Chapter 7. Basic Wireless Concepts and Configuration. Part I

Similar documents
Wireless technology Principles of Security

IT220 Network Standards & Protocols. Unit 6: Chapter 6 Wireless LANs

NT1210 Introduction to Networking. Unit 6: Chapter 6, Wireless LANs

Guide to Wireless Communications, Third Edition. Objectives

Chapter 10: Wireless LAN & VLANs

Wireless# Guide to Wireless Communications. Objectives

Wireless Technologies

Wireless Networking. Chapter The McGraw-Hill Companies, Inc. All rights reserved

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

Wireless Networks. Authors: Marius Popovici Daniel Crişan Zagham Abbas. Technical University of Cluj-Napoca Group Cluj-Napoca, 24 Nov.

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WNC-0300USB. 11g Wireless USB Adapter USER MANUAL

1. INTRODUCTION. Wi-Fi 1

Mobile and Sensor Systems

Wireless Networking based on Chapter 15 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Chapter 3.1 Acknowledgment:

Outdoor High Power b/g/n Wireless USB Adapter USER MANUAL 4.0

Feature. What exactly is WLAN? More reading:

Chapter 6 Wireless and Mobile Networks

Learning Objectives. Introduction. Advantages of WLAN. Information Technology. Mobile Computing. Module: Wireless Local Area Network: IEEE 802.

CSNT 180 Wireless Networking. Chapter 7 WLAN Terminology and Technology

Public Wireless LAN Service.

Naveen Kumar. 1 Wi-Fi Technology

Everybody s connecting.

802.11g PC Card/USB Wireless Adapter

Institute of Electrical and Electronics Engineers (IEEE) IEEE standards

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless# Guide to Wireless Communications. Objectives

Overview of IEEE Networks. Timo Smura

Technical Introduction

WIRELESS USB 2.0 ADAPTER. Manual (DN & DN )

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Wireless LAN. Access Point. Provides network connectivity over wireless media

This course provides students with the knowledge and skills to successfully survey, install, and administer enterprise Wi-Fi networks.

Wireless Networks

CSCD 433/533 Advanced Networking

Wireless LAN Access Point

U S E R M A N U A L b/g PC CARD

Wireless Terms. Uses a Chipping Sequence to Provide Reliable Higher Speed Data Communications Than FHSS

Network+ Guide to Networks 6 th Edition. Chapter 8 Wireless Networking

Wednesday, May 16, 2018

Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change

Wireless Local Area Networks. Networks: Wireless LANs 1

IEEE Romel Rudyard J. Lucentales, ECE 5

WLAN TRENDS. Dong Wang. Prof. Dr. Eduard Heindl 05/27/2009. E-Business Technologies

CWTS Exam Objectives (Exam PW0-070)

Introduction to Networking Devices

SEMESTRAL PROJECT 37MK

Announcements / Wireless Networks and Applications Lecture 9: Wireless LANs Wireless. Regular Ethernet CSMA/CD.

Chapter 7. OSI Data Link Layer

Chapter 7. OSI Data Link Layer. CCNA1-1 Chapter 7

02/21/08 TDC Branch Offices. Headquarters SOHO. Hot Spots. Home. Wireless LAN. Customer Sites. Convention Centers. Hotel

CSC 4900 Computer Networks: Wireless Networks

Wireless Security Protocol Analysis and Design. Artoré & Bizollon : Wireless Security Protocol Analysis and Design

CWNP PW Certified Wireless Analysis Professional. Download Full Version :

WLAN a-z 2010/02/15. (C) Herbert Haas


Tuesday, May :00 AM - 5:00 PM

IP network that supports DHCP or manual assignment of IP address, gateway, and subnet mask

Troubleshooting Microsoft Windows XP-based Wireless Networks in the Small Office or Home Office

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Last Lecture: Data Link Layer

Chapter 6 Medium Access Control Protocols and Local Area Networks

MSIT 413: Wireless Technologies Week 8

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

Mobile Computing IEEE Standard 9/11/12. CSE 40814/60814 Fall 2012

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti

based on Chapter 15 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Local Area Networks NETW 901

Wireless and Mobile Networks 7-2

University of Würzburg Institute of Computer Science Research Report Series. Performance Comparison of Handover Mechanisms in Wireless LAN Networks

Wireless Router at Home

CCNA 1 Capítulo 8 OSI Physical Layer. 2004, Cisco Systems, Inc. All rights reserved.

Wireless Networking Basics. Ed Crowley

Module 6: Wireless Mobile Networks

Wireless Communication and Networking CMPT 371

Module Three SG. Study Guide. Exam Three Content Areas. Module Three. Chapter Seven, Backbone Networks

Deploying WLANs: This section lists a set of generic steps for installing small WLANs, with no product-specific details.

Wireless LAN -Architecture

Wireless Protocols. Training materials for wireless trainers

Chapter 5. RIP Version 1 (RIPv1)

The Wi-Fi Boom. Dr. Malik Audeh Tropos Networks March 13, 2004

Wireless LAN USB Super G 108 Mbit. Manual

Data and Computer Communications. Chapter 13 Wireless LANs

Fieldbus Foundation India Marketing Committee. Fieldbus Foundation End Users Council Conference Wireless LANs in Industrial Environments

EnGenius Quick Start Guide

CWNP PW Certified Wireless Network Administrator (CWNA) Download Full Version :

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15

Chapter 2. Switch Concepts and Configuration. Part I

Advanced Mobile Computing and Networking - CS 560. Wireless Technologies. Bluetooth. Bluetooth. Bluetooth. Bluetooth 7/3/2014.

Wireless 300N Access Point 300 Mbps, MIMO, Bridge, Repeater, Multiple SSIDs and VLANs Part No.:

Wireless Attacks and Countermeasures

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

Wireless and Mobile Networks

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Table of Contents. Chapter 1Introduction Package Contents Features Specifications Physical Description...

Attack & Defense in Wireless Networks

Shared Access Networks Wireless. 1/27/14 CS mywireless 1

Transcription:

Chapter 7 Basic Wireless Concepts and Configuration Part I CCNA3-1 Chapter 7-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go out to Rick Graziani of Cabrillo College. His material and additional information was used as a reference in their creation. If anyone finds any errors or omissions, please let me know at: tdame@stclaircollege.ca. CCNA3-2 Chapter 7-1

Basic Wireless Concepts and Configuration The Wireless LAN CCNA3-3 Chapter 7-1 Why Use Wireless? Business networks today are evolving to support people who are on the move. Productivity is no longer restricted to a fixed work location or a defined time period. People now expect to be connected at any time and place,, from the office to the airport or even the home. Now employees can check e-mail, voice mail, and the status of products on personal digital assistants (PDAs) while at many temporary locations. At home, the method of accessing the Internet has quickly moved from temporary modem dialup service to dedicated DSL or cable service. CCNA3-4 Chapter 7-1

Why Use Wireless? Early communication relied on face-to to-face conversations. The telephone was used for voice and the post office delivered most of the written communications. Video communication was one-way using the television. CCNA3-5 Chapter 7-1 Why Use Wireless? Early networks were limited to character based information. Communications between computers was not easy and required a host (no pun intended) of resources to accomplish the simplest data transfer. CCNA3-6 Chapter 7-1

Why Use Wireless? Silver and Diamond Cell Phone $1.3Million Today s s networks Wind carry Energy multiple Cell Phone types of Charger information through many types of devices - SIMULTANEOUSLY. People expect immediate response wherever they are located. CCNA3-7 Chapter 7-1 Introducing Inter-VLAN Routing In addition to the flexibility that WLANs offer, another important benefit is reduced costs. Moving persons Wired Network within a building with a Wireless wireless Network Component infrastructure. Qty Cost Total Qty Cost Total Switches, Moving into a new building with no wired infrastructure. cabinets, etc. 167 3,350 559,450 25 4,404 110,100 Cabling 7,500 45 337,500 430 75 61,920 Network Adapters 2,500 57 142,500 2,500 77 192,500 Wireless Access Points 250 1,034 258,500 POE Adapters 40 67 2,680 Total 1,039,450 364,520 Note: Values are estimates and do not reflect actual pricing. CCNA3-8 Chapter 7-1

Wireless LANs Most current business networks rely on switch-based LANs for day-to to-day operation inside the office. Workers are becoming more mobile and want to maintain access to their business LAN resources from locations other than their desks. CCNA3-9 Chapter 7-1 Wireless LANs The Wireless LAN, then, is an extension of the Ethernet LAN. CCNA3-10 Chapter 7-1

Comparing a WLAN to a LAN Network Architecture Standards Physical Media CCNA3-11 Chapter 7-1 Comparing a WLAN to a LAN Privacy Issues Wireless Access Points (AP) instead of a switch. CCNA3-12 Chapter 7-1

Wireless LAN Components Additional components and protocols are used for 802.11 wireless connections to extend the 802.3 Ethernet LAN. Wireless Access Point (AP) CCNA3-13 Chapter 7-1 Wireless LAN Standards 802.11 wireless LAN: An IEEE standard that defines how radio frequency (RF) in the unlicensed industrial, scientific, and medical (ISM) frequency bands is used for the Physical layer and the MAC sub-layer of wireless links. Final ratification Typically, the choice of which standard expected to use is in based on data rate. November, 2009 CCNA3-14 Chapter 7-1

Wireless LAN Standards Data Rates are affected by modulation technique: Direct Sequence Spread Spectrum (DSSS): Simpler of the two methods. Less expensive to implement. 802.11b and 802.11g. Orthogonal Frequency Division Multiplexing (OFDM): Faster data rates than DSSS. 802.11a, 802.11g, 802.11n. CCNA3-15 Chapter 7-1 Wireless LAN Standards 802.11a Standard: OFDM modulation and uses the 5 GHz band. Less likely to experience interference than devices that operate in the 2.4 GHz band because there are fewer consumer devices that use the 5 GHz band. CCNA3-16 Chapter 7-1

Wireless LAN Standards 802.11a Standard: Disadvantages to using the 5GHz band. More easily absorbed by walls (obstructions). Slightly poorer range than 802.11g. Some countries prohibit use. CCNA3-17 Chapter 7-1 Wireless LAN Standards 802.11b and 802.11g Standard: Both use the 2.4 GHz band. 802.11b: Up to 11 Mb/s using DSSS. 802.11g: Up to 54 Mb/s using OFDM. Backward compatible. CCNA3-18 Chapter 7-1

Wireless LAN Standards 2.4 GHz band: Advantage: Better range than the 5GHz band since devices are not as easily obstructed. Disadvantage: Many other devices use this band so it is prone to interference (microwave ovens, baby monitors, Bluetooth,, cordless phones). CCNA3-19 Chapter 7-1 Wireless LAN Standards 802.11n: (November 2009) Intended to improve WLAN data rates and range without requiring additional power or RF band allocation. Uses multiple radios and antennae at endpoints,, each broadcasting on the same frequency to establish multiple streams. Multiple Input / Multiple Output (MIMO) and OFDM. Theoretical maximum of 248 Mb/s. CCNA3-20 Chapter 7-1

WI-FI Certification Wi-Fi Alliance: March, 2000. A global, nonprofit, industry trade association devoted to promoting the growth and acceptance of WLANs. The Wi-Fi Alliance s s testing and certification programs help ensure the interoperability of WLAN products based on the IEEE 802.11 specification. More than 4,000 products certified. CCNA3-21 Chapter 7-1 WI-FI Certification Three key organizations that influence WLAN standards: International Telecommunications Union Radiocommunication Sector (ITU-R) R): Regulates the allocation of the RF spectrum. Institute of Electrical and Electronic Engineers (IEEE): Specifies how RF is modulated to carry the information. (802.3 Ethernet, 802.11 Wireless LAN). Wi-Fi Alliance: Ensures that devices are inter-operable. CCNA3-22 Chapter 7-1

Wireless Infrastructure Components Wireless NICs: The device that makes a client station capable of sending and receiving RF signals is the wireless NIC. Like an Ethernet NIC, the wireless NIC, using the modulation technique it is configured to use, encodes a data stream onto an RF signal. Wireless NICs are most often associated with mobile devices, such as laptop computers. CCNA3-23 Chapter 7-1 Wireless Infrastructure Components Wireless Access Points: An access point is a Layer 2 device that functions like an 802.3 Ethernet hub. Connects wireless clients (or stations) to the wired LAN. Client devices communicate with the AP not each other. Converts the TCP/IP data packets from their 802.11 frame encapsulation to the 802.3 Ethernet frame format. Clients must associate with an access point to obtain network services. Association: The process by which a client joins an 802.11 network. It is similar to plugging into a wired LAN. CCNA3-24 Chapter 7-1

Wireless Infrastructure Components CSMA/CA: Carrier Sense Multiple Access with Collision Avoidance. This simply means that devices on a WLAN must sense the medium for energy (RF stimulation above a certain threshold) and wait until the medium is free before sending. If an access point receives data from a client station, it sends an acknowledgement to the client that the data has been received. This acknowledgement keeps the client from assuming that a collision occurred and prevents a data retransmission by the client. CCNA3-25 Chapter 7-1 Wireless Infrastructure Components CSMA/CA: RF signals attenuate. That means that they lose their energy as they move away from their point of origin. Hidden Node/Station Problem: Two client stations that both connect to the access point, but are at opposite sides of its reach. If they are at the maximum range to reach the access point, they will not be able to reach each other. Neither of those stations sense the other on the medium, and they may end up transmitting simultaneously. CCNA3-26 Chapter 7-1

Wireless Infrastructure Components Remember, stations actually CSMA/CA: communicate through the Access One means Point. of resolving The access the point has a hidden node single problem channel is a for all traffic. feature called request to send/clear to send (RTS/CTS). When RTS/CTS is enabled in a network, access points allocate the medium to the requesting station for as long as is required to complete the transmission. When the transmission is complete, other stations can request the channel in a similar fashion. CCNA3-27 Chapter 7-1 Wireless Infrastructure Components Wireless Routers: Wireless routers perform the role of access point, Ethernet switch, and router. The Linksys WRT54GL is most commonly used as a small business or residential wireless access device. The expected load on the device is low enough that it should be able to manage the provision of WLAN, 802.3 Ethernet, and connect to an ISP. CCNA3-28 Chapter 7-1

Wireless Operation Configurable Wireless Parameters: 802.11g is backward compatible with 802.11.b. Mixed mode supports both. CCNA3-29 Chapter 7-1 Wireless Operation Configurable Wireless Parameters: Several access points can share an SSID. A shared service set identifier (SSID) is a unique identifier that client devices use to distinguish between multiple wireless networks in the same vicinity. Alphanumeric, case-sensitive, sensitive, from 2 to 32 characters. CCNA3-30 Chapter 7-1

Wireless Operation Configurable Wireless Parameters: The IEEE 802.11 5 standard MHz overlap establishes the channelization scheme for the use of the unlicensed ISM RF bands in WLANs. 3 Access Many access points can automatically select Points a channel based on adjacent channel use. The 2.4 GHz band is broken down into Some products continuously monitor the radio space 11 channels for North America to adjust the channel settings dynamically in response and 13 channels for Europe. to environmental changes. Best practices Each for arc WLANs represents that require 1 channel. multiple access points are set to use non-overlapping overlapping channels. CCNA3-31 Chapter 7-1 Wireless Topologies WLANs can accommodate various network topologies. When describing these topologies, the fundamental building block of the IEEE 802.11 WLAN architecture is the basic service set (BSS). BSS: A group of stations that communicate with each other. Three Types: Ad Hoc (Independent Basic Service Set IBSS) Basic Service Set (BSS( BSS) Extended Service Set (ESS( ESS) CCNA3-32 Chapter 7-1

Wireless Topologies Ad Hoc: Wireless networks can operate without access points. Client stations which are configured to operate in ad hoc mode configure the wireless parameters between themselves. CCNA3-33 Chapter 7-1 Wireless Topologies Basic Service Sets (BSS): Access points provide an infrastructure that adds services and improves the range for clients. A single Basic access Service point Area in infrastructure mode manages the wireless parameters and the topology is simply a BSS. The coverage area for both an IBSS or a BSS is the basic service area (BSA). CCNA3-34 Chapter 7-1

Wireless Topologies Extended Service Sets (ESS): When a single BSS provides insufficient RF coverage, one or more can Different be joined MAC through Addresses a common distribution system into an extended = different service BSSIDs. set (ESS). One BSS is differentiated from another by the BSS identifier (BSSID). The MAC address of the access point. The coverage area is the extended service area (ESA). CCNA3-35 Chapter 7-1 Wireless Topologies Common Distribution System: Allows multiple access points in an ESS to appear to be a single BSS. An ESS generally includes a common SSID to allow a user to roam from access point to access point. Cells represent the coverage area provided by a single channel. An ESS should have 10 to 15 percent overlap between cells. Roaming capability created by using non-overlapping overlapping channels (e.g. one cell on channel 1 and the other on channel 6). CCNA3-36 Chapter 7-1

Wireless Association Key part of the 802.11 process is discovering a WLAN and connecting to it. The primary components: Beacons: Frames used by the WLAN network to advertise its presence. Probes: Frames used by WLAN clients to find their networks. Authentication: Left over from the original 802.11 standard, but still required. Association: Establishing the data link between an access point and a WLAN client. CCNA3-37 Chapter 7-1 Wireless Association Beacons: Frames used by the WLAN network to advertise its presence. The only part of the process that may be broadcast on a regular basis. Not necessarily enabled. CCNA3-38 Chapter 7-1

Wireless Association Before an 802.11 client can send data over a WLAN network, it goes through the following three-stage process: Step 1: 802.11 Probing. Step 2: Authentication. Step 3: Association. CCNA3-39 Chapter 7-1 Wireless Association Step 1: 802.11 Probing specific network by: Clients search for a specific Sending a probe request out on multiple channels. Specifies the network name (SSID) and bit rates. A typical WLAN client is configured with a desired SSID. Client is simply trying to discover available WLANs: Sends out a probe request with no SSID. All access points that are configured to respond to this type of query respond. WLANs with the broadcast SSID feature disabled do not respond. CCNA3-40 Chapter 7-1

Wireless Association Step 2: Authentication 802.11 was originally developed with two authentication mechanisms. Open Authentication: A NULL authentication The client says "authenticate me. The access point responds with "yes. This is the mechanism used in almost all 802.11 deployments. CCNA3-41 Chapter 7-1 Wireless Association Step 2: Authentication 802.11 was originally developed with two authentication mechanisms. Shared Key Authentication: Based on a key that is shared between the client station and the access point called the Wired Equivalency Protection (WEP) key. The idea of the shared WEP key is that it gives a wireless link the equivalent privacy of a wired link, but the original implementation was flawed. WEP needs to be included in client and access point implementations for standards compliance but it is not used or recommended. CCNA3-42 Chapter 7-1

Wireless Association Step 3: 802.11 Association Finalizes the security and bit rate options. Establishes the data link between the WLAN client and the access point. The client learns the BSSID (MAC Address) of the access point. Access point maps a logical port known as the association identifier (AID) to the WLAN client. AID is equivalent to a port on a switch. Association allows the infrastructure switch to keep track of frames destined for the WLAN client so that they can be forwarded. CCNA3-43 Chapter 7-1 Wireless Association CCNA3-44 Chapter 7-1

Planning the Wireless LAN There needs to be a well-documented plan before a wireless network can be implemented. Number of Users: Not a straightforward calculation. Depends on the geographical layout of your facility (how many bodies and devices fit in a space), Data Rates: RF is a shared medium and the more users there are the greater the contention for RF. Use non-overlapping overlapping channels in an ESS. You will have sufficient wireless support for your clients if you plan your network for proper RF coverage in an ESS. CCNA3-45 Chapter 7-1 Planning the Wireless LAN Location of Access Points: You may not be able to simply draw coverage area circles and drop them over a plan. Do access points use existing wiring? Position access points: Above obstructions. Vertically near the ceiling in the center of each coverage area, if possible. In locations where users are expected to work. For example, conference rooms are typically a better location for access points than a hallway. CCNA3-46 Chapter 7-1

Planning the Wireless LAN Coverage Area of Access Points: Estimate the expected coverage area of an access point. This value varies depending on: The WLAN standard or mix of standards that you are deploying. The nature of the facility. The transmit power that the access point. Based on your plan, place access points on the floor plan so that coverage circles are overlapping. CCNA3-47 Chapter 7-1 20,000 Sq. Ft. (1860 Sq. Meters) Planning the Wireless LAN Number of Access Points Minimum of 6 Mbps 802.11b throughput for each Basic Service Area (BSA) 20,000 Sq. Ft. with a coverage of 5,000 Sq. Ft. results in 4 Access Points. Can be achieved with a coverage area of 5,000 Sq. Ft. (465 Sq. Meters) CCNA3-48 Chapter 7-1

Planning the Wireless LAN Dimension of Coverage Area 50 foot (15 Meter) Radius 71 foot (22 Meter) Square CCNA3-49 Chapter 7-1 Planning the Wireless LAN Location of Access Points CCNA3-50 Chapter 7-1