An Accurate Evaluation of Integrals in Convex and Non convex Polygonal Domain by Twelve Node Quadrilateral Finite Element Method

Similar documents
2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements

Very simple computational domains can be discretized using boundary-fitted structured meshes (also called grids)

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints

Module 6: FEM for Plates and Shells Lecture 6: Finite Element Analysis of Shell

Structured Grid Generation Via Constraint on Displacement of Internal Nodes

Radial Basis Functions

Accounting for the Use of Different Length Scale Factors in x, y and z Directions

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

A CLASS OF TRANSFORMED EFFICIENT RATIO ESTIMATORS OF FINITE POPULATION MEAN. Department of Statistics, Islamia College, Peshawar, Pakistan 2

Monte Carlo Integration

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Machine Learning: Algorithms and Applications

Multiblock method for database generation in finite element programs

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May ISSN Some Polygonal Sum Labeling of Bistar

Solitary and Traveling Wave Solutions to a Model. of Long Range Diffusion Involving Flux with. Stability Analysis

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

F Geometric Mean Graphs

Intra-Parametric Analysis of a Fuzzy MOLP

Support Vector Machines

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Investigations of Topology and Shape of Multi-material Optimum Design of Structures

S1 Note. Basis functions.

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces

Some Tutorial about the Project. Computer Graphics

UNIT 2 : INEQUALITIES AND CONVEX SETS

A New Approach For the Ranking of Fuzzy Sets With Different Heights

Lecture #15 Lecture Notes

REAL 03-T-7 March, 2003

Reading. 14. Subdivision curves. Recommended:

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

High-Boost Mesh Filtering for 3-D Shape Enhancement

Complex Filtering and Integration via Sampling

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

Adaptive Fairing of Surface Meshes by Geometric Diffusion

Computers and Mathematics with Applications. Discrete schemes for Gaussian curvature and their convergence

Kinematics of pantograph masts

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

X- Chart Using ANOM Approach

Monte Carlo 1: Integration

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

A 2D pre-processor for finite element programs based on a knowledge-based system

A new paradigm of fuzzy control point in space curve

Cluster Analysis of Electrical Behavior

Support Vector Machines

Machine Learning 9. week

Mathematics 256 a course in differential equations for engineering students

Barycentric Coordinates. From: Mean Value Coordinates for Closed Triangular Meshes by Ju et al.

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole

An Approach in Coloring Semi-Regular Tilings on the Hyperbolic Plane

Monte Carlo Rendering

LECTURE : MANIFOLD LEARNING

LU Decomposition Method Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

Proper Choice of Data Used for the Estimation of Datum Transformation Parameters

Smoothing Spline ANOVA for variable screening

A Numerical Technique of Initial and Boundary Value Problems by Galerkin s Weighted Method and Comparison of the Other Approximate Numerical Methods

Non-Split Restrained Dominating Set of an Interval Graph Using an Algorithm

Monte Carlo 1: Integration

Solutions to Programming Assignment Five Interpolation and Numerical Differentiation

Solving two-person zero-sum game by Matlab

Discrete Schemes for Gaussian Curvature and Their Convergence

Computation of Ex-Core Detector Weighting Functions for VVER-440 Using MCNP5

A NOTE ON FUZZY CLOSURE OF A FUZZY SET

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

AP PHYSICS B 2008 SCORING GUIDELINES

Review of approximation techniques


Optimal Quadrilateral Finite Elements on Polygonal Domains

Cordial and 3-Equitable Labeling for Some Star Related Graphs

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning

Modeling of the Absorption of the Electromagnetic Wave Energy in the Human Head Induced by Cell Phone

Mode III fracture mechanics analysis with Fourier series method

Smooth Approximation to Surface Meshes of Arbitrary Topology with Locally Blended Radial Basis Functions

Form-factors Josef Pelikán CGG MFF UK Praha.

Scan Conversion & Shading

Polyhedral Compilation Foundations

Feature Reduction and Selection

Research Article Quasi-Bézier Curves with Shape Parameters

Scan Conversion & Shading

An efficient method to build panoramic image mosaics

Time Integration Schemes in Dynamic Problems

Dynamic wetting property investigation of AFM tips in micro/nanoscale

Bridges and cut-vertices of Intuitionistic Fuzzy Graph Structure

THREE-DIMENSIONAL UNSTRUCTURED GRID GENERATION FOR FINITE-VOLUME SOLUTION OF EULER EQUATIONS

S.P.H. : A SOLUTION TO AVOID USING EROSION CRITERION?

An Optimal Algorithm for Prufer Codes *

G 2 Surface Modeling Using Minimal Mean-Curvature-Variation Flow

AC : TEACHING SPREADSHEET-BASED NUMERICAL ANAL- YSIS WITH VISUAL BASIC FOR APPLICATIONS AND VIRTUAL IN- STRUMENTS

Data Representation in Digital Design, a Single Conversion Equation and a Formal Languages Approach

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

A HIGH-ORDER SPECTRAL (FINITE) VOLUME METHOD FOR CONSERVATION LAWS ON UNSTRUCTURED GRIDS

GSLM Operations Research II Fall 13/14

Study on Fuzzy Models of Wind Turbine Power Curve

REFRACTION. a. To study the refraction of light from plane surfaces. b. To determine the index of refraction for Acrylic and Water.

Available online at ScienceDirect. Procedia Environmental Sciences 26 (2015 )

VISCOELASTIC SIMULATION OF BI-LAYER COEXTRUSION IN A SQUARE DIE: AN ANALYSIS OF VISCOUS ENCAPSULATION

Wavefront Reconstructor

A Robust Method for Estimating the Fundamental Matrix

Transcription:

Internatonal Journal of Computatonal and Appled Mathematcs. ISSN 89-4966 Volume, Number (07), pp. 33-4 Research Inda Publcatons http://www.rpublcaton.com An Accurate Evaluaton of Integrals n Convex and Non convex Polygonal Doman by Twelve Node Quadrlateral Fnte Element Method K.T.Shvaram, H.R. Jyoth and A.M. Yogtha Department of Mathematcs, Dayananda Sagar College of Engneerng, Bangalore-560078, Karnataka, Inda. Department of Mathematcs, Ghousa College of Engneerng, Ramanagara-5659, Karnataka, Inda. Department of Mathematcs, Cty Engneerng College, Bangalore -56006, Karnataka, Inda. Abstract In ths paper, we present Gauss Legendre quadrature method to fnd numercally approxmated by ntegral of arbtrary functon over convex and non convex polygonal doman. These doman are dscretsed nto twelve noded quadrlateral element, Dervng a new Gaussan quadrature formula for generatng samplng ponts and ts weght coeffcents. Numercal results are provded to ustfy the usefulness of the proposed method. Keywords: Fnte Element Method, Gauss Legendre quadrature, Convex and Non convex polygonal doman.. INTRODUCTION The Fnte element method s a numercal method used to obtan approxmate soluton of ntegral equatons are typcally occurs n Boundary element method (BEM) and Surface fnte element method (SFM) for solvng partal dfferental equaton on surface whch requres surface ntegrals, the ntegral arsng n practcal problems are not always smple and some quadrature scheme cannot evaluate exactly. Numercal evaluaton of ntegrals over trangle and square regon are smple but convex and non convex polygonal regon are challengng task to ntegraton of arbtrary functon, the method proposed here s termed as Gauss Legendre quadrature rule.

34 K.T.Shvaram, H.R. Jyoth and A.M. Yogtha From the lterature of revew we ponted out that numercal ntegraton of arbtrary functon over trangle and quadrlateral regon have been carred out [-7], numercal ntegraton of arbtrary functon over polygonal doman are dscussed n [ 8-0] and numercal ntegraton of arbtrary functon over polygonal doman by splne fnte element method are dscussed n [0,], numercal ntegraton of arbtrary functon over convex and non convex polygonal doman by 4 node and 8- noded quadrlateral elements by usng generalzed Gaussan quadrature rule [,3 ]. In ths paper we dvded the polygonal doman nto node quadrlateral element and then we apply Gauss Legendre quadrature rule to evaluate the numercal ntegraton of arbtrary functon over convex and non convex polygonal regon. The paper s organzed as follows. In secton. we present the mathematcal formulaton requred for understandng the dervaton and dscretsed the convex and Non convex polygonal doman nto sub - node quadrlateral elements secton 3 and 4. derve a new Gaussan quadrature formula over a convex and non convex regon to calculate samplng ponts and weght coeffcents of varous order and also plotted the extracted samplng ponts n both convex and non convex regon. In secton 5. we compare the numercal results wth some llustratve examples.. FORMULATION OF INTEGRALS OVER A LINEAR CONVEX QUADRILATERAL ELEMENT The ntegral of an arbtrary functon f ( x, over an arbtrary convex quadrlateral regon Ω s gven by I = f(x, dxdy Ω () I f ( x, dxdy () Let us consder an arbtrary - node quadrlateral element n the global coordnate s mapped nto - square n the local coordnate (ξ, η). The sopermetrc coordnate transformaton from (ξ, plane to (ξ, η) s gven by ( x y ) = (x k k= ) N y k k (ξ, η) (3) Where (x k, y k ), (k=,, 3, 4, 5, 6, 7, 8, 9, 0,, ) are the vertces of the quadrlateral element n (ξ, plane and N k (ξ, η) denotes the shape functon of node k such that N = 3 ( x)( ( 0 + 9(x + y ) N = 9 3 ( ( 3x)( x ) N3 = 9 3 ( ( + 3x)( x ) N4 = 3 ( + x)( ( 0 + 9(x + y )

An Accurate Evaluaton of Integrals n Convex and Non convex Polygonal Doman 35 N5 = 9 3 ( + x)( 3( y ) N6 = 9 3 ( + x)( + 3( y ) N7 = 3 ( + x)( + ( 0 + 9(x + y ) N8 = 9 3 ( + ( + 3x)( x ) N9 = 9 3 ( + ( 3x)( x ) N0 = 3 ( x)( + ( 0 + 9(x + y ) N = 9 3 ( x)( + 3( y ) N = 9 3 ( x)( 3( y ) J = (x, = x (ξ,η) ξ Where x = ξ and y ξ = k= x k k= y k y x η η S k ξ, x y ξ S k ξ, y η = η = k= x k k= y k S k η S k η (a) Fg. (a) Convex polygonal Doman (b) (b) Non convex polygonal Doman

36 K.T.Shvaram, H.R. Jyoth and A.M. Yogtha we test the ntegral doman s shown n Fg. (a) wth two quadrlateral elements n convex polygonal doman wth vertces are (0, 0.5), (0., 0), (0.7,0.), (, 0.5),(0.75, 0.85) and (0.5, ) and Fg. (b) wth fve quadrlateral elements n non convex polygonal doman wth vertces are (0, 0.75), (0.5, 0.5), (0.5, 0), (0.75, 0.5), (0.75, 0), (, 0.5), (0.75, 0.75), (.0, 0.9), (0.5, ), (0.875, 0.65) and (0.5, 0.75) 3. GAUSS LEGENDRE QUADRATURE OVER A NODE CONVEX REGION Integral form of Eq. () rewrtten as I = f(x, dxdy + f(x, dxdy Q Q I = f(x(ξ, η), y(ξ, η)) J dξ dη f ( m( n( Jd d f ( m( n( J d d m n = w w [ f ( m(, ), n(, )) J f ( m(, ), n(, )) J] Where m = 0.78750 ξ + 0.4968750 η + 0.053500 η ξ 0.0487500ξ 3 0.5468750 η 3 0.0406500 η ξ 3 0.040650η 3 ξ + 0.3500000 n = 0.405650 ξ + 0.37093750 η 0.98750 η ξ + 0.476565 ξ 3 0.33593750 η 3 + 0.077343750 η ξ 3 + 0.07734375 η 3 ξ + 0.365000 J = 0.93436 ξ + 0.388989 η + 0.05834960 ξ 0.056030 η + 0.050073 η ξ 0.04805499 ξ 4 η 0.06080664 ξ η 3 0.0036939 η ξ 4 + 0.00369394 η 4 ξ 0.98347680 ξ η 0.0648005 ξ 4 0.7776977η 4 0.0008764 η 6 0.080536 ξ 3 + 0.0008764 ξ 6 0.075953 + 0.048354 η 3 + 0.09076904 η 4 ξ + 0.0305634 η ξ 3 m = 0.7578500 η 0.0656500 η ξ + 0.063850 η 3 0.773437500 ξ 3 + 0.0070350 η ξ 3 + 0.0070350 η 3 ξ + 0.73750000 + 0.4843750 ξ n = 0.449875 η 0.390650 η ξ + 0.6375000 0.6787 η 3 0.0093750 ξ 3 + 0.063850 η ξ 3 + 0.06385η 3 ξ + 0.058593750 ξ J = 0.0597480 η 0.0335459 ξ 0.6464 η + 0.09973583 η ξ 0.0453845 ξ 4 η 0.05873 ξ η 3 + 0.0033483 η ξ 4 0.0033483 η 4 ξ + 0.056398 ξ η 0.05806884 η 4 ξ 0.0086094 η ξ 3 + 0.0955734 + 0.040075683 η 3 + 0.088740654 η 4 + 0.08045043 ξ 4 + 0.000444946 η 6 + 0.00796508789 ξ 3 0.00044494 ξ 6 0.03009033 ξ

An Accurate Evaluaton of Integrals n Convex and Non convex Polygonal Doman 37 Where ξ, η are samplng ponts and w, w weght coeffcents to computed the samplng ponts and correspondng weghts of order N = 5, 0, 5 and plotted the dstrbuton of samplng ponts n convex polygonal doman of varous order N = 5 N = 0 Fg. Dstrbuton of Samplng ponts n convex polygonal doman 4. GAUSS LEGENDRE QUADRATURE OVER A NODED NON CONVEX REGION Integral form of Eq. () rewrtten as I f ( x, dxdy f ( x, dxdy f ( x, dxdy f ( x, dxdy f ( x, dxdy Q Q Q3 I = f(x(ξ, η), y(ξ, η)) J dξ dη f ( m4( n4( J 4d d f ( m5( n5( J5d d f ( m( n( Jd d f ( m( n( J d d f ( m3( n3( J3d d m n = w w [ f ( m(, ), n(, )) J f ( m(, ), n(, )) J f ( m3(, ), n3(, )) J3 f ( m4(, ), n4(, )) J4 f ( m5(, ), n5(, )) J5] Where m = 0.03556500ξ 3 + 0.0355650 ξ 3 η + 0.035565 ξη 3 0.385000ξη 0.0546875 η 3 + 0.35000 + 0.09765650ξ + 0.99687500η n = 0.08789065ξ 3 + 0.07578ξ 3 η + 0.07578500ξη 3 + 0.787500000 0.06640650ξ η 0.05734375 η 3 0.4440650 ξ + 0.464843750 η Q4 Q5

38 K.T.Shvaram, H.R. Jyoth and A.M. Yogtha J = 0.033995ξ 4 + 0.0006798η 6 0.0547564η 4 0.00996ξ 3 0.00067ξ 6 0.0667570 + 0.0467883ξ + 0.0567η 0.0486450 ηξ + 0.0473ξ 4 η + 0.0074577ξ η 3 + 0.0085394η ξ 4 0.0085394η 4 ξ 0.07975ξη + 0.03657ξ 3 η + 0.03337097η 4 ξ 0.006866455η 3 + 0.0389099ξ + 0.0593994 η m = 0.385ξη 0.0546875ξ 3 + 0.03556η 3 + 0.03556ξ 3 η + 0.03556ξη 3 + 0.4375 + 0.996875ξ 0.0976565η n = 0.99875ξη 0.08789065ξ 3 0.08789065η 3 + 0.05734375ξ 3 η + 0.05734375ξη 3 + 0.444065ξ + 0.444065η + 0.4065 J = 0.809539795ξ 0.05039675η + 0.70507568 η ξ 0.077865600ξ 4 η 0.0595500ξ η 3 + 0.0055688η ξ 4 0.00556886η 4 ξ 0.0430750ξη + 0.0380574η 4 0.0034337ξ 3 0.0085394ξ 6 + 0.09536743 + 0.040359η 3 + 0.097434997ξ 4 + 0.00853948η 6 + 0.03657η 4 ξ + 0.0037078857ξ 3 η + 0.09699707ξ 0.0907897949η m3 = 0.0664065ξη 0.05734375ξ 3 + 0.075785η 3 + 0.075785ξ 3 η + 0.075785ξη 3 0.048885η + 0.46484375ξ + 0.84375 n3 = 0.99875ξη 0.08789065ξ 3 0.08789065η 3 + 0.05734375ξ 3 η + 0.05734375ξη 3 + 0.444065ξ + 0.444065η + 0.4065 J3 = 0.085075378ηξ + 0.0078094η ξ 4 0.007809430η 4 ξ 0.0389380ξ 4 η 0.0977600ξ η 3 0.05365ξη + 0.0009697η 6 + 0.006900787η 4 + 0.04877498ξ 4 0.00766377ξ 3 0.00096974ξ 6 + 0.04768375 + 0.00696η 3 + 0.0055688η 4 ξ + 0.00853948ξ 3 η 0.09047698ξ 0.0598364η 0.045394897η + 0.0064849853ξ m4 = 0.06640650ξη + 0.057343750η 3 0.057343750ξ 3 0.0757850ξ 3 η 0.0757850ξη 3 + 0.787500000 0.464843750η + 0.464843750ξ n4 = 0.035565η 3 0.035565ξ 3 + 0.0976565η + 0.0976565ξ + 0.6500 J4 = 0.053654ηξ + 0.0055688ξ 4 η 0.007663η 3 + 0.0085394ξ η 3 + 0.0860949 0.030899047ξ + 0.0064849853η + 0.06685485ξ 4 + 0.05365ξη 0.00556886ξη 4 0.030899047η + 0.007663ξ 3 0.0085394ξ 3 η 0.006484985ξ + 0.06685485η 4 m5 = 0.650000000 + 0.9535000ξ 0.070350000ξ 3 n5 = 0.855468750η + 0.8065000 0.0097656ξ 0.46093750ξη 0.06679680η 3 + 0.003556ξ 3 + 0.03867875ξ 3 η + 0.03867875ξη 3 J5 = 0.05347595ηξ 0.004734ξ 4 0.0447045ξ 4 η 0.00857348ξ η 3 + 0.004987304ξ 0.085339355η + 0.007553005η 3 0.009073486 samplng ponts and correspondng weghts are calculated by the above equatons for order N = 5, 0, 5 and plotted the dstrbuton of samplng ponts n Non convex polygonal doman

An Accurate Evaluaton of Integrals n Convex and Non convex Polygonal Doman 39 (a) N = 0 (b) N = 5 Fg. 3 Dstrbuton of Samplng ponts n Non convex polygonal doman 5. NUMERICAL RESULTS We have compared the numercal results obtaned usng Gauss Legendre quadrature rule wth that of numercal results arrved n [0] and [] of varous order N = 5, 0, 5 and are tabulated n Table and TABLE. Convex regon Exact value Order Computed value 00(( x 0.5) ( y 0.5) ) e dxdy 0.03445073 C N=0 0.0344585 0.034458633 [Ref. 0] 0.03445863 C ( x 0.5) ( y 0.5) 0.56855586 [Ref. 0 ] C x y 0. 5 dxdy 0.9906549435 [Ref. 0 ] C 3 4x 3y dxdy 0.5453868050054 [Ref. 0 ] dxdy N=0 N=0 N=0 0.568577 0.5685545 0.5685558 0.99065478 0.99065065 0.990654943 0.545386895 0.54538684539 0.5453868050

40 K.T.Shvaram, H.R. Jyoth and A.M. Yogtha TABLE. 3 Non convex regon Exact value Order Relatve error Relatve error[] 00(( x 0.5) ( y 0.5) ) e dxdy 0.000000076 N N=0 0.0000000045 0.000007 = 0.030839806464 0.0000000003 N ( x 0.5) ( y 0.5) dxdy = 0.5767705385664 N=0 0.00000008 0.0000000763 0.0000000005 0.00000 ( x ) N ( y ) = 0.035433053939807 N 3 4x 3y dxdy = 0.569373639505 6 dxdy N=0 N=0 0.000000090 0.0000000085 0.0000000096 0.0000000033 0.0000000046 0.000000000 0.0000008 0.000008 5. CONCLUSIONS In ths paper, Gauss Legendre quadrature rule s appled for the numercal ntegraton of arbtrary functon over convex and non convex polygonal doman s dscretsed nto noded quadrlateral element The results obtaned are n excellent agreement wth exact values. REFERENCES [] O. C. Zenkewcz, R. L. Taylor and J. Z. Zhu, The Fnte Element Method, ts bass and fundamentals, Sξth edton, Butterworth- Henemann, An Imprnt of Elsever (000). [] C. T. Reddy, D. J. Shppy, Alternatve ntegraton formulae for trangular fnte elements, Int. J. Numer. Methods Eng 7 (98) pp.890-896 [3] Md. Shafqual Islam and M. Alamgr Hossan, Numercal ntegraton over an arbtrary quadrlateral regon, Appl. Math. Computaton, Elsever (009) 55-54. [4] D. A. Dunavant, Hgh degree effcent symmetrcal Gaussan Quadrature rules for trangle, Int. J. Numer. Methods Eng (985) 9-48. [5] D. A. Dunavant, Hgh degree effcent symmetrcal Gaussan Quadrature rules for trangle, Int. J. Numer. Methods Eng (985) 9-48.

An Accurate Evaluaton of Integrals n Convex and Non convex Polygonal Doman 4 [6] G. Lague, R. Baldur, Eξtended numercal ntegraton method for trangular surfaces, Int. J. Numer. Methods Eng. (977) 388-39. [7] K.T. Shvaram, Generalsed Gaussan Quadrature over a Trangle, Amercan Journal of Engneerng Research. Vol. 0, Issue-09, pp.90 93, 03. [8] S. E. Mousav, H. Ξao and N. Sukumar, Generalzed Gaussan Quadrature Rules on Arbtrary Polygons, Int. J. Numer. Meth. Engng 009, pp. 6 [9] M. A. Hossan and Md. Shafqul Islam, Generalsed Composte ntegraton rule over a polygon usng, Gaussan quadratue, Dhaka Un. J. Sc. 6() 5-9, Jan 04 [0] Chong- Jun L, Paola Lambert and Catterna Dagnno, Numercal ntegraton over polygons usng an eght- node quadrlateral splne fnte elements, Journal of Computatonal and Appled Mathematcs, 33(009),pp.79-9 [] Chong- Jun L, Catterna Dagnno, An adaptve numercal ntegraton algorthm for polygons, Journal of Appled Numercal Mathematcs, 60(00),pp.65-75 [] K.T. Shvaram, Numercal Integraton of arbtrary functons over a Convex and Non convex polygonal doman by Eght noded Lnear quadrlateral Fnte Element Method, Australan Journal of Basc and Appled Scences, vol. 0, pp.04-0 (06) [3] K.T. Shvaram, Yogtha.A, Numercal Integraton of Arbtrary Functons over a Convex and non convex polygonal doman by quadrature method, Journal of Mathematcal and Computatonal Scence, vol.6, pp.77-86, (06) [4] K.T. Shvaram, Generalsed Gaussan Quadrature Rules over an arbtrary Tetrahedron n Eucldean Three- Dmensonal Space, Internatonal Journal of Appled Engneerng Research. Vol.8, pp.533 538, Number 3 (03) [5] K.T.Shvaram, H.T Prakasha, Numercal Integraton of Hghly Oscllatng Functons usng Quadrature Method, Global Journal of Pure and appled Mathematcs, Vol., pp. 683 690( 06)

4 K.T.Shvaram, H.R. Jyoth and A.M. Yogtha