-+ + ) + & $+ -) ) + + )+ & % & '( & ) *% & +, * + ) * .,* * )+ * % & + & + $ & & * + + & & + )* ) ),+, ))& )* +,*,,* & $+ + )+ & & )* + + ))+ + & )

Similar documents
System Impact Study for Power Supply 400 MW Import on the EAL BCHA Path

Fire Weather System (FWSYS) EcoConnect Rich Internet Application User Guide

SPAREPARTSCATALOG: CONNECTORS SPARE CONNECTORS KTM ART.-NR.: 3CM EN

84% of New Zealanders will be able to access UFB fibre by the end of 2024 (under UFB1 and 2). Visit broadband.govt.nz for more information.

SPARE CONNECTORS KTM 2014

Don t Let Uncle Sam Pick Your Pocket Again. Plan Now for next year. Call for a free half-hour consultation.

PRINT MODULAR RATECARD

Defining Areas Linking Geographic Data in New Zealand

IEC Contactors. Auxiliary Contact Blocks GENERAL

22ND CENTURY_J1.xls Government Site Hourly Rate

Real-time Power System Operation. Energy Management Systems. Introduction

C E R T I F I C A T E O F C O M P L I A N C E

!! " # $%! "! &' $ (!!

Introduction to transmission network characteristics - technical features. Slobodan Markovic Danka Todorovic EKC Tirana,

PRINT MODULAR RATECARD

DETAIL SPECIFICATION SHEET

1. Project Description

Upgrading from MICRO/MIDIMASTER 2 to MICRO/MIDIMASTER 3

PRINT MODULAR RATECARD

87% of New Zealanders will be able to access fibre by the end of Visit broadband.govt.nz for more information.

SMUD Model Data Requirements & Reporting Procedures MOD VERSION 1.2

Appendix 5-1: Attachment J.1 Pricing Table -1: IMS Ceiling Loaded Rates at Contractor Site

2-Type Series Pressurized Closures

Sparse matrices, graphs, and tree elimination

Exhibit to Agenda Item #1a

System Studies for American Transmission Co. s Benson Lake SVC Project

4. Specifications and Additional Information

Transmission Infrastructure Investment & Development in Vietnam

Studies Overview and Data Requirements. Robert Pan

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1

Table of Contents. Preface. SECTION 1 Introduction 1. SECTION 3 Operating Reserve 65. SECTION 2 Energy Market 17

For more information, please contact

NERC Event Analysis Update Webinar. Hassan Hamdar Chair, Event Analysis Subcommittee October 20, 2016

Assessment Report & Update

$%&#!#$!!!#'((#!)*+"!!,!#*+- ) %() (. %( ) //. 0 1 ) (2.

Standard INT Dynamic Transfers

Lec-5-HW-1, TM basics

First Data EMV Test Card Set. Version 1.30

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Talen en Compilers. Johan Jeuring , period 2. January 17, Department of Information and Computing Sciences Utrecht University

First Data EMV Test Card Set. Version 2.00

Microgrids: Building Blocks of the Smart Grid Adaptive Protection Schemes for Microgrids

Christian PAYERL, Poznan, 20 th May, 2009 ABB FACTS Grid connection of Wind Farms. ABB Group May 22, 2009 Slide 1

)- -% *)&%! $%!" (!*.-1 %,-+% --)+(!1 $!& *. &% '!!-%(# 000 $! )''.(%-1 )%! )' +!!%/!+ $+%, 1&)+ ' ()$ +! +%.-! 1 ).%,/%&&! +! ) %)(!!+, '*%(#!

The cache is 4-way set associative, with 4-byte blocks, and 16 total lines

Standard INT Dynamic Transfers

Section 2.4 Sequences and Summations

SR60 Busbar System 2/1. 2/2 Busbar routing. 2/3 Mounting components. 2/6 Accessories

Acquirer JCB EMV Test Card Set

Essential Reliability Services NERC Staff Report

MISO Online Dynamic Security Assessment(DSA) Raja Thappetaobula Senior Advisor MISO

2-Type Fire Retardant Closures

Achieving Smarter Grid Operation With On-Line DSA Technology

Theory of Computations III. WMU CS-6800 Spring -2014

CIS-331 Exam 2 Fall 2015 Total of 105 Points Version 1

The current state of the electrical grid And the technologies that will enable its transformation

Chanan Singh Texas A&M University PSERC Webinar November 22, 2016

Load Conformance Limiter Enhancement

First Data Dual Interface EMV Test Card Set. Version 1.20

OPF Automation Examples

Parts List, Charging Chart, Wiring Diagrams

UYM-UOM-UOY-UOD- UOS-UOB-UOR

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1

Silicon Valley Power:

CSE Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: Due: Problem 1: (10 points)


Empowering Operations with the PI System

Shading Calculation for Passive House Certification Discussion and Development of a New Method

MONITORING AND CONTROL REQUIREMENTS FOR DISTRIBUTED GENERATION FACILITIES

S5-115U. Application

Total Market Demand Wed Jul 26 Thu Jul 27 Fri Jul 28 Sat Jul 29 Sun Jul 30 Mon Jul 31 Tue Aug 01

Large Embedded Generators Register of Completed Projects

One subset of FEAL, called FEAL-NX, is N round FEAL using a 128-bit key without key parity.

Protection Equipment

2016 Fall ITO Stakeholder Meeting. Topics in Operations

INSTALLATION MANUAL Full plug and play programming and power kit, for Ford Vehicles with a camera-compatible 4 MyFord Display

Acquirer JCB Dual Interface EMV Test Card Set

Virginia Mathematics Checkpoint Assessment GEOMETRY G.11. Topic: Polygons and Circles

CIS-331 Fall 2013 Exam 1 Name: Total of 120 Points Version 1

Public Service Company of New Mexico

Little Piece of Random

New York Market Opportunities

Peak Reliability. Reliability Coordinator Data Request and Specifications for Data Provision

Minnesota Hosting Capacity Analysis

BC HYDRO REAL TIME OPERATIONS SYSTEM OPERATING ORDER 7T - 50

Interconnection and Transmission

Architecture of Compilers, Interpreters. CMSC 330: Organization of Programming Languages. Front End Scanner and Parser. Implementing the Front End

ST PASA Report. User Guide- Public

QUESTION BANK. Unit 1. Introduction to Finite Automata

EMS / DMS. DISTRIBUTION MANAGEMENT SYSTEM- Functional Description

Distributed Generation Requirements Update

Unused Generation Capacity Study Scope. Informational Analysis

1. Description of purpose/cause of hold/curtailment: Flowgate 6023 flow gate consists of the following elements.

E21 Alarm List E Photometric Data Error (A) 3117 Lamp Off Error 3118 Lamp Dark Error 3120 Sample Probe (FA) Error (Up-Down) (A, B)[A, B, C, D

Requirements for Data for Power System Modeling and Analysis (MOD-032-1) Arizona Public Service Company

C1098 JPEG Module User Manual

First Data DCC Test Card Set. Version 1.30

Maryland Standards Alignment Grades One through Six


Procedures for cross-border transmission capacity assessments PROCEDURES FOR CROSS-BORDER TRANSMISSION CAPACITY ASSESSMENTS.

Transcription:

" #

$ % & '( & ) *% & +, * + ) * -+ + ).,* * )+ * + & $+ % & + & + $ & & * + + + & & + )* ) +,)* -) ) ),+, ))& )* +,*,,* & $+ + )+ & & )* + + )+ & + + ))+ + & ) & **)+ + & */& & + +,* + &.$*

. & & )& + )),)+. 0 1 + 2)$,& 3& & + )4 2,.$+ &, & ) 5 + ), + 6,& &,+ ),) $,+ + )),,& & 0 1 + & &, ), ) + ) + 7

#8 +, $+ $ ), $+ ), 8 + ) )+ ) & +, ) + + 78 + +, & & 9 *Reactive power reserves, voltage control and stability performance are not considered, as the cost of mitigation options are an order of magnitude lower. 4

"# $ : + )& + &, & +,& )+,& 0 & 1; % )) & < ) - ),,+ + +, & ); # 3#8= 8=>? 4) 3#87 8 >? 4 0 2/2 3 #@# #A 4& ),,& )8 @ 7& 3B8 /C>? 4+,),$+ + + )& )), 5

"#% % & 8% &,) + & & & )0 1D + + )+ + &, & &,,& 34 ), $+ & &, ) & &, & +.)& ), )8E,+ & + + ) 28 6

"#&,, & & 2,7+, ) F$ ),,#&, +,, ),,G/B&,+, H), $&, + & &, ),G/B+ I F& & 3 #4& + ), F)& 3 J 74.)& )& )+ I 7

"#',& )&,,$ 2,7+, ) F& 3G8CK #4,8#C>? & ), 8G >? & ) 7 )& 3#=8CK 4 + I,+ + + & + + & ),)& 8 ) + & + & )& 8

"( %)$) %)%) %)&) 2&& 3 4 B7G BB 7G# & 3 4 "A B= G #=C= & 3K 4 7 C #A.82-,3 4 ABA BC# C#.8F$ 6)3 4 7C AG "BB.8)-,3 4 GB 7== ABB 3>? &4 #8=/ 8A #87/ 8 B8 /C87 -, 3>? &4 8#C 8=B 8G * +,-. / $012#%032 %0)3#%043 103%# $$04% C

5 #

) # 7 & ),& #"K + 7 + )& & + #8 AK/#8AK 88 % & &,)<-,, A B& & 8 A& & + & & ##

Southland Otago Taranaki Northland Manawatu Hawke s Bay Source: www.nzwindfarms.co.nz High Wind 2010 NI:432 MW SI:203 MW NZ:634 MW Very High Wind 2020 NI:1434 MW SI:632 MW NZ:2066 MW Very High Wind 2030 NI:2215 MW SI:1197 MW NZ:3412 MW Location Island MW GWh PA Avg LF Otago SI 144.0 492 39.0% Manawatu NI 7.0 28 45.0% Manawatu NI 19.5 77 45.0% Wellington NI 142.6 573 45.9% Location Island MW GWh PA Avg LF Otago SI 144.0 492 39.0% Manawatu NI 7.0 28 45.0% Manawatu NI 19.5 77 45.0% Wellington NI 142.6 573 45.9% Wellington NI 94.3 363 44.0% Hawke's Bay NI 48.0 179 42.5% Hawke's Bay NI 150.0 484 36.9% Central NI 100.0 350 40.0% Manawatu NI 150.0 565 43.0% Wairarapa NI 90.0 323 41.0% Northland NI 102.5 359 40.0% Taranaki NI 99.0 361 41.7% Northland NI 68.8 241 40.0% Wellington NI 100.0 365 41.7% Otago SI 261.0 892 39.0% Southland SI 168.0 589 40.0% Location Island MW GWh PA Avg LF Otago SI 144.0 492 39.0% Manawatu NI 7.0 28 45.0% Manawatu NI 19.5 77 45.0% Wellington NI 142.6 573 45.9% Waikato NI 44.0 135 35.0% Manawatu NI 150.0 526 40.0% Wellington NI 94.3 363 44.0% Hawke's Bay NI 48.0 179 42.5% Hawke's Bay NI 150.0 484 36.9% Central NI 100.0 350 40.0% Manawatu NI 150.0 565 43.0% Wairarapa NI 90.0 323 41.0% Northland NI 102.5 359 40.0% Hawke's Bay NI 111.0 389 40.0% Otago SI 100.0 377 43.0% Otago SI 261.0 892 39.0% Taranaki NI 99.0 361 41.7% Northland NI 250.7 878 40.0% Auckland NI 225.0 788 40.0% Northland NI 68.8 241 40.0% Otago SI 100.0 359 41.0% Wellington NI 100.0 365 41.7% Otago SI 150.0 512 39.0% Canterbury SI 215.0 659 35.0% Southland SI 168.0 589 40.0% #

67 8 #7

8 7 #8 + +,) $+ & 8,& ) 78 <, & ) G8, 9 8 L8 8 8 ) 2+ 3?,)? 4 2+ I 2+ &, 9,.,+ + & #G

7 9 $ + $ 55<. 35E 5<4&,,)"? % 2)))82))) //,,) % + ) & + + + I, + $+ + /,, + +,3+ <-+ 4 )+ + /& & & & & #A

7 9%,388 & & 4) + 3#? /4+, +,) ; )))3& H% H+ 4 + + + + + I& ) + ))),I )) + +,,3#K,I4 CCK 3 & 4 #B

,/ 17

(= :) ') (= &' &: '& 2 ; #A,;/ &) %) $) 2 ; # # %)$) %)%) %)&).< ",,+ ;5E 5<M"?,,);"AK 3 & )+ I4 0 2/22 ;CCK #"

,7 > /,; / :) ': ') &: &) %: %) $: $) : # & ) & ) &% &% %2 %2 %& $: %)$) %)%) %)&).< Capacity credit with wind forecasting is based on a conservative approach to accommodate 99% of the wind variations across a 4 to 6 hour time horizon. #C

7,7 > /,-. / $) 2 1 4 3 : ' & % $ ) 20& 30% %0: $04 %0) $0& %)$) %)%) %)&).< & ) & $ ), & + )& & 8,; / ) / & + )+ / + $ + + 88 + ) 7,N#>??#A>??,) + + NA"K &,+

2 ; A?,./ A #A # A # " 7 # @ $) 5E 5<0 5E 5< 5E 5<+ 7G 7A 7B 7= 7" 7C G G# G G7 GG GA GB + ) 2& )5E 5<?,./ G 7A 7 A #A # A 6@ %) 7= 5E5<0 5E 5< 5E 5<+ #B = 7 # G# G G7 GG GA GB G= G" GC A *, /?,./ 6@ &) = B7 B A G 7 #G # 8=A 21 GC A# A7 AA A= AC *, / *, / 5E 5<0 5E 5< 5E 5<+

(# $ : + )& + &, & +,& )+,& 0 & 1,) & ),,+ + & ); # 3#8= 8=>? 4) 3#87 8 >? 4 0 2/2 3 #@# #A 4& ),,& )8 @ 7& 3B8 /C>? 4+,),$+ + + )& )),

(#% % & / &,) + )& & & )0 1D + + )+ + &, & &,,& 34 ), $+ & &, ) & &, & +.)& ), ),+ @ #2 ), 0 2@ 70 2), 2 7

7 (> 8 G

7 7(> #8 O ),& )& & 8 2,37+ 4, ) L8 F$ ),3#4, ) 8 ),3G/B4, )) 8 )+,$+ + ) 8 F ) / L8 78 <, ),$+ G8,9 8 % 3?,)? 4 L8 2 & & 3 # 74 8 2 8 5 & & 30 4 <8 & 3 A B4 9>A A > A

7 (>7 # + + ),8,+ 2,,,7+ & F$ )3#4 ),3G/B4,& + ) & ) Reduction in wind power output (electricity production from other generators need to be increased) σ Expected wind power output Increase in wind power output (electricity production from other generators need to be decreased) Note: Sigma (σ) denotes the standard deviation. It is a measure of the spread of the values of wind power output from its mean (forecasted or expected value). To cover 73% wind variability requires additional reserve (1σ). 96% 2σ 99% 3σ 99.5% 4σ B

6+(>,/ North Island (An illustrative winter peak demand day in 2020) South Island GA # 7A B B, / G 7A 7 A #A # A # " B G B, / (>, / 7 A #A # A 02P- 02P 2P- 2P A G 7 # B, / # 7 A = C ## #7 #A #= #C # 7 A = C 7# 77 7A 7= 7C G# G7 GA G= # 7 A = C ## #7 #A #= #C # 7 A = C 7# 77 7A 7= 7C G# G7 GA G= B B +,$ & & =

> 7 (>,& ) & & & + / : & + 3.,4) 5& / 2 $ ) 2 + 23254 2 ), ),& + & ) + & & &, + E ) + )) )+ + & + ),+ ) ),+ ). ) ),&. "

E, *? B+ / +,) ) 25 2 / & / Q + + ) Q & ) Q.+ + 2-,+ Q -+?& Q + +?& + Q 5 3+ + + =AK 4 / 8A.& & ) / % & Q Q Q -E-) & -, / -, Q + + $ ),, / F& : +.))+ + ) C

(> 7# $ ), 288 ), % R + + )& % R & 8+.+ + 0 22 BK 20 2& )),$, $ )+ + ) + $+ E ),+ +, )& + + 34) &.) ),+,/+ & $ + & + 5,),$),CC8AK ) 7

(> 7#% -,$+ + 7 + #8), )& )# -,$+ + +,+ + 8,$+ & &,,.. & & 8 2 + ) ) )),$+ + 8 & + & + + + =AK,& 8 7#

(=C?(> %)$) %)%) %)&) ( " ( " ( " # 02 7C" #= # G GGB #A 7# A77 7#A A7 2 #B= =7 BA GA #A= #=G 7=C =# 7 B 01 ABA #" #"C BC# 7= G"B C# A"B " C 02 7C" #A "# GGB 7#G = A77 GBB 7A 2 #B= C7 7# GA B #A 7=C G #G 01 ABA G7 ## BC# AG 7== C# "BB ABB 7 0 2 7C" #CG 7= GGB G#B #= A77 B#" 2 #B= ##A C GA CB 7A 7=C A7 B= 0 1 ABA 7C GB BC# =# A C# ##G" B= Note: all units are expressed in MW IR = Instantaneous Reserve FK = Frequency Keeping 7

?7 (> 7 (>,-. / G8 78A 78 8A 8 #8A #8 )-, )-, 8=B #8 A 8=B 8" 78GA 8G 78G 8A 8 A 8#C 8 # 7 # 7 # 7 # 7 Case1: dominated by standing reserve Case2: balanced allocation Case3: dominated by spinning reserve 77

(>(,, & & 2,, ) F$ ),,#&,,,,,G/B&,, H), $&, + & &, ),G/B+ I F& & 3 #4& + F)& 3 J 74.)&,& )&,,$ F& 3G8CK #48#C>? & ) 2 8G >? & ) 7& )& 3#=8CK 4 + I,+ & $) + 25+ 7G

"( %)$) %)%) %)&) 2&& 3 4 B7G BB 7G# & 3 4 "A B= G #=C= & 3K 4 7 C #A.82-,3 4 ABA BC# C#.8F$ 6)3 4 7C AG "BB.8)-,3 4 GB 7== ABB 3>? &4 #8=/ 8A #87/ 8 B8 /C87 -, 3>? &4 8#C 8=B 8G * +,-. / $012#%032 %0)3#%043 103%# $$04% 7A

" 7B

7A 7=

( 7= 7 Hydro Generation (Weekly dispatch) Auxiliary Generation (weekly available energy) Wind Generation (1/2 hourly profiles ) Thermal Generation (Cost and technical characteristics) Demand (1/2 hourly) Dispatch Optimization Module (Objective function: Minimization of thermal capacity requirement) COPT Module (Thermal capacity outage characteristics) Output ½-hourly dispatch of: Auxiliary, Wind, Hydro and Thermal generation Reliability Assessment Module (LOLE, EENS) Yes LOLE / EENS Bench mark NO Adequate capacity level System Operation Model 7"

<D + B++ Without Wind With Wind 8#G 8#G 8# 8# 8# 8# 2010 B? 8" 8B 8G?B 8" 8B 8G 8 8 8 8 87 87 8 A 8 A 8 8 2030?B 8#A 8#?B 8#A 8# 8A 8A 8 8 7C

8 E D Scenario @ %)$),'02;/ 6@ %)%),$%0:;/ 6@ %)&),$402;/ Region >>. ##= 7= #AG ##BB 7= # 7 # A 7= # G G7 7 B7G #G7G B7 BB #A ##C= 7G# % #"=7 7AA= AG7 #"=7 7AA= AG7 #"=7 7AA= AG7 C= / C= C= / C= C= / C= #A / #A #A= / #A= #"# / #"# E / / / / / / / / / #AB / #AB #AB / #AB #AB / #AB ) 3 4 ACGC 7=C= C=G= =#=# G B ##7C= " 7 G=C# #7 %)3 4 BC#C #=C C G"G" BC#C #=C C G"G" BC#C #=C C G"G" )3 4 #BA7 B7# "A GCB #"#C B= G =GG 77AG #=C= + 3 4 G"G GAA = C= AAC" "GA "GG7 B =7 7#C= CGBC <)+ 3 4 "CA #=G# GACC7 77BGG #C"# A7GAB 7=C= 7A# B A" G

B Based on 2005 wind profiles for 2010 scenario # 02 #B 01 D B,8 / # " B G 2 D B,8 / #G # # " B G # C #"7 =G 7BA D # C #"7 =G 7BA D )3 4 0 2 2 #BA7 B7# "A +.+ + GC G = + + + #A )3 4 0 2 2 ) 3 4 0 2 2 GCB #"#C B= G =GG 77AG #=C= +.+ + #GA = #CC +.+ + " #G 7 + + + G= A A= + + + == " CG,) 7 # GG,) CG 7A # C,) #G7 BA " G#

G 7A 7 A #A # A B )4 B 02 2 A @ $) 02 2 G 7 # # B ## #B # B 7# 7B G# GB A# AB B# BB =# =B "# "B C# CB ## G 8 # B ## #B # B 7# 7B G# GB A# AB B# BB =# =B "# "B C# CB ## 8 #" #B #G # # " B G 6@ %) 7 02 2 A 6@ &) 02 2 #A # A 8 # B ## #B # B 7# 7B G# GB A# AB B# BB =# =B "# "B C# CB ## # B ## #B # B 7# 7B G# GB A# AB B# BB =# =B "# "B C# CB ## 8

B, / 8 A GA G 7A 7 A #A # A )4 A B 8 C " = B A G 7 # @ $) A B # G = # #7 #B #C A " 7# 7G 7= G G7 GB GC A # G = # #7 #B #C A " 7# 7G 7= G G7 GB GC A 7 A 6@ %) A B GA G 7A 6@ &) A B 7 8 #A 8 A # #A A # A # G = # #7 #B #C A " 7# 7G 7= G G7 GB GC A # G = # #7 #B #C A " 7# 7G 7= G G7 GB GC A Data starts from first week of January G7

@ B Based on average hydro condition D(?(,8 / GA G 7A 7 A #A # A -E-P2 -E-P02 @,8 / 7 A #A # A -,P2 -E-P2 -,P02 -E-P0 2 / / # C #"7 =G 7BA # ## # 7# G# A# July D June July June -, --, 02 2 01 02 2 01 02 2 01 )3 4 7=B C" # "G 7#AC ""GC # " BC#C #=C C G"G" +.+ + 3 4 C7 #C "C8 "B AB 77 #=" G=G B#C + + + 3 4 A ##7 #BA87 7B C #GA "C 7 7#,)3 4 = #=A GB8C B# #= 7# #77 7GA G=" GG

> #%)&) @ 7 >B?, / " = B A G 7 # @ * D Hydro-Thermal System = B A G 7 # D, / 7 >B?, / B A G 7 # @ * D B A G 7 # D, / *,$.%/ *,$.%/ Wind-Hydro-Thermal System 7 >B?, / " = B A G 7 # @ * D " = B A G 7 # D, / 7 >B?, / B A G 7 # @ * D B A G 7 # D, / *,$.%/ *,$.%/ GA

B> (># B @ %)$) # < 2/% Throughout the year, hydro is primary source for FK,8 / # " B G / # G = ##7#B#C A "7#7G7=GG7GBGCA 2/ 2/. 0 2/ 02/E 02/ 02/ 02/% 02/ 0 2/. Primary source of Primary source for instantaneous reserve is Hydro (not affected by demand) = >, / A GA G 7A 7 A #A # A /A # G = ##7 #B#C A "7# 7G7= G G7GB GC A 2/% 0 2/ 02/E 02/ 02/ 02/% 02/ 0 2/. >, / = B A G 7 # # G = ##7#B#C A "7#7G7=GG7GBGCA 2/% 02/25 0 2/ 02/E 02/ 02/ 02/% F$ 6)-, 2-,

B> (>#@ B 6@ %)&) #G < 2/% "> @,> /,8 / # # " B G / # G = ##7#B#C A "7#7G7=GG7GBGCA 2/ 2/. 0 2/ 02/E 02/ 02/ 02/% 02/ 0 2/. B > @, + / F8 + > ( = >, / # # " B G # G = ##7#B#C A "7#7G7=GG7GBGCA F$ 6)-, 2/% 0 2/ 02/E 02/ 02/ 02/% >, / # C " = B A G 7 # @ " # G = ##7#B#C A "7#7G7=GG7GBGCA 2-, 2/% 02/25 0 2/ 02/E 02/ 02/ 02/%