two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding datagrams from incoming to outgoing link Network Layer 4-6

Input Port Functions Physical layer: bit-level reception Data link layer: e.g., Ethernet Decentralized switching: given datagram dest., lookup output port using forwarding table in input port memory goal: complete input port processing at line speed queuing: if datagrams arrive faster than forwarding rate into switch fabric Network Layer 4-7

Three Types of Switching Fabrics Network Layer 4-8

Output Ports Buffering required when datagrams arrive from fabric faster than the transmission rate Scheduling discipline chooses among queued datagrams for transmission Network Layer 4-9

Output port queueing This packet faces delay buffering when arrival rate via switch exceeds output line speed queueing (delay) and loss due to output port buffer overflow! Network Layer 4-10

The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP Network layer Routing protocols path selection RIP, OSPF, BGP forwarding table IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router signaling Link layer physical layer Network Layer 4-11

IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol to deliver payload to how much overhead with TCP? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer overhead ver head. len 16-bit identifier time to live type of service upper layer 32 bits flgs length data (variable length, typically a TCP or UDP segment) fragment offset header checksum 32 bit source IP address 32 bit destination IP address Options (if any) total datagram length (bytes) for fragmentation/ reassembly E.g. timestamp, record route taken, specify list of routers to visit. Network Layer 4-12

IP Fragmentation & Reassembly network links have MTU (max. transfer data size) - largest possible link-level frame. different link types, different MTUs large IP datagram divided ( fragmented ) within net one datagram becomes several datagrams reassembled only at final destination IP header bits used to identify, order related fragments reassembly fragmentation: in: one large datagram out: 3 smaller datagrams Network Layer 4-13

IP Addressing: introduction IPv4 address: 32-bit identifier for host, router interface interface: connection between host/router and physical link router s typically have multiple interfaces host typically has one interface IP addresses associated with each interface 223.1.1.1 223.1.2.1 223.1.1.2 223.1.1.4 223.1.2.9 223.1.1.3 223.1.3.1 223.1.3.27 223.1.2.2 223.1.3.2 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 Network Layer 4-14

IP Addressing Classes Network Layer 4-15

Subnets IP address: subnet part (high order bits) host part (low order bits) What s a subnet? device interfaces with same subnet part of IP address can physically reach each other without intervening router 223.1.1.0/24 223.1.1.1 223.1.1.2 223.1.2.1 223.1.1.4 223.1.2.9 223.1.1.3 223.1.3.1 223.1.3.27 subnet 223.1.2.2 223.1.3.2 network consisting of 3 subnets Class C addresses Subnet mask: /24 The first high 3 octets are dedicated to 223.1.2.0/24 223.1.3.0/24 networks and the lowest octet is for hosts Network Layer 4-16

Subnets 223.1.1.2 How many subnets? 223.1.1.1 223.1.1.4 223.1.1.3 223.1.9.2 223.1.7.0 223.1.9.1 223.1.8.1 223.1.8.0 223.1.7.1 223.1.2.6 223.1.3.27 223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2 Network Layer 4-17

IP addressing: CIDR CIDR: Classless InterDomain Routing subnet portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in subnet portion of address subnet part 11001000 00010111 00010000 00000000 200.23.16.0/23 host part Network Layer 4-18

IP addresses: how to get one? Q: How does a host get IP address? hard-coded by system admin in a file (static IP) Windows: control-panel->network->configuration- >tcp/ip->properties UNIX: /etc/rc.config DHCP: Dynamic Host Configuration Protocol (dynamic IP) dynamically get address from as server plug-and-play Goal: allow host to dynamically obtain its IP address from network server when it joins network Network Layer 4-19

DHCP Client-Server Scenario A 223.1.1.1 DHCP server 223.1.2.1 B 223.1.1.2 223.1.1.4 223.1.2.9 223.1.2.2 223.1.1.3 223.1.3.27 223.1.3.1 223.1.3.2 E arriving DHCP client needs address in this network Network Layer 4-20

NAT: Network Address Translation rest of Internet 138.76.29.7 10.0.0.4 local network (e.g., home network) 10.0.0/24 10.0.0.1 10.0.0.2 10.0.0.3 All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual) Network Layer 4-21

NAT: Network Address Translation Motivation: local network uses just one IP address as far as outside world is concerned: range of addresses not needed from ISP: just one IP address for all devices can change addresses of devices in local network without notifying outside world can change ISP without changing addresses of devices in local network devices inside local network not explicitly addressable, visible by outside world (a security plus). Implementation: NAT router must: IP addresses replacement and remembrance Network Layer 4-22

NAT: Network Address Translation 2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table 2 NAT translation table WAN side addr LAN side addr 138.76.29.7, 5001 10.0.0.1, 3345 S: 138.76.29.7, 5001 D: 128.119.40.186, 80 10.0.0.4 S: 10.0.0.1, 3345 D: 128.119.40.186, 80 1 1: host 10.0.0.1 sends datagram to 128.119.40.186, 80 10.0.0.1 10.0.0.2 138.76.29.7 S: 128.119.40.186, 80 D: 138.76.29.7, 5001 3 3: Reply arrives dest. address: 138.76.29.7, 5001 S: 128.119.40.186, 80 D: 10.0.0.1, 3345 4 10.0.0.3 4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345 Network Layer 4-23

IPv6 Initial motivation: 32-bit address space to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format: fixed-length 40 byte header no fragmentation allowed Network Layer 4-24

IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same flow. (concept of flow not well defined). Next header: identify upper layer protocol for data Network Layer 4-25

Other Changes from IPv4 Checksum: removed entirely to reduce processing time at each hop Options: allowed, but outside of header, indicated by Next Header field ICMPv6: new version of ICMP additional message types, e.g. Packet Too Big multicast group management functions Network Layer 4-26

Transition From IPv4 To IPv6 Not all routers can be upgraded simultaneous no flag days How will the network operate with mixed IPv4 and IPv6 routers? Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers Network Layer 4-27

Tunneling Logical view: A B E F tunnel IPv6 IPv6 IPv6 IPv6 Physical view: A B E F IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 Network Layer 4-28

Tunneling Logical view: A B E F tunnel IPv6 IPv6 IPv6 IPv6 Physical view: A B C D E F IPv6 IPv6 IPv4 IPv4 IPv6 IPv6 Flow: X Src: A Dest: F data Src:B Dest: E Flow: X Src: A Dest: F Src:B Dest: E Flow: X Src: A Dest: F Flow: X Src: A Dest: F data data data A-to-B: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4 E-to-F: IPv6 Network Layer 4-29

Lecture Summary Covered material The Network Layer (cont d) What is inside a router IPv4 fragmentation and addressing Address Classes and Subnets Network Address Translation IPv6 and Differences with IPv4 IP Tunneling Material to be covered next lecture Unicast Routing Protocols Routing Algorithms: Dijkstra Link State Routing and Open Shortest Path First Protocols Multicast Routing Protocols Multicast Distance Vector Routing Protocol: DVMRP Network Layer 1-30