Chapter 4. Mechanism Design and Analysis

Similar documents
SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

Theory of Machines Course # 1

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

WEEKS 1-2 MECHANISMS

Chapter 1 Introduction

Mechanisms. Updated: 18Apr16 v7

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Lecture Note 2: Configuration Space

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body

Kinematics of Machines. Brown Hills College of Engineering & Technology

NOT COMPLETE. θ 4 B 2 = O 2 O 4 = A 2 = A 1 B 1 O 2 KINEMATIC SYNTHESIS

Position Analysis

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

ME 321 Kinematics and Dynamics of Machines

Kinematics: Intro. Kinematics is study of motion

Lecture 3. Planar Kinematics

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis

Analytical and Applied Kinematics

Week 12 - Lecture Mechanical Event Simulation. ME Introduction to CAD/CAE Tools

Analysis of a 4 Bar Crank-Rocker Mechanism Using COSMOSMotion

Lecture Note 2: Configuration Space

Model Library Mechanics

Position and Displacement Analysis

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

11. Kinematic models of contact Mechanics of Manipulation

Computational Design + Fabrication: 4D Analysis

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility

Lesson 1: Introduction to Pro/MECHANICA Motion

ME 3222 Design & Manufacturing II. Creating and Animating a Slider-Crank in Creo Elements (Version 2.0)

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism

2.007 Design and Manufacturing I Spring 2009

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS

Mechanism. Mechanism consists of linkages and joints.

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný

1. Introduction 1 2. Mathematical Representation of Robots

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Lecture VI: Constraints and Controllers

EEE 187: Robotics Summary 2

MENG 372 Chapter 3 Graphical Linkage Synthesis. All figures taken from Design of Machinery, 3 rd ed. Robert Norton 2003

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

CHAPTER 1 : KINEMATICS

Mechanism Kinematics and Dynamics

Spatial R-C-C-R Mechanism for a Single DOF Gripper

PROBLEMS AND EXERCISES PROBLEMS

Animations in Creo 3.0

Synthesis of Simple Planar Linkages

The Design and Simulation of Mechanisms. Inna Sharifgalieva

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

Configuration Space. Chapter 2

Taibah University Mechanical Engineering

Lesson 6: Assembly Structural Analysis

A rigid body free to move in a reference frame will, in the general case, have complex motion, which is simultaneously a combination of rotation and

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Homework 4 PROBLEMS ON THREE POSITION GUIDANCE

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Kinematic Design Principles

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Robotics. SAAST Robotics Robot Arms

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism Kinematics and Dynamics

Chapter 5 Modeling and Simulation of Mechanism

ME Week 11 Create Joints Project

MACHINES AND MECHANISMS

Industrial Robots : Manipulators, Kinematics, Dynamics

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Connection Elements and Connection Library

What Is SimMechanics?

MECHANICAL ENGINEERING

A MECHATRONIC APPROACH OF THE WINDSHIELD WIPER MECHANISMS

Cobots

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law

Rigid Dynamic Analysis in Workbench

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

1.9 Snap Action Mechanisms 19

The hood (3) is linked to the body (1) through two rocker links (2 and 4).

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506

Mechanical Electrical Digital

Module 1 : Introduction to robotics. Lecture 3 : Industrial Manipulators & AGVs. Objectives. History of robots : Main bodies and wrists

INSTITUTE OF AERONAUTICAL ENGINEERING

INTRODUCTION CHAPTER 1

Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2017

Design Optimization of Power Manipulator Gripper for Maximum Grip Force

Appendix A: Carpal Wrist Prototype

ME 115(b): Final Exam, Spring

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS

CONSIDERATIONS REGARDING LINKAGES USED FOR SHAFTS COUPLING

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

[Hasan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Transcription:

Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints to complete required motion or force transmission. There are 5 fundamental questions to be considered when designing a mechanism: 1. How many links are there in the mechanism? 2. How many joints are there in the mechanism? What are the types of the joints? 3. What are the relations between the links and joints? 4. What are the fundamental dimensions of the links to achieved the required motion? 5. What are the actual shape of the mechanism which can provide enough strength and stiffness during the motion? 1

Links Conceptually a link is considered as a rigid body that will not deform under the loads during the motion. A link is not necessarily a stick-like part. A link may be composed of several parts assemble together, and move as a rigid body during motion. How many links are there in a bicycle? 2

Planar Mechanism The planar mechanism is the most common type of mechanism. The trajectory of one point on the planar mechanism lies on a plane during motion. The trajectory of all points on the planar mechanism lie on planes which are parallel to each other. For example, a door is a simple planar mechanism that consists of a moving link and a ground link. This mechanism can be described on a plane. In a spatial mechanism, the motion of the links is not planar. For example, the trajectories of the links in a spherical mechanism form concentric spheres. 3

Joints in a Planar Mechanism Links are connected by joints. There are 3 types of joints: Revolute joint permits rotational motion with respect to a fixed axis. Prismatic joint permits translational motion between of a pair of links. Direct contact joint permits both rotation and slide between links. θ Both revolute joint and prismatic joint are single-dof joints. Only one parameter is needed to describe the relative position between two links. The direct contact joint is a 2-DOF joint. 4

Joints in a Spatial Mechanism Helical joint is a one-dof joint consists of a screw nut and a bolt. Cylindrical joint consists of a shaft and a sleeve, and permits two-dof motion. A universal joint is a spherical joint which provides three-dof motion. The direct contact joint in a spatial mechanism can have 5 DOF (point contact), 4 DOF (line contact) or 3 DOF (surface contact). 5

Linkage Design (I) The function of a mechanism in a machine is to convert the input force or motion into desired output. In a linearly proportional mechanism, the output motion or force is linearly proportional to the input. In some mechanisms, the relation between output and input is nonlinear. The number, type and connectivity of joints, and the length of links determine the characteristic of the mechanism. Such mechanism is called a linkage. The purpose of linkage design is to decide the length of the links, the position and type of the joints, and how to assemble the links so that the desired motion can be achieved. 6

Linkage Design (II) When analyzing a linkage, we often use a skeleton diagram to represent the type of joints, distances between joints, and which joints connect which links in the linkage 7

Linkage Design (III) 2 bars 3 bars 4 bars The close-loop four-bar linkage has only 1 DOF, i.e.,. only one actuator is needed to drive the linkage. It is the most popular and well-studied linkage. 8

Four-Bar Linkage Four-Bar Linkages can be used for non linear motion transmission. In a four-bar linkage, Grashof s Law determines whether there is a link that can rotates 360 degree. If the sum of length of the longest and shortest links are less than the sum of length of the other two links, there must be a link that can rotate 360 degree. If not, no link can rotate 360 degree. When Grashof s Law is satisfied, there are 3 possible mechanisms: crank and rocker, double crank, and double rocker. 9

Crank and Rocker Mechanism The shortest link is input crank or output crank. Input crank or output crank rotates 360 degrees. 10

Double Crank Mechanism The shortest link is ground link. Both input crank and output crank rotate 360 degrees. 11

Double Rocker Mechanism The shortest link is coupler link. The coupler link can rotate 360 degrees. 12

Example 1. Windshield Wiper Mechanism The windshield wiper mechanism can be divided into two 4-bar linkages: (1, 2, 3, 4) and (1, 4, 5, 6). Linkage (1, 2, 3, 4) is a crank and rocker mechanism. Link 2 is the input crank which rotates 360 degree to drive other links. Linkage (1, 4, 5, 6) is a double rocker mechanism. Link 4 is the input crank, which drives link 6 to rotate with the same direction and angular speed. Linkage (1, 4, 5, 6) is called parallel mechanism. motor wiper 13

Other Linkages Slider crank (crank and slider) mechanism has 4 links, 3 revolute joints and 1 prismatic joint. As in the reciprocating engine, this mechanism converts reciprocating motion (piston) into rotational motion (crank). Double slider mechanism has 4 links, 2 revolute joints and 2 prismatic joints. 14

Practice 3. Mechanism of Casement Window 1. How many links and joints are there in this mechanism? Which are the input links? Which are the output links? What are their types? 2. Measure the distance between each joint. Draw a skeleton diagram. Be careful with the scale of the links. 3. Make a model of this mechanism using pasteboard and other suitable materials. 4. Operate your model and find out the maximum opening angle of the windows. Can you calculate the result? 5. If you want a larger opening angle, how do you modify the length of links? Make a model again to verify the result. Is there any limit of the angle? 15

Calculating Degrees of Freedom of a Linkage A movable link in a planar mechanism has 2 translational DOF and 1 rotational DOF. A revolute joint constrains 2 translational DOF. A prismatic joint constrains 1 translational DOF and 1 rotational DOF. For the casement window mechanism, the number of total degree of freedom is: 6 revolute joints, 1 prismatic joint 3 (6-1)-2 (6+1)=1 6 links, 1 ground link For the windshield wiper mechanism, the number of total degree of freedom is: 7 revolute joints 3 (6-1)-2 7=1 6 links, 1 ground link 16

Example 2. Analysis of Slider Crank Mechanism Many computer simulation software can be used for mechanism analysis. After the length of the links, the number, type, and connectivity of the joints are decided, force analysis and stress analysis are needed to design the actual size and shape of the links. A reciprocating force (0N-5N) is exerted on the slider in x direction. The period is 0.898 sec. 17

Example 2. Analysis of Slider Crank Mechanism The analysis results show that, the maximum angular velocity of link 1 (2059.98deg/s) and the maximum constraint force (42.72N)of joint 2 occur at the same time t=0.535 sec. 18