Arithmetic-logic units

Similar documents
CSC 220: Computer Organization Unit 10 Arithmetic-logic units

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks

UC Berkeley College of Engineering, EECS Department CS61C: Combinational Logic Blocks

(Refer Slide Time 6:48)

EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS

Addition and multiplication

Binary Adders: Half Adders and Full Adders

CS 24: INTRODUCTION TO. Spring 2015 Lecture 2 COMPUTING SYSTEMS

Chapter 4. Operations on Data

Basic circuit analysis and design. Circuit analysis. Write algebraic expressions or make a truth table

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

Register Transfer Language and Microoperations (Part 2)

Computer Architecture and Organization: L04: Micro-operations

Review: Standard forms of expressions

ALU Design. 1-bit Full Adder 4-bit Arithmetic circuits. Arithmetic and Logic Unit Flags. Add/Subtract/Increament/Decrement Circuit

Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators. JAVA Standard Edition

Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

LECTURE 4. Logic Design

Chapter 3: part 3 Binary Subtraction

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak.

REGISTER TRANSFER LANGUAGE

Arithmetic Logic Unit (ALU)

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson

COMBINATIONAL LOGIC CIRCUITS

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

Le L c e t c ur u e e 2 To T p o i p c i s c t o o b e b e co c v o e v r e ed e Variables Operators

Let s put together a Manual Processor

For Example: P: LOAD 5 R0. The command given here is used to load a data 5 to the register R0.

Lecture 10: Combinational Circuits

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

Standard Forms of Expression. Minterms and Maxterms

S1 Teknik Telekomunikasi Fakultas Teknik Elektro FEH2H3 2016/2017

CT 229. Java Syntax 26/09/2006 CT229

Parallel logic circuits

CS140 Lecture 03: The Machinery of Computation: Combinational Logic

Chapter 4 Arithmetic Functions

Chapter 4. Combinational Logic

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

COMP combinational logic 1 Jan. 18, 2016

Computer Organization and Levels of Abstraction

Advanced Computer Architecture-CS501

LOGIC CIRCUITS. Kirti P_Didital Design 1

60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

REGISTER TRANSFER AND MICROOPERATIONS

ECE468 Computer Organization & Architecture. The Design Process & ALU Design

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

Arithmetic and Bitwise Operations on Binary Data

1 /10 2 /12 3 /16 4 /30 5 /12 6 /20

Boolean Arithmetic. From Nand to Tetris Building a Modern Computer from First Principles. Chapter 2

Week 6: Processor Components

ECE2029: Introduction to Digital Circuit Design Lab 3 Implementing a 4-bit Four Function ALU

Number Systems and Computer Arithmetic

C++ Data Types. 1 Simple C++ Data Types 2. 3 Numeric Types Integers (whole numbers) Decimal Numbers... 5

Register Transfer and Micro-operations

CCENT Study Guide. Chapter 4 Easy Subnetting

Circuit analysis summary

CARLETON UNIVERSITY. Laboratory 2.0

OCR H446 A-Level Computer Science

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 261 Fall Mike Lam, Professor. Combinational Circuits

GC03 Boolean Algebra

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

Digital Logic Design (3)

Computer Organization and Levels of Abstraction

CHAPTER 4: Register Transfer Language and Microoperations

Chapter 4 Arithmetic

2/5/2018. Expressions are Used to Perform Calculations. ECE 220: Computer Systems & Programming. Our Class Focuses on Four Types of Operator in C

Introduction to Boole algebra. Binary algebra

CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett

Review. Pipeline big-delay CL for faster clock Finite State Machines extremely useful You ll see them again in 150, 152 & 164

Basic Arithmetic (adding and subtracting)

Chapter 3: Operators, Expressions and Type Conversion

Digital Logic Design Exercises. Assignment 1

UNCA CSCI 255 Exam 1 Spring February, This is a closed book and closed notes exam. It is to be turned in by 1:45 PM.

(+A) + ( B) + (A B) (B A) + (A B) ( A) + (+ B) (A B) + (B A) + (A B) (+ A) (+ B) + (A - B) (B A) + (A B) ( A) ( B) (A B) + (B A) + (A B)

IA Digital Electronics - Supervision I

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

structure syntax different levels of abstraction

Here is a list of lecture objectives. They are provided for you to reflect on what you are supposed to learn, rather than an introduction to this

The Arithmetic Operators. Unary Operators. Relational Operators. Examples of use of ++ and

The Arithmetic Operators

JAVA OPERATORS GENERAL

Philadelphia University Student Name: Student Number:

5 Arithmetic Logic Unit

EE577A FINAL PROJECT REPORT Design of a General Purpose CPU

Reference Sheet for C112 Hardware

Lecture Set 4: More About Methods and More About Operators

CPU Design John D. Carpinelli, All Rights Reserved 1

(Refer Slide Time: 1:43)

1. Boolean algebra. [6] 2. Constructing a circuit. [4] 3. Number representation [4] 4. Adders [4] 5. ALU [2] 6. Software [4]

Chapter 3 Arithmetic for Computers

EGC221: Digital Logic Lab

(Refer Slide Time: 00:01:53)

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems.

CSC 220: Computer Organization Unit 12 CPU programming

Transcription:

Arithmetic-logic units An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there to support the ALU. Here s the plan: We ll show an arithmetic unit first, by building off ideas from the adder-subtractor circuit. Then we ll talk about logic operations a bit, and build a logic unit. Finally, we put these pieces together using multiplexers. We show the same examples as from the book (pp. 360-365), but things are re-labeled to be clearer in LogicWorks. C in and S 0 are also treated a little differently. 10/6/2003 Arithmetic-logic units 1

The four-bit adder The basic four-bit adder always computes S = A + B + CI. But by changing what goes into the adder inputs A, B and CI, we can change the adder output S. This is also what we did to build the combined adder-subtractor circuit. 10/6/2003 Arithmetic-logic units 2

It s the adder-subtractor again! Here the signal Sub and some XOR gates alter the adder inputs. When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder produces G = X + Y + 0, or just X + Y. When Sub = 1, the adder inputs are Y, X and 1, so the adder output is G = X + Y + 1, or the two s complement operation X - Y. 10/6/2003 Arithmetic-logic units 3

The multi-talented adder So we have one adder performing two separate functions. Sub acts like a function select input which determines whether the circuit performs addition or subtraction. Circuit-wise, all Sub does is modify the adder s inputs A and CI. 10/6/2003 Arithmetic-logic units 4

Modifying the adder inputs By following the same approach, we can use an adder to compute other functions as well. We just have to figure out which functions we want, and then put the right circuitry into the Input Logic box. 10/6/2003 Arithmetic-logic units 5

Some more possible functions We already saw how to set adder inputs A, B and CI to compute either X + Y or X - Y. How can we produce the increment function G = X + 1? One way: Set A = 0000, B = X, and CI = 1 How about decrement: G = X - 1? A = 1111 (-1), B = X, CI = 0 How about transfer: G = X? (This can be useful.) A = 0000, B = X, CI = 0 This is almost the same as the increment function! 10/6/2003 Arithmetic-logic units 6

The role of CI The transfer and increment operations have the same A and B inputs, and differ only in the CI input. In general we can get additional functions (not all of them useful) by using both CI = 0 and CI = 1. Another example: Two s-complement subtraction is obtained by setting A = Y, B = X, and CI = 1, so G = X + Y + 1. If we keep A = Y and B = X, but set CI to 0, we get G = X + Y. This turns out to be a ones complement subtraction operation. 10/6/2003 Arithmetic-logic units 7

Table of arithmetic functions Here are some of the different possible arithmetic operations. We ll need some way to specify which function we re interested in, so we ve randomly assigned a selection code to each operation. S 2 S 1 S 0 Arithmetic operation 0 0 0 X (transfer) 0 0 1 X + 1 (increment) 0 1 0 X + Y (add) 0 1 1 X + Y + 1 1 0 0 X + Y (1C subtraction) 1 0 1 X + Y + 1 (2C subtraction) 1 1 0 X 1 (decrement) 1 1 1 X (transfer) 10/6/2003 Arithmetic-logic units 8

Mapping the table to an adder This second table shows what the adder s inputs should be for each of our eight desired arithmetic operations. Adder input CI is always the same as selection code bit S 0. B is always set to X. A depends only on S 2 and S 1. These equations depend on both the desired operations and the assignment of selection codes. Selection code Desired arithmetic operation Required adder inputs S 2 S 1 S 0 G (A + B + CI) A B CI 0 0 0 X (transfer) 0000 X 0 0 0 1 X + 1 (increment) 0000 X 1 0 1 0 X + Y (add) Y X 0 0 1 1 X + Y + 1 Y X 1 1 0 0 X + Y (1C subtraction) Y X 0 1 0 1 X + Y + 1 (2C subtraction) Y X 1 1 1 0 X 1 (decrement) 1111 X 0 1 1 1 X (transfer) 1111 X 1 10/6/2003 Arithmetic-logic units 9

Building the input logic All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S 2 and S 1 ). Here is an abbreviated truth table: S 2 S 1 A 0 0 0000 0 1 Y 1 0 Y 1 1 1111 We want to pick one of these four possible values for A, depending on S 2 and S 1. 10/6/2003 Arithmetic-logic units 10

Primitive gate-based input logic We could build this circuit using primitive gates. If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table. The Y that appears in the output column (A) is actually an input. We make that explicit in the table on the right. Remember A and Y are each 4 bits long! S 2 S 1 A 0 0 0000 0 1 Y 1 0 Y 1 1 1111 S 2 S 1 Y i A i 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 10/6/2003 Arithmetic-logic units 11

Primitive gate implementation From the truth table, we can find an MSP: S 1 0 0 1 0 S 2 1 0 1 1 Y i A i = S 2 Y i + S 1 Y i Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0. This completes our arithmetic unit. 10/6/2003 Arithmetic-logic units 12

Bitwise operations Most computers also support logical operations like AND, OR and NOT, but extended to multi-bit words instead of just single bits. To apply a logical operation to two words X and Y, apply the operation on each pair of bits X i and Y i : 1 0 1 1 AND 1 1 1 0 1 0 1 0 1 0 1 1 OR 1 1 1 0 1 1 1 1 1 0 1 1 XOR 1 1 1 0 0 1 0 1 We ve already seen this informally in two s-complement arithmetic, when we talked about complementing all the bits in a number. 10/6/2003 Arithmetic-logic units 13

Bitwise operations in programming Languages like C, C++ and Java provide bitwise logical operations: & (AND) (OR) ^ (XOR) ~ (NOT) These operations treat each integer as a bunch of individual bits: 13 & 25 = 9 because 01101 & 11001 = 01001 They are not the same as the operators &&, and!, which treat each integer as a single logical value (0 is false, everything else is true): 13 && 25 = 1 because true && true = true Bitwise operators are often used in programs to set a bunch of Boolean options, or flags, with one argument. Easy to represent sets of fixed universe size with bits: 1: is member, 0 not a member. Unions: OR, Intersections: AND 10/6/2003 Arithmetic-logic units 14

Bitwise operations in networking IP addresses are actually 32-bit binary numbers, and bitwise operations can be used to find network information. For example, you can bitwise-and an address 192.168.10.43 with a subnet mask to find the network address, or which network the machine is connected to. 192.168. 10. 43 = 11000000.10101000.00001010.00101011 & 255.255.255.224 = 11111111.11111111.11111111.11100000 192.168. 10. 32 = 11000000.10101000.00001010.00100000 You can use bitwise-or to generate a broadcast address, for sending data to all machines on the local network. 192.168. 10. 43 = 11000000.10101000.00001010.00101011 0. 0. 0. 31 = 00000000.00000000.00000000.00011111 192.168. 10. 63 = 11000000.10101000.00001010.00111111 10/6/2003 Arithmetic-logic units 15

Defining a logic unit A logic unit supports different logical functions on two multi-bit inputs X and Y, producing an output G. This abbreviated table shows four possible functions and assigns a selection code S to each. S 1 S 0 Output 0 0 G i = X i Y i 0 1 G i = X i + Y i 1 0 G i = X i Y i 1 1 G i = X i We ll just use multiplexers and some primitive gates to implement this. Again, we need one multiplexer for each bit of X and Y. 10/6/2003 Arithmetic-logic units 16

Our simple logic unit Inputs: X (4 bits) Y (4 bits) S (2 bits) Outputs: G (4 bits) 10/6/2003 Arithmetic-logic units 17

Combining the arithmetic and logic units Now we have two pieces of the puzzle: An arithmetic unit that can compute eight functions on 4-bit inputs. A logic unit that can perform four functions on 4-bit inputs. We can combine these together into a single circuit, an arithmetic-logic unit (ALU). 10/6/2003 Arithmetic-logic units 18

Our ALU function table This table shows a sample function table for an ALU. All of the arithmetic operations have S 3 =0, and all of the logical operations have S 3 =1. These are the same functions we saw when we built our arithmetic and logic units a few minutes ago. Since our ALU only has 4 logical operations, we don t need S 2. The operation done by the logic unit depends only on S 1 and S 0. S 3 S 2 S 1 S 0 Operation 0 0 0 0 G = X 0 0 0 1 G = X + 1 0 0 1 0 G = X + Y 0 0 1 1 G = X + Y + 1 0 1 0 0 G = X + Y 0 1 0 1 G = X + Y + 1 0 1 1 0 G = X 1 0 1 1 1 G = X 1 x 0 0 G = X and Y 1 x 0 1 G = X or Y 1 x 1 0 G = X Y 1 x 1 1 G = X 10/6/2003 Arithmetic-logic units 19

A complete ALU circuit The / and 4 on a line indicate that it s actually four lines. 4 4 4 C out should be ignored when logic operations are performed (when S3=1). 4 4 The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic unit uses S2. G is the final ALU output. When S3 = 0, the final output comes from the arithmetic unit. When S3 = 1, the output comes from the logic unit. 10/6/2003 Arithmetic-logic units 20

Comments on the multiplexer Both the arithmetic unit and the logic unit are active and produce outputs. The mux determines whether the final result comes from the arithmetic or logic unit. The output of the other one is effectively ignored. Our hardware scheme may seem like wasted effort, but it s not really. Deactivating one or the other wouldn t save that much time. We have to build hardware for both units anyway, so we might as well run them together. This is a very common use of multiplexers in logic design. 10/6/2003 Arithmetic-logic units 21

The completed ALU This ALU is a good example of hierarchical design. With the 12 inputs, the truth table would have had 2 12 = 4096 lines. That s an awful lot of paper. Instead, we were able to use components that we ve seen before to construct the entire circuit from a couple of easy-to-understand components. As always, we encapsulate the complete circuit in a black box so we can reuse it in fancier circuits. 4 4 4 4 10/6/2003 Arithmetic-logic units 22

Arithmetic summary In the last few lectures we looked at: Building adders hierarchically, starting with one-bit full adders. Representations of negative numbers to simplify subtraction. Using adders to implement a variety of arithmetic functions. Logic functions applied to multi-bit quantities. Combining all of these operations into one unit, the ALU. Where are we now? We started at the very bottom, with primitive gates, and now we can understand a small but critical part of a CPU. This all built upon our knowledge of Boolean algebra, Karnaugh maps, multiplexers, circuit analysis and design, and data representations. 10/6/2003 Arithmetic-logic units 23