MECHANICAL ENGINEERING

Similar documents
SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

Kinematics of Machines. Brown Hills College of Engineering & Technology

WEEKS 1-2 MECHANISMS

Theory of Machines Course # 1

Mechanisms. Updated: 18Apr16 v7

CHAPTER 1 : KINEMATICS

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

MACHINES AND MECHANISMS

2.007 Design and Manufacturing I Spring 2009

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

Chapter 4. Mechanism Design and Analysis

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible.

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Kinematics: Intro. Kinematics is study of motion

Position and Displacement Analysis

Lesson 1: Introduction to Pro/MECHANICA Motion

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Mechanism Kinematics and Dynamics

Analytical and Applied Kinematics

Chapter 1 Introduction

ME 321 Kinematics and Dynamics of Machines

MECHANICS OF MACHINERY

Chapter 4: Kinematics of Rigid Bodies

(1) (2) be the position vector for a generic point. If this point belongs to body 2 (with helical motion) its velocity can be expressed as follows:

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Engineering Mechanics. Equilibrium of Rigid Bodies

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

INTRODUCTION CHAPTER 1

MACHINE THEORY Bachelor in Mechanical Engineering INTRODUCTION TO MACHINE DESIGN

Solutions to Chapter 6 Exercise Problems A 1 O 4 B 2

2. Motion Analysis - Sim-Mechanics

PROBLEMS AND EXERCISES PROBLEMS

1. Introduction 1 2. Mathematical Representation of Robots

CHAPTER 3 MATHEMATICAL MODEL

Simulation Model for Coupler Curve Generation using Five Bar Planar Mechanism With Rotation Constraint

Mobile Robot Kinematics

Also available in Hardcopy (.pdf): Coordinate Geometry

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

[Hasan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

machine design, Vol.7(2015) No.4, ISSN pp

Dynamic Analysis of Quick Return Mechanism Using MATLAB Shrikant R. Patel, D.S.Patel Research Scholar, Associate professor

3D Model Based Mechanisms Learning Software User Manual (Version 4) Freely Available for Academic Use!!! September 2015

[3] Rigid Body Analysis


Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

CBSE X Mathematics 2012 Solution (SET 1) Section C

Mechanical Electrical Digital

Kinematics, Dynamics, and Design of Machinery, 3 nd Ed.

MEM380 Applied Autonomous Robots Winter Robot Kinematics

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Section 5: Introduction to Trigonometry and Graphs

Animations in Creo 3.0

Fundamentals of Inverse Kinematics Using Scara Robot

VIBRATION-ISOLATION SYSTEM WITH GYROSCOPIC STABILIZER

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

Robotics (Kinematics) Winter 1393 Bonab University

Manipulator Dynamics: Two Degrees-of-freedom

Research applying Spherical Gear and Ring Rack Mechanism to Rotary Work Table

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS

P1 REVISION EXERCISE: 1

Unit WorkBook 4 Level 5 ENG U36 Advanced Mechanical Principles 2018 UniCourse Ltd. All rights Reserved. Sample

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1

SNAP Centre Workshop. Introduction to Trigonometry

IMECE OPTIMAL DESIGN OF WORM GEAR SYSTEM USING IN CVVL FOR AUTOMOBILES

Computational Design + Fabrication: 4D Analysis

A NEW TECHNIQUE FOR SKETCHING EPICYCLIC GEAR MECHANISMS USING ACYCLIC GRAPH

Kinematics, Kinematics Chains CS 685

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

Mathematics. Geometry Revision Notes for Higher Tier

GEOMETRIC MODELING AND DYNAMIC SIMULATION OF INVOLUTE GEAR BY GENERATING METHOD

Lecture 3. Planar Kinematics

Development of a Mechanical Creative Combination Based on 3D Printing

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ME 115(b): Final Exam, Spring

Generation of noncircular gears for variable motion of the crank-slider mechanism

The Design and Simulation of Mechanisms. Inna Sharifgalieva

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR

Model Library Mechanics

Time: 3 hour Total Marks: 90

New modeling method of spiral bevel gears with spherical involute based on CATIA

Cambridge International Examinations CambridgeOrdinaryLevel

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Friday 18 January 2013 Afternoon

1. The Pythagorean Theorem

General Certificate of Secondary Education Higher Tier November Time allowed 1 hour 30 minutes

Design of a Three-Axis Rotary Platform

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism

A MECHATRONIC APPROACH OF THE WINDSHIELD WIPER MECHANISMS

INSTITUTE OF AERONAUTICAL ENGINEERING

Section A. 3. The number of solid spheres, each of diameter that could be moulded to form a solid metal cylinder of height and diameter is:

MTRX4700 Experimental Robotics

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility

Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production

Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law

Static force analysis of planar mechanisms in MechAnalyzer software

Transcription:

MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-II FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION Office : F-126, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-26522064, Mobile : 8130909220, 9711853908 E-mail : info@iesmaster.org Web : www.iesmasterpublications.com

IES MASTER PUBLICATION F-126, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-26522064, Mobile : 8130909220, 9711853908 E-mail : info@iesmaster.org Web : www.iesmasterpublication.org No part of this booklet may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying or otherwise or stored in a database or retrieval system without the prior permission of IES MASTER PUBLICATION, New Delhi. Violaters are liable to be legally prosecuted. Second Edition : 2018 Typeset at : IES Master Publication, New Delhi - 110016

PREFACE It is an immense pleasure to present topic wise previous years solved paper of Engineering Services Exam. This booklet has come out after long observation and detailed interaction with the students preparing for Engineering Services Exam and includes detailed explanation to all questions. The approach has been to provide explanation in such a way that just by going through the solutions, students will be able to understand the basic concepts and will apply these concepts in solving other questions that might be asked in future exams. Engineering Services Exam is a gateway to a immensly satisfying and high exposure job in engineering sector. The exposure to challenges and opportunities of leading the diverse field of engineering has been the main reason for students opting for this service as compared to others. To facilitate selection into these services, availability of arithmetic solution to previous year paper is the need of the day. Towards this end this book becomes indispensable. Mr. Kanchan Kumar Thakur Director IES Master

CONTENT 1. Theory of Machines... 01 146 2. Machine Design... 147 256 3. Strength of Materials... 257 400 4. Engineering Materials... 401 469 5. Production Engineering... 470 600 6. Industrial Engineering... 601 711 7. Mechatronics and Robotics... 712 717 8. Engineering Mechanics... 718 721

1 S YL L A BU S Types of Kinematics pair, Mobility, Inversions, Kinematic Analysis, Velocity and Acceleration Analysis of Planar mechanisms, CAMs with uniform acceleration and retardation, cycloidal motion, oscillating followers; Vibrations - Free and forced vibration of undamped and damped SDOF systems, Transmissibility Ratio, Vibration Isolation, Critical Speed of Shafts. Gears - Geometry of tooth profiles, Law of gearing, Involute profile, Interference, Helical, Spiral and Worm Gears, Gear Trains - Simple, compound and Epicyclic; Dynamic Analysis - Slider - crank mechanisms, turning moment computations, balancing of Revolving & Reciprocating masses, Gyroscopes - effect of Gyroscopic couple on automobiles, ships and aircrafts, Governors.. Contents 1. Analysis of Planer Mechanism ---------------------------------------------------------------- 01 34 2. Governors and Cam ------------------------------------------------------------------------------ 35 54 3. Slider Crank Mechanism and Flywheel ----------------------------------------------------- 55 67 4. Gear and Gear Trains --------------------------------------------------------------------------- 68 95 5. Balancing ------------------------------------------------------------------------------------------- 96 110 6. Linear Vibration Analysis --------------------------------------------------------------------- 111 138 7. Automatic Control and Whirling of Shafts ----------------------------------------------- 139 146

1 1. Statement I : IES 2018 In four-bar chain, whenever all four links are used, with each of them forming a turning pair, there will be continuous relative motion between the two links of different lengths. Statement II : For a four-bar mechanism, the sum of the shortest and longest link lengths is not greater than the sum of remaining two links. 2. Consider the following statements: 1. A kinematic chain is the combination of kinematic pairs joined in such a way that the relative motion between them is completely constrained. 2. The degree of freedom of a kinematic pai r is giv en by the number of independent coordinates required to completely specify the relative movement. Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 3. Consider the following statements: 1. Gyroscopic effects generate forces and couples which act on the vehicles, and these effects must be taken into account while designing their bearings. 2. Rolling motion of a ship usually occurs because of the difference in buoyancy on the two sides of the ship due to a wave. Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 IES 2017 4. In the 4-bar mechanism as shown, the link PQ measures 30 cm and rotates uniformly at 100 rev/min. The velocity of point Q on link PQ is nearly P Q 50 cm R 70 cm 60 cm (a) 2.54 m/s (b) 3.14 m/s (c) 4.60 m/s (d) 5.80 m/s 5. Which of the following mechanisms are examples of forced closed kinematic pairs? 1. Cam and roller mechanism 2. Door-closing mechanism 3. Slider-crank mechanism Select the correct answer using the code given below. (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 6. A planer mechanism has 10 links and 12 rotary joints. Using Grubler s criterion, the number of degrees of freedom of the mechanism is (a) 1 (b) 3 (c) 2 (d) 4 S

Theory of Machines 3 7. The number of instantaneous centres of rotation in a slider-crank quick return mechanism is (a) 10 (b) 8 (c) 6 (d) 4 IES 2016 8. Statement (I) : In quick return motion mechanism, Coriolis acceleration exists. Statement (II) : Two links in this mechanism oscillate with one sliding relative to the other. 9. Consider the following motions : 1. Piston reciprocating inside an engine cylinder 2. Motion of a shaft between foot-step bearings Which of the above can rightly be considered as successfully constrained motion? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 10. Coriolis component of acceleration depends on 1. angular velocity of the link 2. acceleration of the slider 3. angular acceleration of the link Which of the above is/are correct? (a) 1 only (b) 2 only (c) 1 and 3 (d) 2 and 3 11. In a circular are cam with a roller follower, acceleration of the follower depends on 1. cam speed and location of centre of circular arc 2. roller diameter and radius of circular arc Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 12. In a crank and slotted lever quick return motion mechanism, the distance between the fixed centres is 200 mm. The lengths of the driving crank and the slotted bar are 100 mm and 500 mm, respectively. The length of the cutting stroke is (a) 100 mm (b) 300 mm (c) 500 mm (d) 700 mm IES 2015 13. Statement (I) : Hooke s joint connects two non-parallel non-intersecting shafts to transmit motion with a constant velocity ratio. Statement (II) : Hooke s joint connects two shafts the axes of which do not remain in alignment while in motion. 14. In a crank and slotted lever type quick return mechanism, the link moves with an angular velocity of 20 rad/s, while the slider moves with a linear velocity of 1.5 m/s. The magnitude and direction of Coriolis component of acceleration with respect to angular velocity are (a) 30 m/s 2 and direction is such as to rotate slider velocity in the same sense as the angular velocity (b) 30 m/s 2 and direction is such as to rortate slider velocity in the opposite sense as the angular velocity (c) 60 m/s 2 and direction is such as to rotate slider velocity in the same sense as the angular velocity (d) 60 m/s 2 and direction is such as to rotate slider velocity in the opposite sense as the angular velocity 15. Which of the following are associated with Ackerman steering mechanism used in automobiles? 1. Has both sliding and turning pairs 2. Less friction and hence long life 3. Mechanically correct in all positions 4. Mathematically not accurate except in three positions 5. Has only turning pairs 6. Controls movement of two front wheels (a) 2, 4, 5 and 6 (b) 1, 2, 3 and 6 (c) 2, 3, 5 and 6 (d) 1, 2, 3 and 5

Theory of Machines 1 7 1. (c) 28. (c) 55. (c) 82. (c) 2. (c) 29. (a) 56. (a) 83. (b) 3. (c) 30. (b) 57. (d) 84. (a) 4. (b) 31. (c) 58. (c) 85. (b) 5. (a) 32. (b) 59. (a) 86. (c) 6. (b) 33. (a) 60. (c) 87. (d) 7. (c) 34. (c) 61. (a) 88. (d) 8. (c) 35. (d) 52. (d) 89. (c) 9. (b) 36. (c) 63. (d) 90. (a) 10. (a) 37. (c) 64. (b) 91. (b) 11. (c) 38. (c) 65. (a) 92. (**) 12. (c) 39. (c,d) 66. (d) 93. (a) 13. (d) 40. (d) 67. (c) 94. (d) 14. (c) 41. (c) 68. (a) 95. (c) 15. (a) 42. (d) 69. (d) 96. (b) 16. (b) 43. (a) 70. (d) 97. (c) 17. (b) 44. (a) 71. (b) 98. (a) 18. (a) 45. (a) 72. (c) 99. (a) 19. (a) 46. (d) 73. (a) 100. (d) 20. (d) 47. (c) 74. (b) 101. (a) 21. (b) 48. (d) 75. (a) 102. (c) 22. (b) 49. (a) 76. (a) 103. (c) 23. (d) 50. (a) 77. (b) 104. (c) 24. (c) 51. (d) 78. (c) 105. (a) 25. (a) 52. (b) 79. (a) 26. (c) 53. (a) 80. (c) 27. (d) 54. (b) 81. (d)

1 8 ESE Topicwise Objective Solved Paper-II 1995-2018 Sol 1 (c) Sol 2 Sol 3:(c) Sol 4: For a four bar mechanism to form, sum of three links should be more than longest link. For inversion purpose, the sum of largest and smallest should be less than the rest two. (c) A kinematic chain is the combintion of kinematic pairs joined in such a way that each link forms a part of two pairs and the relati v e motion between the li nks is completely or successfully constrained. The degreee of freedom of a kinematic pair is given by the number of independent coordinates required to completely specify the relative movement. Rolling motion usually occurs because of the difference in buoyancy on the two sides of a ship due to a wave. This is a periodic couple and has a maximum value when the ship is on either side of the wave at the point of maximum slope and zero when the ship is at a peak or in the trough of the wave. The gyroscopic effects generates forces and couples which act on the vehicles and other means of transport like ships, aeroplanes etc. These effects must be taken into account while designing them especially in selection of bearings etc. (b) The angular velocity of link PQ, = 2 N 2 100 rad/sec 60 60 Velocity of point Q on link PQ, 2 100 V = PQ 0.30 60 = 3.14 m/sec Sol 5: Sol 6: Sol 7: Sol 8: Sol 9: (a) Forced closed mechanism require external force to maintain mechanical contact between links. Slider-crank mechanism does not requires such force. (b) Degree of freedom using grubler criterion, DoF = 3 (n 1) 2J h F r = 3 (10 1) 2 12 0 0 = 3 (c) No of instantaneous centre, (c) 4 3 C C 6 2 = n 4 2 2 In quick return mechanism, slider moves on oscilating/rotating link, so Coriolis acceleration exist. But in this mechanism, one link rotates and other oscillates and slider a third link slides. (b) Sol 10: (a) Sol 11: (c) Successfully constraint motion means that the motion is constraint only in the presence of external force. The piston inside cylinder executes constraint motion due to it design and gudgeon pin. While foot step bearing requires a force to press the shaft in bearing to have constraint motion (rotation). The expression for Coriolis component of acceleration, = 2 V where V is sliding velocity of slider over oscillating link and is angular velocity of oscill ating link in qui ck return mechanism. The expression for acceleration of follower involve following parameters (i) Radius of flank of cam surface, r f

Theory of Machines 1 9 (ii) Least radius of cam profile or base circle radius r b. (iii) Radius of roller r r. (iv) Cam rotation speed ' ' Sol 12: (c) Sol 13: (d) Sol 14: (c) Driving crank length O 1 A = 100 mm Slotted Bar length O 2 B = 500 mm In triangle O 2 O,A 200mm O 1 sin = C = 30 O 2 O1A 100 O O 200 A 1 2 B Length of cutting stroke, = 2BC 2O2Bsin 2 500 sin30 = 2 500 0.5 = 500 mm The Hooke s joint connects two non-parallel shafts but intersecting. For constant velocity ratio there are two Hooke s joints in particular torks orientation The schematic of quick return mechanism C V 2V Direction: The direction of Coriolis component of acceleration depends upon velocity of slider C. If slider moves away from centre, the Coriolis acceleration will be in the direction of link rotation. If the slider moves toward centre of rotation the Coriolis acceleration will be opposite to link rotation as shown below. C A V 2V 2V Since nothing is mentioned about velocity of slider (away or toward centre) so assume it moves away from centre, the right. Sol 15: (a) The basic schematic of Ackerman steering mechanism, Sol 16: (b) A w D B C All pairs (A, B, C, and D) are turning pair in four bar mechanism A, B, C and D. This steering satisfy fundamental w equation of steering cot cot = in three positions only namely in straight motion = 0 and two positions 25 toward left and right Since very less sliding surfaces (turning pairs only) So longer life. Due to longer life it is used generally despite it is not correct mathematically. Steering control is provided in front wheels only in all steering mechanisms. The schematic of mechanism, B C A C V = 5rad/sec 1 The Coriolis acceleration, a c = 2V = 2 1.5 20 = 60 m/sec 2 A = 2rad/sec 2 D