CRANK ROUND SLIDER ENGINE MULTI-FLEXIBLE-BODY DYNAMICS SIMULATION

Similar documents
Modal and harmonic response analysis of key components of robotic arm based on ANSYS

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

Modal Analysis of Three Dimensional Numerical Control Laser Cutting Machine Based on Finite Element Method Yun-Xin CHEN*

INTRODUCTION CHAPTER 1

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench

Flexible multibody systems - Relative coordinates approach

Vibration Characteristic Analysis of Spot-Welding Robot Based on ADAMS/Vibration

Cone crusher in the cylindrical roller bearing contact analysis


Example 24 Spring-back

Application of a FEA Model for Conformability Calculation of Tip Seal in Compressor

The Tooth Contact Analysis of a Heavy-load Planetary Gearing. Tan Xin 1, a

Analysis of Crank End of Connecting Rod using Finite Element Method

Lesson 6: Assembly Structural Analysis

LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1

machine design, Vol.9(2017) No.1, ISSN pp

Comparison between Experimental and Simulation Results of Bending Extruded Aluminum Profile

MODELING & ANALYSIS OF CRANKSHAFT

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Lesson 1: Introduction to Pro/MECHANICA Motion

Chapter 5 Modeling and Simulation of Mechanism

PATCH TEST OF HEXAHEDRAL ELEMENT

Static, Modal and Kinematic Analysis of Hydraulic Excavator

CHAPTER 1. Introduction

Simulation of Fuel Sloshing Comparative Study

Research Article. Kinematics analysis of beam pumping unit base on projection method

Guidelines for proper use of Plate elements

Simulation Comparison Between PTC/Creo and Professional CAE Software Li-xin WANG*, Jun-hui LIU and Lin-kai CHEN

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

Aero-engine PID parameters Optimization based on Adaptive Genetic Algorithm. Yinling Wang, Huacong Li

Chapter 4. Mechanism Design and Analysis

Cloth Simulation. COMP 768 Presentation Zhen Wei

FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

NUMERICAL ANALYSIS OF ROLLER BEARING

Modeling lattice structured materials with micropolar elasticity. Accuracy of the micropolar model. Marcus Yoder. CEDAR presentation Spring 2017

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation

Dynamic Simulation of Rigid Guide Structure Based on ANSYS

First Order Analysis for Automotive Body Structure Design Using Excel

Large Scale Structural Optimization using GENESIS, ANSYS and the Equivalent Static Load Method

Application Of Multibody Dynamic Method (Mbd) And Mechanical Principle To The Cylinder Torque Calculation

Model Library Mechanics

Research on Measuring and Optimization Method of Dynamic Accuracy of CNC Machine Tools

2: Static analysis of a plate

Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm

Chapter 1 Introduction

The Constructing of Gearbox Transmission Mechanism 3D Model based

Simulation-Based Design of Robotic Systems

Stress analysis of Camshaft by using ANSYS Software

Mechanical simulation design of the shaft type hybrid mechanical arm based on Solidworks

Finite Element Analysis and Structure Optimal Design of the Column of Deep-Hole Drilling Machine

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

Finite Element Buckling Analysis Of Stiffened Plates

Computer based comparison analysis of single and double connecting rod slider crank linkages

Design of a Three-Axis Rotary Platform

Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS

An explicit feature control approach in structural topology optimization

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

3. Ball Screw Modal Analysis

Design and Simulation for Bionic Mechanical Arm in Jujube Transplanter *

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Topology Optimization with Shape Preserving Design

Embedded Reinforcements

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket

STRUCTURAL TOPOLOGY OPTIMIZATION SUBJECTED TO RELAXED STRESS AND DESIGN VARIABLES

Connecting Rod Design using a Stress Analysis of 3D CAD

A comparison between large-size shaking table test and numerical simulation results of subway station structure

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach

DESIGN AND DYNAMIC ANALYSIS OF CRANKSHAFT IN LIGHT WEIGHT

Application and Research of Structure Topology Optimization of Scraper Conveyer with MSC.Nastran.Optishape

Parametric Study of Engine Rigid Body Modes

Simulation of engraving process of large-caliber artillery using coupled Eulerian-Lagrangian method

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University

COMPARISON OF THE MECHANICAL PROPERTIES OF DIFFERENT MODELS OF AUTOMOTIVE ENGINE MOUNTING

The Dynamic Characteristics Analysis of Rotor Blade Based on ANSYS

Optimal Design of Remote Center Compliance Devices of Rotational Symmetry

DYNAMIC MODELING OF WORKING SECTIONS OF GRASSLAND OVERSOWING MACHINE MSPD-2.5

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine

Finite Element Modeling and Failure Analysis of Roll Bending. Forming of GLARE Laminates

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa

State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model

Design and Validation of XY Flexure Mechanism

Modal Analysis of the Light Electric Sanitation Vehicle Frame

CHAPTER 1 : KINEMATICS

SOLIDWORKS SIMULATION

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm

Designing flapping wings as oscillating structures

Scientific Manual FEM-Design 17.0

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

Design and Analysis of Control Bay Used in Guided Missile

Stress Analysis of Cross Groove Type Constant Velocity Joint

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

8 Tutorial: The Slider Crank Mechanism

Transcription:

RANK ROUND SLIDER ENGINE MULTI-FLEXIBLE-BODY DYNAMIS SIMULATION 1 HONG-YUAN ZHANG, 2 XING-GUO MA 1 School of Automobile and Traffic, Shenyang Ligong University, Shenyang 110159, hina 2 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, hina E-mail: 1 zhy_sylu@163.com, 2 maxingguo1234@sina.com ABSTRAT Based on multi-flexible-body dynamics theory, through the combination of finite element method software and multi-body system dynamics software, a multi-body system dynamics model of a crank round slider engine is established. In consideration of the influence of rigid-flexible coupling on the system, a dynamics analysis on a piston is performed to obtain displacement, velocity and accelerating curve of the piston as well as dynamic response in a period. The combination of a rigid body and a flexible body can achieve more intuitive and correct simulation of the actual working conditions of the engine, which provides an important evidence for the design and improvement of the engine. Keywords: Multi-Flexible-Body Dynamics, Rigid-Flexible oupling, Finite Element Method, Engine 1. INTRODUTION The crank round slider engine principle is shown in figure 1, the crank round slider engine consists of two pistons, two eccentric round sliders, a dynamic balance slider and a single crank, a connecting rod in a crank connecting rod engine is replaced by the eccentric round slider, and the dynamic slider substitutes for crank balance to play the role of balance. Because the crank and the connecting rod of the structural engine have eual lengths and the piston of particular structure is adopted, the stroke of the piston is 4 times that of the crank. An engine of the same volume has a stroke much bigger than a traditional engine, the piston does work on both sides and a crankcase is eliminated, so that the structure is reduced obviously with the advantages of simple structure, small volume, stable operation and so on. The piston of the crank round slider mechanism does movement according to sine law, inertia force thereof can be balanced easily by means of a movable balance block mounted on the crank. Therefore, the number of air cylinders can be reduced and the balance performance can be kept by increasing output volume of a single air cylinder of the crank round slider mechanism, thereby the number of movable members is reduced and the reliability is increased. Figure 1. Working Principle Of rank Round Slider Engine The research on multi-body system dynamics started from the aerospace field in 1960s, the earliest method converted the multi-flexible-body system dynamics problem into a simple superposition of multi-rigid-body system dynamics and structural dynamics regardless of the coupling between the multi-rigid-body system dynamics and the structural dynamics and without the consideration of the influence of the members elastic deformation on the large overall motions thereof. 575

The text is based on the multi-flexible-body dynamics theory [1-5],it takes a crank round slider engine as the study object, establishes deformable dynamic euations through lagrange euation, describes the constrain of bodys by a set of algebraic constrain euations which depends on generalized coordinates, the algebraic constrain euations is introduced into dynamic euations by lagrange multiplier, obtained a set of mixed differential euations which including dynamic euations and constrain euations,it is the model in onsideration of Rigid-Flexible oupling. Through the combination of finite element method software and multi-body system dynamics software, visualized dynamics simulation, a dynamic node euivalent stress curve and node euivalent stress nephogram during the operation of the engine can be determined more uickly and correctly. 2. MULTI-FLEXIBLE-BODY DYNAMIS OMPUTATION MODEL 2.1. Mechanical System Dynamics Model in onsideration of Rigid-Flexible oupling The mechanical system dynamics model in consideration of rigid-flexible coupling can be obtained by establishing free-free movement euation of each sub-structure, exerting constraint of each sub-structure and external constraint on the system, and releasing the constraints by means of Lagrange multiplier: T M'' + ' + K + λ (, t) 0 Q (1) i (2) Wherein M, and K represent uality matrix, damping matrix and rigidity matrix of the mechanical system, Q represents generalized external force, represents a Jacobi matrix of a system constraint (2), λ represents a vector of a T λ Lagrange multiplier to be determined, represents constrained force, ' ' ' represent generalized coordinates, velocity and acceleration vector of the mechanical system respectively, wherein may be represented to be: [,, ] 1 2 i, Wherein i represents generalized coordinates of the ith individual in the system, and i nb [ x, y, z, ψ, θ ϕ] T i, Wherein 11 m1 ij 12 m2 i j 1 n mn m and n are number of constraint euations and number of generalized coordinates of the system respectively. The solution of euations set (1) and (2) can obtain the time history of generalized coordinate vector, namely, the time history of the generalized coordinate i and generalized elastic coordinate vector i f of nay object i in the system, according to the physical meaning of i f, a node e elastic deformation coordinate vector ij f on the jth element of object i can be obtained by means of a proper method, strain of any point in the element ij can be obtained by the introduction of an element shape function s ij. ε ij ij p s e ij f (3) In the formula, ε ij p represents a strain vector of any point p in the jth element of ith object in the system, s ij represents a shape function of the element ij, which can be obtained by means of a interpolation function, the time history of ε ij p can be used for computing the dynamic stress of the system structure through a stress-retain relationship. Euation (1) is a set of rigid variable coefficient dynamics euations set. Euation (2) represents a constraint euations set between bodies in the system. The euations set is solved by a numerical solution and Newton-Raphson method of differential euations, the generalized acceleration '' vector can be represented as a function of generalized coordinates, velocity and time t. If '' f (, ', t) ' Y ' Y ' '' (4) 576

So ' ' f (, ', t) Y (5) The above formula is the multi-flexible-body mechanical system dynamics computation model. 2.2. Establishment of Piston Flexible Body Model According to the constraint relationship of the piston and other members under ADAMS environment, three external nodes are defined in ANSYS, an ANSYS command cycle is worked out, the bearing area is rigidized by means of the beam4 element, and a model neutral file is generated by invoking ADAMS macro command. The generated piston flexible body model is as shown in figure 2. In ADAMS/View, the rigid-body piston in the established multi-rigid-body dynamics model is replaced by a flexible-body piston, the multiflexible-body dynamics model as shown in figure 3 can be generated after exerting the explosion pressure and controlling the velocity of the crank 3. DYNAMIS SIMULATION 4 air cylinders of the engine are distributed as shown in figure 4, when the engine is in operation, the explosion pressure of fuel gas acts on the end part of the piston continuously in turn according to the ignition seuence of 3-2-4-1, the reciprocating linear motion of the piston is converted into rotary motion of the crank through the crank round slider mechanism, fuel gas explosion pressure of each cylinder when the engine has a maximum torue speed of 1500r/min is exerted, and the engine is simulated for 0.08 seconds, the curves of fuel gas explosion pressure of each cylinder are as shown in figure 5. Figure 2. Piston Flexible Body Model Figure 4. Distribution Of Air ylinders Figure 3. Multi-Flexible-Body Dynamics Model Of The Engine 2.3. Multi-Flexible-Body System Dynamics Model of Engine A three-dimensional entity model is established by means of SOLIDWORKS and introduced into ADAMS, the engine multi-rigid-body model is established by adding constraints and driving Figure 5. Explosion Pressure Figure Of Each ylinder Of The Engine urves of displacement, velocity and acceleration of the piston are as shown in figure 6, based on which we can see that the curves of displacement, velocity and acceleration of the piston are varied according to sine law. Dynamics simulation of the engine under working conditions of maximum torue is performed by the multi-flexible-body dynamics 577

model of the piston to obtain that the maximum stress of the piston in a working period is 1.6391MPa, which occurs at 0.0104 second when the cylinder 3 explodes and at a position where the stiffener of the piston is located, as shown in figure 7. At the same time, the variation in a working period of the maximum stress point of the piston in the whole period is given out, as shown in figure 8. Figure 6. Displacement Velocity And Acceleration urve Of Piston Figure 7. Stress Nephogram Of Piston Figure 8. Stress Variation urve Of The Maximum Stress Point In The Whole Period 4. RESULT ANALYSIS Through the simulation, it is found that in a working period the maximum stress of the piston occurs at a position where the stiffener of the piston is located and at a time when cylinder 3 explodes, the maximum VON MISES stress is 1.6391MPa, which is smaller than a yield limit 133MPa of piston material ZL108, so that the piston is in safe condition. From the curve as shown in Fig. 8, it can also be concluded that the stress of piston is close to the maximum value at the time when each cylinder explodes and the whole curve follows a cyclical pattern. 5. ONLUSIONS Through the establishment of the crank round slider engine multi-body system dynamics model in consideration of rigid-flexible coupling problem, displacement, velocity and acceleration curves of the piston are obtained, through multi-flexible-body dynamics simulation, a dynamic node euivalent stress curve and node euivalent stress nephogram during a working period of the engine are obtained. ombined simulation of ANSYS and ADAMS can achieve more intuitive and correct description of dynamic stress variation of the crank round slider engine in actual working conditions. REFERENES [1] Lu Zhihua, omputer simulation of dynamic response for flexible multibody mechnical system, Hoisting and onveying Machinery. 1998; (7): 16-19. [2] Hong Jiazhen, You haolan, Advances in Dynamics of Rigid-Flexible oupling System, Journal of Dynamics and ontrol. 2004; 2(2), pp. 1-5. [3] Lu Zhihua, Ye Qingtai, Application of Flexible Multibody System Dynamics to Engineering Machinery Design, Mechanical Science and Technology for Aerospace Engineering. Xi'an. 1997; 16(4): 590-594. [4] JIN Guo-guang, LIU You-wu, WANG Shu-xin, Dynamic modeling on flexible rectangular plates system with large overall motion, Journal of Harbin Institute of Technology. Harbin. 2009; 41(1): 239-245. [5] Wallrapp O, Linearized flexible multibody dynamics including geometric stiffening effects, Mech Strut & Mach. 1991; 19: 385 409. 578

[6] Wang Y, Huston R L, A lumped parameter method in the nonlinear analysis of flexible multibody systems, omputers & Structures. 1994; 50: 421-432. [7] Lu Youfang, Dynamics of Flexible Multi-body Systems, Beijing: Higher Education Press. 1996; 58: 58-108. [8] Ider S K, Amirouche F M L, Nonlinear modeling of flexible multibody system dynamics subjected to variableconstraints, Journal of Applied Mechanics.1989; 56: 444-450. [9] Sharf I, Geometric stiffening in multibody dynamics formulations, Journal of Guidance, ontrol and Dynamics. 1995; 18: 882-891. [10] Mayo J, Dominguez J, Geometrically nonlinear formulation of flexible multibody systems in terms of beamelements geometric stiffness, omputers & Structures.1996; 59: 1039-1050. 579