Large-Scale Deformation of a Hyperelastic Material

Similar documents
Elasto-Plastic Deformation of a Truss Structure

Modal Analysis of A Flat Plate using Static Reduction

Elasto-Plastic Deformation of a Thin Plate

Rigid Element Analysis with RBE2 and CONM2

Nonlinear Creep Analysis

Elastic Stability of a Plate

Rigid Element Analysis with RBAR

Modal Analysis of a Flat Plate

Linear Buckling Load Analysis (without spring)

Spring Element with Nonlinear Analysis Parameters (filter using restart)

Direct Transient Response Analysis

Modal Transient Response Analysis

Modal Transient Response Analysis

Normal Modes with Differential Stiffness

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Modal Analysis of a Beam (SI Units)

Direct Transient Response Analysis

Spring Element with Nonlinear Analysis Parameters (Multi-Step Analysis)

Shear and Moment Reactions - Linear Static Analysis with RBE3

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Linear Static Analysis of a Simply-Supported Truss

Modal Transient Response Analysis

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Load Analysis of a Beam (using a point force and moment)

Modal Analysis of Interpolation Constraint Elements and Concentrated Mass

Restarting a Linear Static Analysis of a Simply- Supported Stiffened Plate

WORKSHOP 33 A1 A2 A1. Subcase 1 4 Subcase 2 X: -16,000 lbs. X: 16,000 lbs Y: -12,000 lbs. Y: -12,000 lbs. Objectives:

Linear Static Analysis of a Simply-Supported Truss

Linear Static Analysis of a Spring Element (CELAS)

APPENDIX B. PBEAML Exercise. MSC.Nastran 105 Exercise Workbook B-1

The Essence of Result Post- Processing

Post Processing of Displacement Results

Normal Modes Analysis of a Simply-Supported Stiffened Plate

Alternate Bar Orientations

Projected Coordinate Systems

Projected Coordinate Systems

Post Processing of Displacement Results

Importing Results using a Results Template

Post-Processing Modal Results of a Space Satellite

Helical Spring. Supplementary Exercise - 6. Objective: Develop model of a helical spring

Post-Processing Static Results of a Space Satellite

Modeling a Shell to a Solid Element Transition

ZONA NASTRAN Data Loader ZNDAL

Modal Analysis of A Flat Plate using Static Reduction

Stiffened Plate With Pressure Loading

Engine Gasket Model Instructions

Post Processing of Results

Elasto-Plastic Deformation of a Truss Structure

Linear Bifurcation Buckling Analysis of Thin Plate

Multi-Step Analysis of a Cantilever Beam

Importing Geometry from an IGES file

Post Processing of Stress Results

Introduction to MSC.Patran

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise.

Importing Geometry from an IGES file

Post-Buckling Analysis of a Thin Plate

Post Processing of Stress Results With Results

Sliding Split Tube Telescope

Static and Normal Mode Analysis of a Space Satellite

Importing a PATRAN 2.5 Model into P3

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING

Abaqus CAE Tutorial 6: Contact Problem

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

Post-Processing of Time-Dependent Results

Finite Element Analysis Using NEi Nastran

Exercise 12a - Post Processing for Stress/Strain Analysis

Static and Normal Mode Analysis of a Space Satellite

Thermal Analysis Using MSC.Nastran

Nonlinear Creep Analysis

Spring Element with Nonlinear Analysis Parameters (Multi-step Analysis)

Shell-to-Solid Element Connector(RSSCON)

Transient and Modal Animation

MSC.Nastran Implicit Nonlinear (SOL600) Nonlinear Structural Analysis. Technical Workshop

Building the Finite Element Model of a Space Satellite

Modal Transient Response Analysis

EXERCISE 4. Create Lug Geometry. Objective: Write a function to create the geometry of the lug. PATRAN 304 Exercise Workbook 4-1

MSC.visualNastran Desktop FEA Exercise Workbook. Foot Support

Direct Transient Response with Base Excitation

2-D Slideline Contact

Mass Properties Calculations

Linear and Nonlinear Analysis of a Cantilever Beam

Using MSC.Nastran for Explicit FEM Simulations

Imported Geometry Cleaning

Linear Static Analysis for a 3-D Slideline Contact

A Verification Procedure for MSC/NASTRAN Finite Element Models

Cylinder with T-Beam Stiffeners

Composite Trimmed Surfaces

Interface with FE programs

Hwk4_me670.f06 2/26/2006

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS

Workshop MSC Nastran Topometry Optimization of a Cantilever Plate

Spring Element with Nonlinear Analysis Parameters (large displacements off)

Merging Databases LESSON 2. Objectives: Construct two databases which have distinct similarities and differences.

A rubber O-ring is pressed between two frictionless plates as shown: 12 mm mm

DMU Engineering Analysis Review

Workshop MSC Nastran Topology Optimization Manufacturing Constraints

Building the Finite Element Model of a Space Satellite

Exercise 4.2: Compression of a Rubber Spring

Lateral Loading of Suction Pile in 3D

Spatial Variation of Physical Properties

Transcription:

WORKSHOP PROBLEM 5 Large-Scale Deformation of a Hyperelastic Material Objectives: Demonstrate the use of hyperelastic material properties. Create an accurate deformation plot of the model. MSC/NASTRAN 103 Exercise Workbook 5-1

5-2 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. Model Description: For the structure below: 8 7 4 3 5 6 1 2 Add Case Control commands and Bulk Data Entries to: 1. Model the hyperelestic behavior of the material. MSC/NASTRAN 103 Exercise Workbook 5-3

Suggested Exercise Steps: Modify the existing MSC/NASTRAN input file by adding the appropriate nonlinear static analysis control parameters. Prepare the model for a nonlinear static analysis (SOL 106). Set up the appropriate subcase loading and analysis parameters (LOAD, NLPARM, SPC) Input the proper hyperelastic material property for the nonlinear material (MATHP) Generate an input file and submit it to the MSC/NASTRAN solver for a nonlinear static analysis. Review the results. 5-4 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. Input File for Modification: prob5.dat ID NAS103 WORKSHOP 5 SOLUTION SOL 106 TIME 30 CEND TITLE = SIMPLE TENSION SUBTITLE = DISPLACEMENT CONTROL MPC s + 1 SPCD AUTO ECHO=UNSORT DISP=ALL STRESS(PLOT)=ALL GPSTRESS=ALL FORCE=ALL MPC=100 SUBCASE 100 UNIAXIAL TENSION BEGIN BULK PARAM,POST,-1 PARAM,LGDISP,1 NLPARM, 10, 48,, AUTO, 1,,, YES Treloar [1944] data in simple tension. Nominal stresses in kgcm-2 TABLES1, 100,,,,,,,, +, 1., 0., 1.125, 1., 1.25, 2., 1.5, 3., +, 1.525, 4., 1.875, 5., 2., 6., 2.25, 7., +, 2.5, 8., 3., 9., 3.625, 10., 4., 12.5, +, 4.75, 16., 5.25, 20., 5.75, 23., 6., 27., +, 6.25, 31., 6.5, 34., 6.75, 38.75, 7., 42.5, +, endt MSC/NASTRAN 103 Exercise Workbook 5-5

Treloar [1944] data in equibiaxial tension. Nominal stresses in kg-cm-2 TABLES1, 200,,,,,,,, +, 1.016, 0.83, 1.07, 1.56, 1.15, 2.55, 1.21, 3.25, +, 1.335, 4.31, 1.44, 5.28, 1.66, 6.65, 1.93, 7.88, +, 2.46, 9.74, 3., 12.64, 3.4, 14.61, 3.77, 17.33, +, 4.1, 20.11, 4.32, 22.40, 4.54, 24.41, endt Treloar [1944] data in pure shear. Units of the nominal stress are kgcm-2 TABLES1, 400,,,,,,,, +, 1.01, 0.24, 1.1, 1.12, 1.2, 1.92, 1.31, 2.87, +, 1.49, 3.62, 1.86, 5.61, 2.36, 7.2, 2.97, 9.045, +, 3.45, 10.8, 3.93, 12.45, 4.4, 14.23, 4.714, 15.826, +, 4.96, 17.46, endt GRID, 1,, 0., 0., 0.,, 123456 GRID, 2,, 1., 0., 0.,, 23456 GRID, 3,, 1., 1., 0.,, 3456 GRID, 4,, 0., 1., 0.,, 13456 GRID, 5,, 0., 0., -1.,, 12456 GRID, 6,, 1., 0., -1.,, 2456 GRID, 7,, 1., 1., -1.,, 456 GRID, 8,, 0., 1., -1.,, 1456 MPC, 100, 2, 1, 1., 7, 1, -1. MPC, 100, 3, 1, 1., 7, 1, -1. MPC, 100, 6, 1, 1., 7, 1, -1. MPC, 100, 3, 2, 1., 7, 2, -1. MPC, 100, 4, 2, 1., 7, 2, -1. MPC, 100, 8, 2, 1., 7, 2, -1. MPC, 100, 5, 3, 1., 7, 3, -1. MPC, 100, 6, 3, 1., 7, 3, -1. MPC, 100, 8, 3, 1., 7, 3, -1. CHEXA, 1, 1, 1, 2, 3, 4, 5, 6, +, 7, 8 SPC, 100, 7, 1, SPCD, 1000, 7, 1, 6. ENDDATA 5-6 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. Exercise Procedure: 1. Currently hyperelasticity cannot be modeled using MSC/PATRAN. All users will need to modify the NASTRAN template file manually and submit it for an analysis. Proceed to the next step. MSC/NASTRAN 103 Exercise Workbook 5-7

Generating an input file for MSC/NASTRAN Users: 2. MSC/NASTRAN users can generate an input file using the data from the Model Description. MSC/PATRAN users must modify the Nastran template file before submitting it for an analysis. The result should be similar to the output below (prob5.dat): ASSIGN OUTPUT2 = prob5.op2, UNIT = 12 ID NAS103 WORKSHOP 5 SOLUTION SOL 106 TIME 30 CEND TITLE = SIMPLE TENSION SUBTITLE = DISPLACEMENT CONTROL MPC s + 1 SPCD AUTO ECHO=UNSORT DISP=ALL STRESS(PLOT)=ALL GPSTRESS=ALL FORCE=ALL MPC=100 SUBCASE 100 UNIAXIAL TENSION NLPARM=10 SPC=100 LOAD=1000 BEGIN BULK PARAM,POST,-1 PARAM,LGDISP,1 NLPARM, 10, 48,, AUTO, 1,,, YES MATHP, 1,, 1500.,,,,,, +,, 3, 1,,,,,, +,,,,,,,,, +,,,,,,,,, +,,,,,,,,, +,,,,,,,,, +,100, 200,, 400 Treloar [1944] data in simple tension. Nominal stresses in kgcm-2 TABLES1, 100,,,,,,,, +, 1., 0., 1.125, 1., 1.25, 2., 1.5, 3., +, 1.525, 4., 1.875, 5., 2., 6., 2.25, 7., 5-8 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. +, 2.5, 8., 3., 9., 3.625, 10., 4., 12.5, +, 4.75, 16., 5.25, 20., 5.75, 23., 6., 27., +, 6.25, 31., 6.5, 34., 6.75, 38.75, 7., 42.5, +, endt Treloar [1944] data in equibiaxial tension. Nominal stresses in kg-cm-2 TABLES1, 200,,,,,,,, +, 1.016, 0.83, 1.07, 1.56, 1.15, 2.55, 1.21, 3.25, +, 1.335, 4.31, 1.44, 5.28, 1.66, 6.65, 1.93, 7.88, +, 2.46, 9.74, 3., 12.64, 3.4, 14.61, 3.77, 17.33, +, 4.1, 20.11, 4.32, 22.40, 4.54, 24.41, endt Treloar [1944] data in pure shear. Units of the nominal stress are kgcm-2 TABLES1, 400,,,,,,,, +, 1.01, 0.24, 1.1, 1.12, 1.2, 1.92, 1.31, 2.87, +, 1.49, 3.62, 1.86, 5.61, 2.36, 7.2, 2.97, 9.045, +, 3.45, 10.8, 3.93, 12.45, 4.4, 14.23, 4.714, 15.826, +, 4.96, 17.46, endt GRID, 1,, 0., 0., 0.,, 123456 GRID, 2,, 1., 0., 0.,, 23456 GRID, 3,, 1., 1., 0.,, 3456 GRID, 4,, 0., 1., 0.,, 13456 GRID, 5,, 0., 0., -1.,, 12456 GRID, 6,, 1., 0., -1.,, 2456 GRID, 7,, 1., 1., -1.,, 456 GRID, 8,, 0., 1., -1.,, 1456 MPC, 100, 2, 1, 1., 7, 1, -1. MPC, 100, 3, 1, 1., 7, 1, -1. MPC, 100, 6, 1, 1., 7, 1, -1. MPC, 100, 3, 2, 1., 7, 2, -1. MPC, 100, 4, 2, 1., 7, 2, -1. MPC, 100, 8, 2, 1., 7, 2, -1. MPC, 100, 5, 3, 1., 7, 3, -1. MPC, 100, 6, 3, 1., 7, 3, -1. MPC, 100, 8, 3, 1., 7, 3, -1. CHEXA, 1, 1, 1, 2, 3, 4, 5, 6, +, 7, 8 PLSOLID, 1, 1 MSC/NASTRAN 103 Exercise Workbook 5-9

SPC, 100, 7, 1 SPCD, 1000, 7, 1, 6. ENDDATA 5-10 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. Submit the input file for analysis: 3. Submit the input file to MSC/NASTRAN for analysis. 3a. To submit the MSC/NASTRAN.dat file, find an available UNIX shell window and at the command prompt enter nastran prob5.dat scr=yes. Monitor the analysis using the UNIX ps command. 4. When the analysis is completed, edit the prob5.f06 file and search for the word FATAL. If no matches exist, search for the word WARNING. Determine whether existing the WARNING messages indicate any modeling errors. 4a. While still editing prob5.f06, search for the word: D I S P L A C E (spaces are necessary). What is the x-displacement of Node 2 at the end of the analysis? T1= What is the x-displacement of Node 5 at the end of the analysis? T1= MSC/NASTRAN 103 Exercise Workbook 5-11

Comparison of Results: 5. Compare the results obtained in the.f06 file with the results on the following page: 5-12 MSC/NASTRAN 103 Exercise Workbook

MSC/NASTRAN 103 Exercise Workbook 5-13 0 SUBCASE 100 UNIAXI LOAD STEP = 1.00000E+00 D I S P L A C E M E N T V E C T O R POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G 0.0 0.0 0.0 0.0 0.0 0.0 2 G 6.000000E+00 0.0 0.0 0.0 0.0 0.0 3 G 6.000000E+00-6.170447E-01 0.0 0.0 0.0 0.0 4 G 0.0-6.170447E-01 0.0 0.0 0.0 0.0 5 G 0.0 0.0 6.170447E-01 0.0 0.0 0.0 6 G 6.000000E+00 0.0 6.170447E-01 0.0 0.0 0.0 7 G 6.000000E+00-6.170447E-01 6.170447E-01 0.0 0.0 0.0 8 G 0.0-6.170447E-01 6.170447E-01 0.0 0.0 0.0 WORKSHOP 5 Large Deform. of Hyperelastic Matl.

6. This ends the exercise for MSC/NASTRAN users. MSC/PATRAN users should proceed to the next step. 7. Create a new database called prob5.db. File/New... New Database Name: OK prob5 In the New Model Preference form set the following: Tolerance: Analysis Code: Analysis Type: OK Default MSC/NASTRAN Structural 8. Proceed with the Reverse Translation process, that is, importing the prob5.op2 results file into MSC/PATRAN. To do this, return to the Analysis form and proceed as follows: Analysis Action: Read Output2 Object: Both Method: Translate Select Results File... Selected Results File: OK Apply prob5.op2 9. Post process the results from the analysis. Alter the view angle to better see the deformation results by clicking on the following toolbar icons: Iso 1 View Zoom Out (click twice) 5-14 MSC/NASTRAN 103 Exercise Workbook

WORKSHOP 5 Large Deform. of Hyperelastic Matl. Finally, use the Results form to display the deformation of the model. Results Action: Create Object: Deformation Now click on the Select Results icon. Select Results Select Result Case(s) Select Fringe Result Show As: (Select all cases.) Displacements, Translational Resultant Click on the Display Attributes icon. Display Attributes In order to see the deformation results accurately, set the Scale Interpretation to True Scale with a Scale Factor of 1. Scale Interpretation True Scale Scale Factor 1.0 Show Undeformed Now click on the Plot Options icon. Plot Options Coordinate Transformation: None Scale Factor 1.0 Apply MSC/NASTRAN 103 Exercise Workbook 5-15

Notice how drastically the shape of the hyperelastic element changed. The height and the wideth of the element shrinked by more thean half of their original dimensions in order to compensate for the deformation in the x-dirctiion. Quit MSC/PATRAN when you have completed this exercise. 5-16 MSC/NASTRAN 103 Exercise Workbook