Suppression of crosstalk in SiPMs for the next generation gamma-ray observatory, CTA

Similar documents
The Gamma-ray Cherenkov Telescope for CTA

PoS(ICRC2017)808. A Trigger Interface Board to manage trigger and timing signals in CTA Large-Sized Telescope and Medium-Sized Telescope cameras

Physical or wave optics

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays

Distributed Archive System for the Cherenkov Telescope Array

arxiv: v2 [physics.ins-det] 21 Oct 2015

Single Photon Counting Module COUNT blue -Series

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to:

UV-NIR LASER BEAM PROFILER

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Single Photon Counting Module

TABLE OF CONTENTS PRODUCT DESCRIPTION CINCAM CCD TECHNICAL DATA SENSOR RESPONSE DIMENSIONS CINCAM CCD LARGE FORMAT TECHNICAL DATA SENSOR RESPONSE

SensL s Second Generation of Red-Enhanced Silicon Photomultipliers. V 35 mm 23.0 Breakdown Voltage Range 4 ± 0.5 V

UV-NIR LASER BEAM PROFILER

D&S Technical Note 09-2 D&S A Proposed Correction to Reflectance Measurements of Profiled Surfaces. Introduction

Photodetector unit with built-in power supply and amplifier

CinCam CCD - Technical Data -

Chapter 2: Wave Optics

PMT Candidates for SSD Challenge for PMTs in air-shower detection highest linear dynamic range

specular diffuse reflection.

Integrated CMOS sensor technologies for the CLIC tracker

WinCamD-LCM 1" CMOS Beam Profiling Camera, SuperSpeed USB 3.0, * nm * model-dependent

SiPMs: parameters and applications

Silicon Avalanche Photodiodes in Dynamic Light Scattering

CCD-4000UV. 4 MPixel high Resolution CCD-Camera with increased UV-sensitivity. Manual Version: V 1.0 Art.-No.:

Video frame rates and higher to efficiently synchronize with high repetition rate lasers

ESPROS Photonics Corporation

UNIT II SPECIAL SEMICONDUCTOR DEVICES

NASA Miniature Inspection LADAR

WAVELENGTH MANAGEMENT

Spectroscopic equipment. Multispectral Imaging

Cascade Reconstruction in AMANDA

Chapter 24 - The Wave Nature of Light

Preparation for the test-beam and status of the ToF detector construction

TRiCAM APPLICATIONS KEY FEATURES. Time Resolved intensified CAMera. TRiCAM 13001A01 31/10/2013

WAVELENGTH MANAGEMENT

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

FEATURES BENEFITS 1024 x 1024 Imaging Array High resolution imaging and spectroscopy

SiPMs for Čerenkov imaging

On the emission of photons during avalanches

Expected feedback from 3D for SLHC Introduction. LHC 14 TeV pp collider at CERN start summer 2008

Lecture 05. First Example: A Real Lidar

AST3 Cameras, a Status Update

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

PyLoN: Applications: Astronomy, Chemiluminescence, Bioluminescence, Phosphor Imaging, Ultra-low light Imaging and Spectroscopy.

Geiger-mode avalanche photodiodes as photodetectors in Cherenkov astronomy

Hikvision DarkFighter Technology

Chapter 36. Diffraction. Dr. Armen Kocharian

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

The AOLI low-order non-linear curvature wavefront sensor

FCI-XXXA Large Active Area 970nm Si Monitor Photodiodes

Network Media and Layer 1 Functionality

HIGH-SPEED PHOTODETECTOR. Thorlabs item # SIR5-FC

CMS FPGA Based Tracklet Approach for L1 Track Finding

High Resolution BSI Scientific CMOS

PIXIS: 512 IMAGING GROUP

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

Detector systems for light microscopy

SCINTILLATORS-SiPM COUPLING

MDHS Science Department SPH 4U - Student Goal Tracking Sheet

SPIcam: an overview. Alan Diercks Institute for Systems Biology 23rd July 2002

Pump laser requirements for next generation lasers.

Cover window guidelines for the VL53L1X long-distance ranging Time-of-Flight sensor

20 MHz/16-bit readout 61 fps rate at full-frame resolution. Use ROI/binning for hundreds of frames per second.

Frequently Asked Questions: Princeton Instruments excelon TM CCD and EMCCD Cameras

Realizzazione di un sistema LiDAR basato su fotomoltiplicatori in silicio

A Scintillating Fiber Tracker for Cosmic Muon Tomography

10.4 Interference in Thin Films

Minimizes reflection losses from UV - IR; Optional AR coatings & wedge windows are available.

ProEM -HS:1024BX3 FEATURES BENEFITS

Product Specifications

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry

Intermediate Physics PHYS102

PI-MAX 4: 1024 EMB. Applications:

10. Interconnects in CMOS Technology

arxiv: v1 [astro-ph.im] 25 Aug 2015

5.0X6.0mm SURFACE MOUNT LED LAMP. Features. Description. Package Dimensions

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

Layered media and photonic crystals. Cord Arnold / Anne L Huillier

Back Illuminated Scientific CMOS

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

. Ideal for fast, shutterless imaging

Towards Gfps CMOS image sensors. Renato Turchetta Barcelona, Spain

Light: Geometric Optics

Features. Applications

arxiv: v1 [physics.ins-det] 13 Jan 2015

BSI scmos. High Quantum Efficiency. Cooled Scientific CMOS Camera

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR

Option G 1: Refraction

Timing properties of MCP-PMT

3.5x2.8mm SURFACE MOUNT LED LAMP. Description. Features. Package Dimensions

STF701. T-Filter with TVS Diode Array For EMI Filtering and ESD Protection. PROTECTION PRODUCTS Description. Features. Mechanical Characteristics

Sensor technology for mobile robots

AZ H Transient Voltage Suppressing Device For ESD/Transient Protection. Features. Circuit Diagram / Pin Configuration. Applications.

Product Information Version 1.0. ZEISS Axiocam 506 mono Your High Resolution Microscope Camera for Live Cell Imaging Fast, Flexible, and Sensitive

Chapter 37. Interference of Light Waves

Physics Midterm I

Chapter 24. Wave Optics

Chapter 34. Thin Lenses

Increasing laser processing efficiency using multibeam and tailored beam profiles

Transcription:

Suppression of crosstalk in SiPMs for the next generation gamma-ray observatory, CTA 16aS41-3 Hiro Tajima, Akira Okumura, Yuki Nakamura, Anatolii Zenin, Nagoya University (for the CTA-Japan Consortium) Japan Physical Society Meeting Shinshu University, September 16, 218

Cherenkov Telescope Array Observations of gamma rays in 2 GeV 3 TeV band Cherenkov light from electromagnetic shower produced by interaction of gamma rays with atmosphere Large collection area by placing many telescopes 1 better sensitivity than current instruments Wide energy band coverage by three different sizes of telescopes Large-sized telescope (LST): Φ = 23 m, 2 GeV 1 TeV, 4 telescopes Medium-sized telescope (MST): Φ = 1 12 m,.1 1 TeV, ~2 telescopes Small-sized telescope (SST): Φ = 4 m, 1 >3 TeV, 5 7 telescopes all SSTs are placed at south site LST 23 m MST 1 12 m SST 1M ASTRI GCT G. Peŕez, IAC, SMM 2/14

Requirements for Photon Sensors in CTA Properties of Cherenkov photons from gamma-ray air shower ~5 photons/m 2 for 1 TeV gamma-ray shower Several photons per pixel Cherenkov photons peaks around ~35 nm Blue to near UV sensitivity is important Cherenkov photons arrives within a few to few tens of ns ns-timing is important Night sky background (NSB) is the dominant background Rate is >25 MHz/pixel Dark count rate is not important [NSB] x [Optical crosstalk (OCT)] can cause false triggers due to accidental coincidences Low OCT rate is important NSB peaks above 55 nm Low red sensitivity is preferred Cherenkov spectrum NSB spectrum 3 4 5 6 7 3/14

Photon Sensor Silicon Photomultiplier is chosen as a photon sensor for SST Cost per channel Photon detection efficiency Tolerance against high rate environment (> 25 MHz per pixel) Reliability Major drawback of SiPM Optical crosstalk (OCT) High rate night sky background (NSB) + OCT can cause false triggers due to accidental coincidences Gain dependence on the temperature High sensitivities for red light (NSB wavelength) Main objective of CTA SiPM development Suppress OCT while retaining photon detection efficiency (PDE) credit: HPK website credit: KETEK website 4/14

Summary of Past Studies Thicker coating or no coating give lower crosstalk 25 Optical Crosstalk Rate (%) 2 15 1 LCT5-35 Epoxy 1 µm #1 LCT5-35 Epoxy 1 µm #2 LCT5-35 Epoxy 3 µm #665 LCT5-35 Epoxy 3 µm #666 LCT5-35 Silicone 45 µm #965 LCT5-35 Silicone 45 µm #966 LVR2-65 No coating #15 LVR2-65 No coating #14 LVR2-75 No coating #11 1 µm 3 µm 45 µm No coating 5 2 4 6 8 1 Over Voltage (V) 5/14

Propagation of Crosstalk Photons No coating (or very thin coating) Reflected photons come back to the original cell Intermediate thickness Photons reflected by the air interface may produce avalanches in other cells Very thick coating Photons reflected by the air interface may get out of the device Smaller device may have lower crosstalk rate How about the crosstalk from the backside? 6/14

Propagation of Crosstalk Photons No coating (or very thin coating) Reflected photons come back to the original cell Intermediate thickness Photons reflected by the air interface may produce avalanches in other cells Very thick coating Photons reflected by the air interface may get out of the device Smaller device may have lower crosstalk rate How about the crosstalk from the backside? 6/14

Propagation of Crosstalk Photons No coating (or very thin coating) Reflected photons come back to the original cell Intermediate thickness Photons reflected by the air interface may produce avalanches in other cells Very thick coating Photons reflected by the air interface may get out of the device Smaller device may have lower crosstalk rate How about the crosstalk from the backside? 6/14

Propagation of Crosstalk Photons No coating (or very thin coating) Reflected photons come back to the original cell Intermediate thickness Photons reflected by the air interface may produce avalanches in other cells Very thick coating Photons reflected by the air interface may get out of the device Smaller device may have lower crosstalk rate How about the crosstalk from the backside? 6/14

OCT Dependence on Device/Cell Sizes We have systematically investigated the OCT rate with varying device size, cell size, and with and without coating OCT rate is expected to be proportional to the number of electron-holes pairs (=charge) produced in an avalanche proportional to a product of [cell capacitance] and [over voltage] Find out propagation properties of crosstalk photons Product ID Device size Cell size Coating Fill factor S1452-35VS 3 mm 5 µm 3 µm 74% S1452-35VN 3 mm 5 µm None 74% S1452-375VS 3 mm 75 µm 3 µm 82% S1452-375VN 3 mm 75 µm None 82% S1452-65VS 6 mm 5 µm 3 µm 74% S1452-65VN 6 mm 5 µm None 74% S1452-675VS 6 mm 75 µm 3 µm 82% S1452-675VN 6 mm 75 µm None 82% 7/14

SiPM Measurement Setup at Nagoya Take waveform data by digital oscilloscope 8 Offline data analysis 7 Digital filter to minimize 6 the effect of pile ups 5 Pulse analysis 4 Light output is monitored 3 2 Wavelength is fixed at 45 nm 1 for this measurement V (mv) Raw data Filtered data Pulse Generator Tektronix AFG 3251 Oscilloscope Tektronix MSO454B 1 5 1 15 2 25 3 35 4 45 5 t (ns) LED ND filter fiber diffuser SiPM (Monitor) ZFL-5LN-S+ collimator SiPM (DUI or Reference) climate chamber (25 C) 8/14

We measure number of photons for short LED (or laser) pulses Current measurement does not provide accurate PDE due to optical crosstalk, delayed cross talk and after pulse Number of photo electrons (p.e.) does not follow Poisson distribution due to optical crosstalk Probability of p.e. is used to obtain the average to avoid effects of optical crosstalk Effect of dark count still need to be taken into account P (n) =e µ µ n /n! P () = e µ µ = ln(p ()) P true () = P ON ()/P OFF () PDE Measurements p.e. 1 p.e. 2 p.e. 3 p.e. 9/14

PDE vs Relative Over Voltage PDEs were measured for 2 devices for each type PDEs were measured twice for one device Measured PDEs were very consistent, which indicates varying light intensity is properly compensated by the monitor SiPM Average p.e..36.35.34.33.32.31 Averege p.e. for Monitor SiPM (Photon Detection Efficiency)/(Fill Factor) (%) 6 5 4 3 2 1 3 mm 6 mm 5 µm 75 µm no coating.3 2 4 6 8 1 12 14 16 18 2 22 Measurement number.5.1.15.2.25 (Over Voltage)/(Breakdown Voltage) 1/14

<latexit sha1_base64="ctkujlq36imz8hpcthlvx+ecqb4=">aaac8nicpvjlbxmxepyurxaetehixwpelryyrbgisgwpunrgrambau4rf5nnrhqfwdpikwr/rlcoiaqv34nn/4n3jst6ooaxeiwpn3fzpjzjknck4th+nvzr12/cfnw43bzzt1799da6w8obfyycuoz6cwcrckcvikmuaggo9yascinh9fxv9ypp4gxkkv3czhdobgzvmvkcntuzn1rbplycfm+6fazfkqsem63esjwbpiydycoutwpfl6hveu9wih9d5ntpw9/n7vpfch7mvn3g6/4ruguva84wbvq4rz5ub5ymvdrifg1/s/rhgjznpspvk3j81jqxg4tlozcbwoe1wmzifvfpjoseuprawdtiyy7juhhuukpv5iwfxmhjmyorg6liwi7l5coq+tgxuxpnxpu6zl9u6iuibwljhkztul7uavjq7rrgfhwufrpxick8usiunaum1rvn6vayl64ycqrjmvvm6fgzo6x1ipgv188mvw8drgycdepmvvvfynoeekq3siyy8idvknrmqizfe5n32vnrffps/+n/9hyepvreqeujohf/zdte6lm=</latexit> <latexit sha1_base64="ctkujlq36imz8hpcthlvx+ecqb4=">aaac8nicpvjlbxmxepyurxaetehixwpelryyrbgisgwpunrgrambau4rf5nnrhqfwdpikwr/rlcoiaqv34nn/4n3jst6ooaxeiwpn3fzpjzjknck4th+nvzr12/cfnw43bzzt1799da6w8obfyycuoz6cwcrckcvikmuaggo9yascinh9fxv9ypp4gxkkv3czhdobgzvmvkcntuzn1rbplycfm+6fazfkqsem63esjwbpiydycoutwpfl6hveu9wih9d5ntpw9/n7vpfch7mvn3g6/4ruguva84wbvq4rz5ub5ymvdrifg1/s/rhgjznpspvk3j81jqxg4tlozcbwoe1wmzifvfpjoseuprawdtiyy7juhhuukpv5iwfxmhjmyorg6liwi7l5coq+tgxuxpnxpu6zl9u6iuibwljhkztul7uavjq7rrgfhwufrpxick8usiunaum1rvn6vayl64ycqrjmvvm6fgzo6x1ipgv188mvw8drgycdepmvvvfynoeekq3siyy8idvknrmqizfe5n32vnrffps/+n/9hyepvreqeujohf/zdte6lm=</latexit> <latexit sha1_base64="ctkujlq36imz8hpcthlvx+ecqb4=">aaac8nicpvjlbxmxepyurxaetehixwpelryyrbgisgwpunrgrambau4rf5nnrhqfwdpikwr/rlcoiaqv34nn/4n3jst6ooaxeiwpn3fzpjzjknck4th+nvzr12/cfnw43bzzt1799da6w8obfyycuoz6cwcrckcvikmuaggo9yascinh9fxv9ypp4gxkkv3czhdobgzvmvkcntuzn1rbplycfm+6fazfkqsem63esjwbpiydycoutwpfl6hveu9wih9d5ntpw9/n7vpfch7mvn3g6/4ruguva84wbvq4rz5ub5ymvdrifg1/s/rhgjznpspvk3j81jqxg4tlozcbwoe1wmzifvfpjoseuprawdtiyy7juhhuukpv5iwfxmhjmyorg6liwi7l5coq+tgxuxpnxpu6zl9u6iuibwljhkztul7uavjq7rrgfhwufrpxick8usiunaum1rvn6vayl64ycqrjmvvm6fgzo6x1ipgv188mvw8drgycdepmvvvfynoeekq3siyy8idvknrmqizfe5n32vnrffps/+n/9hyepvreqeujohf/zdte6lm=</latexit> <latexit sha1_base64="ctkujlq36imz8hpcthlvx+ecqb4=">aaac8nicpvjlbxmxepyurxaetehixwpelryyrbgisgwpunrgrambau4rf5nnrhqfwdpikwr/rlcoiaqv34nn/4n3jst6ooaxeiwpn3fzpjzjknck4th+nvzr12/cfnw43bzzt1799da6w8obfyycuoz6cwcrckcvikmuaggo9yascinh9fxv9ypp4gxkkv3czhdobgzvmvkcntuzn1rbplycfm+6fazfkqsem63esjwbpiydycoutwpfl6hveu9wih9d5ntpw9/n7vpfch7mvn3g6/4ruguva84wbvq4rz5ub5ymvdrifg1/s/rhgjznpspvk3j81jqxg4tlozcbwoe1wmzifvfpjoseuprawdtiyy7juhhuukpv5iwfxmhjmyorg6liwi7l5coq+tgxuxpnxpu6zl9u6iuibwljhkztul7uavjq7rrgfhwufrpxick8usiunaum1rvn6vayl64ycqrjmvvm6fgzo6x1ipgv188mvw8drgycdepmvvvfynoeekq3siyy8idvknrmqizfe5n32vnrffps/+n/9hyepvreqeujohf/zdte6lm=</latexit> Optical Crosstalk Measurements Assume 1 p.e. peak of dark signal is dominated by dark count 2 p.e. peak consists of optical crosstalk from 1 p.e. and chance coincidence of dark counts within tps (~3 ns in our setup) N( 1.5 p.e.) N(.5 p.e.) =1 (1 R OCT)e f DC t PS N( 1.5 p.e.) R OCT =1 1 /e f DC t PS N(.5 p.e.) ƒdc: Dark count rate tps: Double-pulse separation time Probability to have no optical crosstalk Poisson probability to have no overlapping dark count within tps N(.5 p.e.) N( 1.5 p.e.) p.e. 1 p.e. 2 p.e. 3 p.e. 11/14

Optical Crosstalk Rate (%) Crosstalk Rate vs. Over Voltage Dark count pileup correction works well Factor out cell capacitance dependence of crosstalk rate by scaling it with cell area and depth (assuming cell depth break down voltage) 3 mm device gives slightly lower OCT than 6 mm device OCT rate scales very well with cell capacitance with coating Not so without coating Differences among individual SiPMs are small 45 Before DCR pileup correction 4 35 3 25 Optical Crosstalk Rate (%) 4 35 3 25 After DCR pileup correction 3 mm 6 mm 5 µm 75 µm no coating 2 15 1 5 2 4 6 8 1 Over Voltage (V) 2 15 1 5 2 4 6 8 1 Over Voltage (V) 12/14

Optical Crosstalk Rate (%) Crosstalk Rate vs. Over Voltage Dark count pileup correction works well Factor out cell capacitance dependence of crosstalk rate by scaling it with cell area and depth 4 35 3 25 2 15 1 (assuming cell depth break down voltage) 3 mm device gives slightly lower OCT than 6 mm device OCT rate scales very well with cell capacitance with coating Not so without coating Differences among individual SiPMs are small Before scaling by cell capacitance Scaled Optical Crosstalk Rate (%) 35 3 25 2 15 1 After scaling by cell capacitance 3 mm 6 mm 5 µm 75 µm no coating 5 2 4 6 8 1 Over Voltage (V) 5 2 4 6 8 1 Over Voltage (V) 12/14

<latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> Fit to Otte Function Optical crosstalk rate should proportional to the charge produced in the avalanche and avalanche trigger probability R OCT = C OCT (Fill factor) (Cell size) 2 /V BR V OV (1 exp[ C OtteV OV /V BR ]) COCT is smaller for 75 µm cells (smaller crosstalk efficiency) COtte is smaller without coating Avalanche seed is produced in the region where it is harder to trigger avalanche Product ID COCT COtte S1452-35VS S1452-65VS S1452-375VS S1452-675VS S1452-35VN S1452-65VN S1452-375VN S1452-675VN.1 5.9 1.6 18.7 17.9 2.7 3.3 5.3 5 cell capacitor Optical Crosstalk Rate (%) 4 35 3 25 2 15 1 5 3 mm 6 mm 5 µm 75 µm no coating Avalanche probability PDE saturating voltage pile up rate due to 25 MHz night sky background 2 4 6 8 1 Over Voltage (V) 13/14

<latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> Fit to Otte Function Optical crosstalk rate should proportional to the charge produced in the avalanche and avalanche trigger probability R OCT = C OCT (Fill factor) (Cell size) 2 /V BR V OV (1 exp[ C OtteV OV /V BR ]) COCT is smaller for 75 µm cells (smaller crosstalk efficiency) COtte is smaller without coating Avalanche seed is produced in the region where it is harder to trigger avalanche Product ID COCT COtte S1452-35VS S1452-65VS S1452-375VS S1452-675VS S1452-35VN S1452-65VN S1452-375VN S1452-675VN.1 5.9 1.6 18.7 17.9 2.7 3.3 5.3 5 cell capacitor Optical Crosstalk Rate (%) 4 35 3 25 2 15 1 5 3 mm 6 mm 5 µm 75 µm no coating Avalanche probability PDE saturating voltage pile up rate due to 25 MHz night sky background 2 4 6 8 1 Over Voltage (V) 13/14

<latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> <latexit sha1_base64="ol/4xzgnvxoahhwxecao1ya224k=">aaacn3icbvfdb9mwfhxc1ygmuveid4ykab9wkmkasahpwiq2cctkthabmla57s1mzykj+wzrovwtfghv/buctjcycsvlr+ccx1+fg+dsgps8x4574+at23dw7rbu3v998lc9tj4yqtachlxjpu9izkckdiyoumjjroglsytj+cko9eovoi1q2rhocohsdpajrhcglpqfxxowpthuu7lg+cooi/eadbhhyqspuhes+kdn8mjkpsva+pbvbrrnyhqvdl89xob5vdw4rorfssoxgtotouvxhct3y8eby8fbghanib3alepn3x+t686hxglghlgswaf8mp4oxkwtijtnm7hs5rixtklieqhuwbnlgl9gzjc3mwaomkuf5vvs5zayudqedomc/fdgyvjjzmlsnfwq5qpwk//txgumb6jszhmbkphfqkhkspal4tohqaocmyb41rywsk/z9rgb1fasih4v798hyw2+77x9z9vdxa2l3gskmfkgeksn7wmo2sfdmiqcoejs+t8cd66t9995m7wfhdz3nnewmue/ob5w7oqg==</latexit> Fit to Otte Function Optical crosstalk rate should proportional to the charge produced in the avalanche and avalanche trigger probability R OCT = C OCT (Fill factor) (Cell size) 2 /V BR V OV (1 exp[ C OtteV OV /V BR ]) COCT is smaller for 75 µm cells (smaller crosstalk efficiency) COtte is smaller without coating Avalanche seed is produced in the region where it is harder to trigger avalanche Product ID COCT COtte S1452-35VS S1452-65VS S1452-375VS S1452-675VS S1452-35VN S1452-65VN S1452-375VN S1452-675VN.1 5.9 1.6 18.7 17.9 2.7 3.3 5.3 5 cell capacitor Optical Crosstalk Rate (%) 4 35 3 25 2 15 1 5 3 mm 6 mm 5 µm 75 µm no coating Avalanche probability PDE saturating voltage pile up rate due to 25 MHz night sky background 2 4 6 8 1 Over Voltage (V) 13/14

Summary Optical crosstalk rate is significantly affected by protection coating Smaller device size and thicker coating reduce OCT rate Larger cell size increase OCT rate, but not proportional to the cell area No coating significantly reduces OCT rate OCT rate does not scale with the cell size OCT seeds are produced in the region where avalanche trigger probability is low Prospects 6 mm device with 75 µm cell without coating may be the best choice for CTA Without protective coating, damages on the SiPM surface are of major concerns We put a piece of protective film to avoid damages during the assembly handling Damages during observations can be avoided by the UV transparent shield on the camera front This shield will also act as a filter for red lights.) Further reduction of OCT by suppressing crosstalk due to photons reflected at the backside of SiPM Photon Detection Efficiency (%) 5 4 3 2 1 3 mm 6 mm 5 µm 75 µm no coating 5 1 15 2 25 3 35 4 Optical Crosstalk Rate (%) 14/14