STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGES

Similar documents
E-Guide BENEFITS AND DRAWBACKS OF SSD, CACHING, AND PCIE BASED SSD

Solid State Storage: Trends, Pricing Concerns, and Predictions for the Future

Identify and Eliminate Oracle Database Bottlenecks

Next Generation Storage Networking for Next Generation Data Centers. PRESENTATION TITLE GOES HERE Dennis Martin President, Demartek

Desktop Virtualization: What Windows Managers Should Know

WHAT NETWORK VIRTUALIZATION TECHNOLOGY CAN DO FOR YOUR NETWORK TODAY

VMware vsphere Beginner s Guide

Storage Virtualization Explained

FC-NVMe. NVMe over Fabrics. Fibre Channel the most trusted fabric can transport NVMe natively. White Paper

BENEFITS AND CHALLENGES OF PCIE SSDS

SSL Certificate Management: Common Mistakes and How to Avoid Them

An introduction to the VDI landscape

KNOW THE FEATURES OF WINDOWS SERVER 2012 R2

E-Guide CLOUDS ARE MORE SECURE THAN TRADITIONAL IT SYSTEMS -- AND HERE S WHY

BUYING SERVER HARDWARE FOR A SCALABLE VIRTUAL INFRASTRUCTURE

NETWORK-BASED CONTROLS: SECURING THE INTERNET OF THINGS

AUTHENTICATION AND AUTHORIZATION: TWO SECURITY ESSENTIALS THAT WORK TOGETHER

SECURITY MONITORING: BE EVERYWHERE AT ONCE

Analyst Perspective: Test Lab Report 16 Gb Fibre Channel Performance and Recommendations

Storage Update and Storage Best Practices for Microsoft Server Applications. Dennis Martin President, Demartek January 2009 Copyright 2009 Demartek

E-Guide WHAT WINDOWS 10 ADOPTION MEANS FOR IT

AS ATTACKERS TARGET APPLICATION CODING ERRORS, ARE STATIC ANALYSIS TOOLS THE ANSWER?

Server Hardware for Virtualization: Exploring the Options

Build a Better Data Center with 24G SAS

Disaster Recovery Planning: Weighing your customer s options

Scale your Data Center with SAS Marty Czekalski Market and Ecosystem Development for Emerging Technology, Western Digital Corporation

MANAGING ENDPOINTS WITH DEFENSE- IN-DEPTH

NVM Express Awakening a New Storage and Networking Titan Shaun Walsh G2M Research

Annual Update on Flash Memory for Non-Technologists

Flash Storage with 24G SAS Leads the Way in Crunching Big Data

10 Cloud Storage Concepts to Master

PREVENTING PRIVILEGE CREEP

E-Guide DATABASE DESIGN HAS EVERYTHING TO DO WITH PERFORMANCE

Utilizing Windows Server 2012 without the GUI Key workarounds for avoiding the Modern UI

SUPPLEMENTARY DEFENSES FOR ENDPOINT SECURITY

SAS: Today s Fast and Flexible Storage Fabric

SAS Technical Update Connectivity Roadmap and MultiLink SAS Initiative Jay Neer Molex Corporation Marty Czekalski Seagate Technology LLC

NVMe Direct. Next-Generation Offload Technology. White Paper

TEN ESSENTIAL NETWORK VIRTUALIZATION DEFINITIONS

SDN Technologies Primer: Revolution or Evolution in Architecture?

The Transition to PCI Express* for Client SSDs

40 GbE: What, Why & Its Market Potential

SAS: Today s Fast and Flexible Storage Fabric. Rick Kutcipal President, SCSI Trade Association Product Planning and Architecture, Broadcom Limited

Requirements for virtualizing Exchange Server 2010

Interface Trends for the Enterprise I/O Highway

Fibre Channel. Roadmap to your SAN Future! HP Technology Forum & Expo June, 2007, Las Vegas Skip Jones, FCIA Chair, QLogic

By John Kim, Chair SNIA Ethernet Storage Forum. Several technology changes are collectively driving the need for faster networking speeds.

Gen 6 Fibre Channel Evaluation of Products from Emulex and Brocade

Best Practices for the Hybrid Cloud

Top 5 Reasons to Consider

Accelerating Workload Performance with Cisco 16Gb Fibre Channel Deployments

Learn Your Alphabet - SRIOV, NPIV, RoCE, iwarp to Pump Up Virtual Infrastructure Performance

How Flash-Based Storage Performs on Real Applications Session 102-C

A primer to SQL Server 2012

NVMe over Universal RDMA Fabrics

Data Storage World - Tokyo December 16, 2004 SAN Technology Update

Evaluation Report: HP StoreFabric SN1000E 16Gb Fibre Channel HBA

Data Storage World - Tokyo December 16, 2004 SAN Technology Update

LESSONS LEARNED FROM AN OFFICE 365 MIGRATION

IBM Emulex 16Gb Fibre Channel HBA Evaluation

SD Express Cards with PCIe and NVMeTM Interfaces

ADDRESSING TODAY S VULNERABILITIES

BEST PRACTICES TO PROTECTING AWS CLOUD RESOURCES

Disaster recovery planning for health care data and HIPAA compliance regulations

Backup Appliances: Key Players and Criteria for Selection

Unified Storage Networking. Dennis Martin President, Demartek

Trends in Worldwide Media and Entertainment Storage

Benefits of 25, 40, and 50GbE Networks for Ceph and Hyper- Converged Infrastructure John F. Kim Mellanox Technologies

SAS Standards and Technology Update Harry Mason LSI Corp. Marty Czekalski Seagate

Roadmap to the Future!

ADOPTING FIDO SearchSecurity

Opportunities from our Compute, Network, and Storage Inflection Points

Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage

NVMe Takes It All, SCSI Has To Fall. Brave New Storage World. Lugano April Alexander Ruebensaal

BRING SPEAR PHISHING PROTECTION TO THE MASSES

Why NVMe/TCP is the better choice for your Data Center

Unified Storage Networking

Bus Example: Pentium II

N V M e o v e r F a b r i c s -

Increase the storage of your desktop PC

Gen-Z Memory-Driven Computing

Open storage architecture for private Oracle database clouds

Architected for Performance. NVMe over Fabrics. September 20 th, Brandon Hoff, Broadcom.

10 Gb Ethernet: Evaluating when and why to upgrade

Low latency and high throughput storage access

WD Black NVMe SSD Internal SSD Storage. M.2 Desktop Installation Guide

PCIe 10G SFP+ Network Card

Vista Deployment: What s in the Box and What s Not

SSD Architecture Considerations for a Spectrum of Enterprise Applications. Alan Fitzgerald, VP and CTO SMART Modular Technologies

Cisco UCS C250 M2 Extended-Memory Rack-Mount Server

Cisco UCS C250 M2 Extended-Memory Rack-Mount Server

Evaluating the Security of Software Defined Networking

NETWORKING FLASH STORAGE? FIBRE CHANNEL WAS ALWAYS THE ANSWER!

The Impact of SSD Selection on SQL Server Performance. Solution Brief. Understanding the differences in NVMe and SATA SSD throughput

Serial ATA (SATA) Interface. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

A Deeper Dive: Where (And How and Why) to Implement Solid-State Storage

24G SAS Opens the Way to the Latest High-Performance Applications

How Are The Networks Coping Up With Flash Storage

Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation

MicroTCA / AMC Solutions for Real-Time Data Acquisition

Transcription:

E-Guide STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGES SearchStorage

S torage network technology is changing and speed is the name of the game. To handle the burgeoning data growth, organizations require technology that can circumvent performance bottlenecks. This eguide discusses new storage networking and interfacing technologies, such as fibre channel (FC), serial attached SCSI (SAS) and NVM express (NVMe), designed to increase connectivity and minimize latency. PAGE 2 OF 11

STORAGE NETWORKING TECHNOLOGY STEPS UP TO PERFORMANCE CHALLENGE Dennis Martin, Founder and President technology is changing, and speed is the name of the game. Fast flash storage and the growing use of virtualization and applications with larger amounts of data aren't the only technologies putting pressure on networks that carry storage traffic like never before. Databases such as IBM DB2, MySQL, Oracle and SQL Server, for instance, can always use faster connections with lower latency, while increasingly popular big data applications hold huge amounts of information that need to be moved. And while video origination at 4K resolution is already established, starting this year the requirements for video post-production in native 4K resolution have been set by companies such as Amazon, Netflix and others, furthering the demand for higher storage network bandwidth. These are just a few examples of the s facing managers of today's storage fabrics. To help keep storage traffic from becoming the bottleneck in your data center, be it large or small, we present a rundown of the key PAGE 3 OF 11

improvements to storage networking and interface technologies available in 2016. WIDENING THE ETHERNET LANE Nearly everybody uses Ethernet for connectivity between desktops, workstations, application servers and file servers. While many of us with wired connections to our desktops use 1 GbE, 10 GbE is the backbone for our data center connections, with 40 GbE technology leveraged in certain pockets of the enterprise. A fair amount of the traffic traversing these networks can be considered storage traffic, especially with respect to file servers. As flash storage begins to proliferate, we are finding that even 10 GbE can become a bottleneck. To alleviate this, the Ethernet industry is making a significant performance jump. Until now, the fastest speed per lane for Ethernet has been 10 Gbps. Faster Ethernet such as 40 GbE and 100 GbE bundle multiple lanes of 10 Gbps connections into one connection: 4 x 10 for 40 GbE and 10 x 10 for 100 GbE. Announced two years ago, Ethernet running at 25 Gbps per lane is now available. This means that a single lane of Ethernet connectivity runs 2.5 times faster than legacy 10 GbE. There are also options so that 50 GbE and 100 GbE PAGE 4 OF 11

can be achieved by bundling two and four lanes, respectively. While considerably faster than 10 GbE, the good news is that 25 GbE technology can generally use the same types of fiber-optic or copper cables as 10 GbE (with the exception of some cable lengths and transceiver differences). The 25 GbE technology uses the same underlying SFP28 technology as 32 Gbps Fibre Channel as well (see next section), but runs at a slightly different speed, which is one reason why both of these technologies are coming to market this year. Those planning new data center buildouts should be familiar with the Ethernet Alliance roadmap. This roadmap provides a good idea of the new speeds coming along, the approximate time frames for these, details on the physical connectors for copper and fiber optic cables, and a good discussion of the entire Ethernet ecosystem from residential to high-end data center (also see: Ethernet Speed Roadmap). FIBRE CHANNEL NEITHER DOWN, NOR OUT Popular in data centers for its reliability and stability, Fibre Channel (FC) dominates high-end storage networking technology. According to some industry estimates, 90% of high-end data centers have deployed FC technology. And PAGE 5 OF 11

although there has been some discussion about the decline this high-speed storage networking technology, recent analyst reports suggest that the FC market actually grew in late 2015 and early 2016. Fibre Channel performance has doubled in speed approximately every three to five years since 1997. Gen 6 Fibre Channel became available this year, and includes a single-lane speed of 32 Gbps and a quad-lane speed of 128 Gbps (4 x 32). This generation of FC also includes new management and diagnostic features. As with previous generations, Gen 6 FC is backward-compatible with the two previous generations (16 Gbps FC and 8 Gbps FC), making the transition to the new technology a relatively smooth process for enterprises. The Fibre Channel Industry Association (FCIA) offers a public roadmap that provides information on new speeds, guidance in cable and connector selection and more (also see Fibre Channel Roadmap). CATCH THE NVM EXPRESS NVM Express (NVMe) is an optimized, high-performance scalable host controller interface designed for enterprise and client solid-state storage that uses the local PCI Express bus. More recently, NVMe has been extended over PAGE 6 OF 11

distance with the new NVMe over Fabrics specification. NVMe over Fabrics can use a remote direct memory access (RDMA) fabric or a Fibre Channel fabric and works with future fabric technologies. NVMe is designed to streamline the I/O access to storage devices and storage systems built with non-volatile memory -- from today's NAND flash technology to future higher-performing and persistent memory technologies. NVMe's streamlined command set typically uses less than half the number of CPU instructions to process an I/O request than other storage protocols. Internally, NVMe is designed differently than other storage protocols. It supports 64K commands per queue and up to 64K queues. These queues are designed such that I/O commands and responses to those commands operate on the same processor core and can take advantage of the parallel processing capabilities of multicore processors. Each application or thread can have its own independent queue, so no I/O locking is required. The NVMe protocol can be used in devices ranging from mobile phones to enterprise storage systems. NVMe devices in enterprise environments, typically running at full power, provide performance up to the full bandwidth of the number of PCIe lanes that each device uses. In consumer devices operating at low-power levels, NVMe devices provide lower performance. PAGE 7 OF 11

At the device level, you can use NVMe for add-in-cards that plug into PCIe slots, the traditional drive form factor (2.5-inch is the most popular), and the M.2 small form factor card. Because of these and other features, we've found that -- by running tests in our lab -- NVMe delivers considerably higher performance and lower latency than other storage protocols. REVVING UP SERIAL ATTACHED SCSI SAS, or Serial Attached SCSI, is an enterprise storage networking technology interface and protocol that's used in some fashion in nearly every enterprise storage product today. SAS, and its predecessor SCSI, have a long history of versatility, reliability and scalability for a device-level interface, as a shelf-to-shelf disk interface, and as a host interface to external storage platforms. In addition to HDDs and SSDs, SAS products include host bus adapters, RAID controllers, expanders and other components used in storage. There are also SAS switches used in SAS fabric implementations. Currently shipping SAS products run at 12 Gbps, and some older 6 Gbps products are still available. The roadmap for SAS doubles the speed to 24 Gbps, with those products expected to come to market with server platforms, which should also support PCIe 4.0, scheduled for release in 2019. PAGE 8 OF 11

The 24 Gbps SAS is backward compatible with the two previous SAS generations (12 Gbps and 6 Gbps) and with 6 Gbps SATA. For more on the future of SAS, see the SCSI Trade Association's SAS roadmap (also see: Serial Attached SCSI (SAS) Roadmap.) SERIAL ATA IN LIMBO SATA, or Serial ATA, has been used for many years to connect a computer to a single storage device such as a HDD, SSD or optical device (CD-ROM, DVD and so on). The current SATA interface runs at 6 Gbps and there is no roadmap for a faster speed, though there is ongoing work to add enterprise features. There was some activity for "SATA Express" running at higher speeds, but this activity appears to have stopped. SATA is used in the traditional drive form factor, but is also available in a much smaller M.2 card form factor. SATA, SAS AND NVME DEVICE COMPATIBILITY In my flash storage article in the June 2016 edition of Storage magazine (see "Flashy Servers -- the lowdown on server-side, solid-state storage"), I provided a diagram of SATA, SAS and PCIe/NVMe device connectors, showing the areas PAGE 9 OF 11

of compatibility between these three interfaces. For compatibility among SATA, SAS and PCIe/NVMe device connectors, think of them as a three-level hierarchy. A lower device can be placed in a higher device backplane, but higher devices cannot be placed into a lower-level backplane. SATA devices, at the lowest level of this hierarchy, can be placed into SATA, SAS and PCIe/NVMe device backplanes. SAS devices, at the middle level of this hierarchy, can fit into SAS and PCIe/NVMe device backplanes, but not SATA device backplanes. And NVMe devices in the drive form factor can only be placed into PCIe/NVMe backplanes. As you move up the hierarchy of storage networking technology, additional features and performance become available. For more on how the protocols covered in this article match up to different types of storage and enterprise use cases, see: The real world. PAGE 10 OF 11

FREE RESOURCES FOR TECHNOLOGY PROFESSIONALS TechTarget publishes targeted technology media that address your need for information and resources for researching products, developing strategy and making cost-effective purchase decisions. Our network of technology-specific Web sites gives you access to industry experts, independent content and analysis and the Web s largest library of vendor-provided white papers, webcasts, podcasts, videos, virtual trade shows, research reports and more drawing on the rich R&D resources of technology providers to address market trends, s and solutions. Our live events and virtual seminars give you access to vendor neutral, expert commentary and advice on the issues and s you face daily. Our social community IT Knowledge Exchange allows you to share real world information in real time with peers and experts. WHAT MAKES TECHTARGET UNIQUE? TechTarget is squarely focused on the enterprise IT space. Our team of editors and network of industry experts provide the richest, most relevant content to IT professionals and management. We leverage the immediacy of the Web, the networking and face-to-face opportunities of events and virtual events, and the ability to interact with peers all to create compelling and actionable information for enterprise IT professionals across all industries and markets. PAGE 11 OF 11