Manifold Learning for Video-to-Video Face Recognition

Size: px
Start display at page:

Download "Manifold Learning for Video-to-Video Face Recognition"

Transcription

1 Manifold Learning for Video-to-Video Face Recognition Abstract. We look in this work at the problem of video-based face recognition in which both training and test sets are video sequences, and propose a novel approach based on manifold learning. The idea consists of first learning the intrinsic personal characteristics of each subject from the training video sequences by discovering the hidden low-dimensional nonlinear manifold of each individual. Then, a target face video sequence is projected and compared to the manifold of each subject. The closest manifold, in terms of a recently introduced manifold distance measure, determines the identity of the person in the sequence. Experiments on a large set of talking faces under different image resolutions show very promising results (recognition rate of 99.8%), outperforming many traditional approaches. 1 Introduction Recently, there has been an increasing interest on video-based face recognition (e.g. [1 3]). This is partially due to the limitations of still image-based methods in handling illumination changes, pose variations and other factors. The most studied scenario in video-based face recognition is having a set of still images as the gallery (enrollment) and video sequences as the probe (test set). However, in some real-world applications such as in human-computer interaction and content based video retrieval, both training and test sets can be video sequences. In such settings, performing video-to-video matching may be crucial for robust face recognition but this task is far from being trivial. There are several ways of approaching the problem of face recognition in which both training and test sets are video sequences. Basically, one could build an appearance-based system by selecting few exemplars from the training sequences as gallery models and then performing still image-based recognition and fusing the results over the target video sequence [4]. Obviously, such an approach is not optimal as some important information in the video sequences may be left out. Another direction consists of using spatiotemporal representations for encoding the information both in the training and test video sequences [1 3]. Perhaps, the most popular approach in this category is based on the hidden Markov models (HMMs) which have been successfully applied to face recognition from videos [2]. The idea is quite simple: in the training phase, an HMM is created to learn both the statistics and temporal dynamics of each individual. During the recognition process, the temporal characteristics of the face sequence are analyzed over time by the HMM corresponding to each subject. The likelihood scores provided by the HMMs are compared. The highest score provides

2 2 the identity of a face in the video sequence. Unfortunately, most methods which use spatiotemporal representations for face recognition have not yet shown their full potential as they suffer from different drawbacks such as the use of only global features while local information is shown to also be important to facial image analysis [5] and the lack of discriminating between the facial dynamics which are useful for recognition from those which can hinder the recognition process [6]. Very recently, inspired by studies in neuroscience emphasizing manifold ways of visual perception, we introduced in [7] a novel method for gender classification from videos using manifold learning. The idea consists of clustering the face sequences in the low-dimensional space based on the intrinsic characteristic of men and women. Then, a target face sequence is projected into both men and women manifolds for classification. The proposed approach reached excellent results not only in gender recognition problem but also in age and ethnic classification from face video sequences. In this work, we extend the approach proposed in [7] to the problem of video-to-video face recognition. Thus, we propose to first learn and discover the hidden low-dimensional nonlinear manifold of each individual. Then, a target face sequence can be projected into each manifold for classification. The closest manifold will then determine the identity of the person in the target face video sequence. The experiments which are presented in Section 4 show that such manifold-based approach yields in excellent results outperforming many traditional methods for video-based face recognition. The rest of this paper is organized as follows. Section 2 explains the notion of face manifold and discusses some learning methods. Then, we describe our proposed approach to the problem of video-to-video face recognition and the experimental analysis in sections 3 and 4, respectively. Finally, we draw a conclusion in Section 5. 2 Face Manifold Let I(P,s) denote a face image of a person P at configuration s. The variable s describes a combination of factors such as facial expression, pose, illuminations etc. Let ξ p, ξ p = {I(P,s) s S} (1) be the collection of face images of the person P under all possible configurations S. The ξ p thus defined is called the face manifold of person P. Additionally, if we consider all the face images of different individuals, then we obtain the face manifold ξ: ξ = p ξ p (2) Such a manifold ξ resides only in a small subspace of the high-dimensional image space. Consider the example of Fig. 1 showing face images of a person when moving his face from left to right. The only obvious degree of freedom in this case is the rotation angle of the face. Therefore, the intrinsic dimensionality of

3 Manifold Learning for Video-to-Video Face Recognition 3 the faces is very small (close to 1). However, these faces are embedded in a dimensional image space (since the face images have = 1600 pixels) which is highly redundant. If one could discover the hidden low-dimensional structure of these faces (the rotation angle of the face) from the input observations, this would greatly facilitate the further analysis of the face images such as visualization, classification, retrieval etc. Our proposed approach to the problem of video-tovideo face recognition, which is described in Section 3, exploits the properties of face manifolds. Fig. 1. An example showing a face manifold of a given subject embedded in the high dimensional image space Neuroscience studies also pointed out the manifold ways of visual perception [8]. Indeed, facial images are not isolated patterns in the image space but lie on a nonlinear low-dimensional manifold. The key issue in manifold learning is to discover the low-dimensional manifold embedded in the high dimensional space. This can be done by projecting the face images into low-dimensional coordinates. For that purpose, there exist several methods. The traditional ones are Principal Component Analysis (PCA) and Multidimensional Scaling (MDS). These methods are simple to implement and efficient in discovering the structure of data lying on or near linear subspaces of the high-dimensional input space. However, face images do not satisfy this constraint as they lie on a complex nonlinear and nonconvex manifold in the high-dimensional space. Therefore, such linear methods generally fail to discover the real structure of the face images in the low-dimensional space. As an alternative to PCA and MDS, one can consider some nonlinear dimensionality reduction methods such as Self-Organizing Maps (SOM) [9], Generative Topographic Mapping (GTM) [10], Sammon s Mappings (SM) [11] etc. Though these methods can also handle nonlinear manifolds, most of them tend to involve several free parameters such as learning rates and convergence criteria. In addition, most of these methods do not have an obvious guarantee of convergence to the global optimum. Fortunately, in the recent

4 4 years, a set of new manifold learning algorithms have emerged. These methods are based on an Eigen decomposition and combine the major algorithmic features of PCA and MDS (computational efficiency, global optimality, and flexible asymptotic convergence guarantees) with flexibility to learn a broad class of nonlinear manifolds. Among these algorithms are Locally Linear Embedding (LLE) [12], ISOmetric feature MAPping (ISOMAP) [13] and Laplacian Eigenmaps [14]. 3 Proposed Approach to Video-Video Face Recognition We approach the problem of video-to-video face recognition from manifold learning perspective. We adopt the LLE algorithm for manifold learning due to its demonstrated simplicity and efficiency to recover meaningful low-dimensional structures hidden in complex and high-dimensional data such as face images. LLE is an unsupervised learning algorithm which maps high-dimensional data onto a low-dimensional, neighbor-preserving embedding space. In brief, considering a set of N face images and organizing them into a matrix X (where each column vector represents a face), the LLE algorithm involves then the following three steps: 1. Find the k nearest neighbors of each point X i. 2. Compute the weights W ij that best reconstruct each data point from its neighbors, minimizing the cost in Equation (3): 2 N ǫ(w) = X i W ij X j (3) i=1 j neighbors(i) while enforcing the constraints W ij = 0 if X j is not a neighbor of X i, and N j=1 W ij = 1 for every i (to ensure that W is translation-invariant). 3. Compute the embedding Y (of lower dimensionality d << D, where D is the dimension of the input data) best reconstructed by the weights W ij minimizing the quadratic form in Equation (4): 2 N Φ(Y ) = Y i W ij Y j (4) i=1 j neighbors(i) under constraints N i=1 Y i = 0 (to ensure a translation-invariant embedding) and 1 N N i=1 Y iyi T = 0 (normalized unit covariance). The aim of the first two steps of the algorithm is to preserve the local geometry of the data in the low-dimensional space, while the last step discovers the global structure by integrating information from overlapping local neighborhoods. LLE is an efficient approach to compute the low-dimensional embeddings of high-dimensional data assumed to lie on a non-linear manifold. Its ability to deal with large sizes of high-dimensional data and its non-iterative way to find the embeddings make it attractive.

5 Manifold Learning for Video-to-Video Face Recognition 5 Given a set of training face video sequences with one or more sequences per person. For each person, we first apply the LLE algorithm on all his/her face images in the training set. We obtain then coordinates in the low-dimensional space, thus defining a face manifold of the person. Let us denote then the obtained embedding for a given person P as ξ P. Note that the calculation of ξ P involves only two free parameters which are the number of neighbors (k) and the dimension of the embedding space (d). A discussion on the values of these two parameters can be found in [7]. To determine the identity of an unknown person in a given face sequence {Face frame(1),face frame(2),...,face frame(l) } we first project every face instance Face frame(i) into the face manifold of each subject in the low-dimensional space. The closest manifold will then determine the identity of the person in the sequence. Fig. 2 shows an example of embedding results of three video sequences of the subjects shown in Fig. 3. The projection of the target face sequence into the manifold of person P is done using the following steps: a. Let now X i be the column vector representing the face image (Face frame(i) ) from the new sequence. b. Find the k nearest neighbors of each point X i among the training face samples of person P. c. Compute the weights W ij that best reconstruct each data point X i from its neighbors using Equation (3). d. Use the obtained weights W ij to compute the embedding Yi P of each point X i (i.e. Face frame(i) ) as: Y P i = j neighbors(x i) W ij ξ P j (5) where ξj P refers to the embedding point of the j th neighbor of the point X i in the face manifold of person P. As a result, we obtain the embedding Y P of the new face sequence in every face manifold ξ P. Then, we compute how close is the embedding Y P to the face manifold ξ P using: D P = 1 L L Y P i=1 i ξ P(i) j (6) where L is the length of the target face sequence, Yi P is the embedding of the point X i in the low-dimensional space and ξ P(i) j is the closest point (in term of Euclidean distance) from the manifold ξ P to Yi P. Finally, the identity of the L person in the target face sequence is given by: argmin i=1 Yi P ξ P(i) j. p 4 Experimental Analysis For experimental analysis, we considered the VidTIMIT [15] face video database containing 43 talking subjects (19 female and 24 male), reciting ten short sen-

6 6 Fig. 2. Examples of embedding results of 3 sequences of the subjects shown in Fig. 3 tences in three sessions with an average delay of a week between sessions, allowing for appearance and mood changes. In total, there are ten face sequences per persons. From each sequence, we automatically detected the eye positions from the first frame. The determined eye positions are then used to crop the facial area in the whole sequence, yielding in not well aligned face images. Finally, we scaled the resulted images into four different resolutions: 20 20, 40 40, and pixels. Examples of face images from some sequences are shown in Fig. 3. For evaluation, we randomly selected one face sequence per person for training while the rest was used for testing. In all our experiments, we considered the average recognition rates of 100 random permutations. For comparative study, we also implemented some state-of-the-art methods including three still image-based methods (PCA, LDA and LBP [16]) and two spatiotemporal-based approaches (HMM [2] and ARMA [1]). For still imagebased analysis, we adopted a scheme proposed in [4] to perform appearance-based face recognition from videos. The approach consists of performing unsupervised learning to extract a set of K most representative samples (or exemplars) from the raw gallery videos (K = 3 in our experiments). Once these exemplars are extracted, we build a view-based system and use a probabilistic voting strategy to recognize the individuals in the probe video sequences. The performance of our proposed approach and also those of the considered methods under four different resolutions are plotted in Fig. 4. From the results, we can notice that all the methods perform quite well but the proposed manifold-based approach significantly outperforms all other methods in all im-

7 Manifold Learning for Video-to-Video Face Recognition 7 Fig. 3. Examples of facial images extracted from videos of three different subjects age resolution configurations. For instance, at image resolution of 60 60, our approach yielded in recognition rate of 99.8% while PCA, LDA, LBP, HMM, and ARMA yielded in recognition rates of 94.2%, 94.0%, 97.6%, 92.9% and 95.8%, respectively. It is worth noting that, in addition to its efficiency, our approach involves only two free parameters which are quite easy to determine [7]. From the results, we can also notice that the spatiotemporal-based methods (HMM and ARMA) do not always perform better than PCA, LDA, and LBP based methods. This supports the conclusions of other researchers indicating that using spatiotemporal representations does not systematically enhance the recognition performance. Our results also show that low-image resolutions affect all methods and the best results using the proposed manifold-based approach are obtained using pixels as image resolution. Table 1. The performance of different methods using image resolution of 60x60 pixels Method Recognition rate PCA 94.2 % LDA 94.0 % LBP [16] 97.6 % HMM [2] 92.9 % ARMA [1] 95.8 % Manifold Learning 99.8 %

8 8 Fig. 4. Performance of the considered methods under four different resolutions 5 Conclusion To overcome the limitations of traditional video-based face recognition methods, we introduced a novel video-to-video matching approach based on manifold learning. Our approach consisted of first learning the hidden low-dimensional manifold of each individual. Then, a target face sequence is projected into each manifold for classification. The closest manifold determined the identity of the person in the target face video sequence. Experiments on a large set of talking faces under different resolutions showed excellent results outperforming stateof-the-art approaches. Our future work consists of extending our approach to multi-view face recognition from videos and experimenting with much larger databases. References 1. Aggarwal, G., Chowdhury, A.R., Chellappa, R.: A system identification approach for video-based face recognition. In: 17th ICPR. Volume 4. (2004) Liu, X., Chen, T.: Video-based face recognition using adaptive hidden markov models. In: IEEE Int. Conf. on CVPR. (2003) Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.: Video-based face recognition using probabilistic appearance manifolds. In: IEEE Int. Conf. on CVPR. (2003) Hadid, A., Pietikäinen, M.: Selecting models from videos for appearance-based face recognition. In: 17th ICPR. (2004) Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: Component based versus global approaches. CVIU 91(1-2) (2003) Hadid, A., Pietikäinen, M.: An experimental investigation about the integration of facial dynamics in video-based face recognition. ELCVIA 5(1) (2005) Anonymous

9 Manifold Learning for Video-to-Video Face Recognition 9 8. Seung, H.: The manifold ways of perception. Science 290(12) (2000) Kohonen, T., ed.: Self-Organizing Maps. Springer-Verlag, Berlin (1997) 10. Bishop, C.M., Svensen, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10(1) (1998) Sammon, J.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18(5) (1969) Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500) (2000) Tenenbaum, J.B., DeSilva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500) (2000) Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in NIPS 14. (2002) Sanderson, C., ed.: Biometric Person Recognition: Face, Speech and Fusion. VDM- Verlag (2008) 16. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE TPAMI 28(12) (2006)

Selecting Models from Videos for Appearance-Based Face Recognition

Selecting Models from Videos for Appearance-Based Face Recognition Selecting Models from Videos for Appearance-Based Face Recognition Abdenour Hadid and Matti Pietikäinen Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering P.O.

More information

Robust Pose Estimation using the SwissRanger SR-3000 Camera

Robust Pose Estimation using the SwissRanger SR-3000 Camera Robust Pose Estimation using the SwissRanger SR- Camera Sigurjón Árni Guðmundsson, Rasmus Larsen and Bjarne K. Ersbøll Technical University of Denmark, Informatics and Mathematical Modelling. Building,

More information

Appearance Manifold of Facial Expression

Appearance Manifold of Facial Expression Appearance Manifold of Facial Expression Caifeng Shan, Shaogang Gong and Peter W. McOwan Department of Computer Science Queen Mary, University of London, London E1 4NS, UK {cfshan, sgg, pmco}@dcs.qmul.ac.uk

More information

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM Olga Kouropteva, Oleg Okun and Matti Pietikäinen Machine Vision Group, Infotech Oulu and Department of Electrical and

More information

Non-linear dimension reduction

Non-linear dimension reduction Sta306b May 23, 2011 Dimension Reduction: 1 Non-linear dimension reduction ISOMAP: Tenenbaum, de Silva & Langford (2000) Local linear embedding: Roweis & Saul (2000) Local MDS: Chen (2006) all three methods

More information

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition Technical Report Title: Manifold learning and Random Projections for multi-view object recognition Authors: Grigorios Tsagkatakis 1 and Andreas Savakis 2 1 Center for Imaging Science, Rochester Institute

More information

Head Frontal-View Identification Using Extended LLE

Head Frontal-View Identification Using Extended LLE Head Frontal-View Identification Using Extended LLE Chao Wang Center for Spoken Language Understanding, Oregon Health and Science University Abstract Automatic head frontal-view identification is challenging

More information

The Analysis of Parameters t and k of LPP on Several Famous Face Databases

The Analysis of Parameters t and k of LPP on Several Famous Face Databases The Analysis of Parameters t and k of LPP on Several Famous Face Databases Sujing Wang, Na Zhang, Mingfang Sun, and Chunguang Zhou College of Computer Science and Technology, Jilin University, Changchun

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Dimension Reduction of Image Manifolds

Dimension Reduction of Image Manifolds Dimension Reduction of Image Manifolds Arian Maleki Department of Electrical Engineering Stanford University Stanford, CA, 9435, USA E-mail: arianm@stanford.edu I. INTRODUCTION Dimension reduction of datasets

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Decorrelated Local Binary Pattern for Robust Face Recognition

Decorrelated Local Binary Pattern for Robust Face Recognition International Journal of Advanced Biotechnology and Research (IJBR) ISSN 0976-2612, Online ISSN 2278 599X, Vol-7, Special Issue-Number5-July, 2016, pp1283-1291 http://www.bipublication.com Research Article

More information

Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model

Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model Caifeng Shan, Shaogang Gong, and Peter W. McOwan Department of Computer Science Queen Mary University of London Mile End Road,

More information

Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding (CSSLE)

Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding (CSSLE) 2016 International Conference on Artificial Intelligence and Computer Science (AICS 2016) ISBN: 978-1-60595-411-0 Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding

More information

School of Computer and Communication, Lanzhou University of Technology, Gansu, Lanzhou,730050,P.R. China

School of Computer and Communication, Lanzhou University of Technology, Gansu, Lanzhou,730050,P.R. China Send Orders for Reprints to reprints@benthamscienceae The Open Automation and Control Systems Journal, 2015, 7, 253-258 253 Open Access An Adaptive Neighborhood Choosing of the Local Sensitive Discriminant

More information

Learning to Recognize Faces in Realistic Conditions

Learning to Recognize Faces in Realistic Conditions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

ABSTRACT. Keywords: visual training, unsupervised learning, lumber inspection, projection 1. INTRODUCTION

ABSTRACT. Keywords: visual training, unsupervised learning, lumber inspection, projection 1. INTRODUCTION Comparison of Dimensionality Reduction Methods for Wood Surface Inspection Matti Niskanen and Olli Silvén Machine Vision Group, Infotech Oulu, University of Oulu, Finland ABSTRACT Dimensionality reduction

More information

Learning a Manifold as an Atlas Supplementary Material

Learning a Manifold as an Atlas Supplementary Material Learning a Manifold as an Atlas Supplementary Material Nikolaos Pitelis Chris Russell School of EECS, Queen Mary, University of London [nikolaos.pitelis,chrisr,lourdes]@eecs.qmul.ac.uk Lourdes Agapito

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Generalized Principal Component Analysis CVPR 2007

Generalized Principal Component Analysis CVPR 2007 Generalized Principal Component Analysis Tutorial @ CVPR 2007 Yi Ma ECE Department University of Illinois Urbana Champaign René Vidal Center for Imaging Science Institute for Computational Medicine Johns

More information

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2 A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation Kwanyong Lee 1 and Hyeyoung Park 2 1. Department of Computer Science, Korea National Open

More information

Globally and Locally Consistent Unsupervised Projection

Globally and Locally Consistent Unsupervised Projection Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Globally and Locally Consistent Unsupervised Projection Hua Wang, Feiping Nie, Heng Huang Department of Electrical Engineering

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Sparsity Preserving Canonical Correlation Analysis

Sparsity Preserving Canonical Correlation Analysis Sparsity Preserving Canonical Correlation Analysis Chen Zu and Daoqiang Zhang Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China {zuchen,dqzhang}@nuaa.edu.cn

More information

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS Kirthiga, M.E-Communication system, PREC, Thanjavur R.Kannan,Assistant professor,prec Abstract: Face Recognition is important

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial Image Similarities for Learning Video Manifolds Selen Atasoy MICCAI 2011 Tutorial Image Spaces Image Manifolds Tenenbaum2000 Roweis2000 Tenenbaum2000 [Tenenbaum2000: J. B. Tenenbaum, V. Silva, J. C. Langford:

More information

Automatic Alignment of Local Representations

Automatic Alignment of Local Representations Automatic Alignment of Local Representations Yee Whye Teh and Sam Roweis Department of Computer Science, University of Toronto ywteh,roweis @cs.toronto.edu Abstract We present an automatic alignment procedure

More information

Isometric Mapping Hashing

Isometric Mapping Hashing Isometric Mapping Hashing Yanzhen Liu, Xiao Bai, Haichuan Yang, Zhou Jun, and Zhihong Zhang Springer-Verlag, Computer Science Editorial, Tiergartenstr. 7, 692 Heidelberg, Germany {alfred.hofmann,ursula.barth,ingrid.haas,frank.holzwarth,

More information

Robust Face Recognition Using Enhanced Local Binary Pattern

Robust Face Recognition Using Enhanced Local Binary Pattern Bulletin of Electrical Engineering and Informatics Vol. 7, No. 1, March 2018, pp. 96~101 ISSN: 2302-9285, DOI: 10.11591/eei.v7i1.761 96 Robust Face Recognition Using Enhanced Local Binary Pattern Srinivasa

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

Face Recognition using Laplacianfaces

Face Recognition using Laplacianfaces Journal homepage: www.mjret.in ISSN:2348-6953 Kunal kawale Face Recognition using Laplacianfaces Chinmay Gadgil Mohanish Khunte Ajinkya Bhuruk Prof. Ranjana M.Kedar Abstract Security of a system is an

More information

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition Linear Discriminant Analysis in Ottoman Alphabet Character Recognition ZEYNEB KURT, H. IREM TURKMEN, M. ELIF KARSLIGIL Department of Computer Engineering, Yildiz Technical University, 34349 Besiktas /

More information

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 / CX 4242 October 9, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Volume Variety Big Data Era 2 Velocity Veracity 3 Big Data are High-Dimensional Examples of High-Dimensional Data Image

More information

Learning based face hallucination techniques: A survey

Learning based face hallucination techniques: A survey Vol. 3 (2014-15) pp. 37-45. : A survey Premitha Premnath K Department of Computer Science & Engineering Vidya Academy of Science & Technology Thrissur - 680501, Kerala, India (email: premithakpnath@gmail.com)

More information

A NOVEL APPROACH TO ACCESS CONTROL BASED ON FACE RECOGNITION

A NOVEL APPROACH TO ACCESS CONTROL BASED ON FACE RECOGNITION A NOVEL APPROACH TO ACCESS CONTROL BASED ON FACE RECOGNITION A. Hadid, M. Heikkilä, T. Ahonen, and M. Pietikäinen Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering

More information

Neighbor Line-based Locally linear Embedding

Neighbor Line-based Locally linear Embedding Neighbor Line-based Locally linear Embedding De-Chuan Zhan and Zhi-Hua Zhou National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China {zhandc, zhouzh}@lamda.nju.edu.cn

More information

Color Local Texture Features Based Face Recognition

Color Local Texture Features Based Face Recognition Color Local Texture Features Based Face Recognition Priyanka V. Bankar Department of Electronics and Communication Engineering SKN Sinhgad College of Engineering, Korti, Pandharpur, Maharashtra, India

More information

Nonlinear Generative Models for Dynamic Shape and Dynamic Appearance

Nonlinear Generative Models for Dynamic Shape and Dynamic Appearance Nonlinear Generative Models for Dynamic Shape and Dynamic Appearance Ahmed Elgammal Department of Computer Science, Rutgers University, Piscataway, NJ, USA elgammal@cs.rutgers.edu Abstract Our objective

More information

Semi-Supervised PCA-based Face Recognition Using Self-Training

Semi-Supervised PCA-based Face Recognition Using Self-Training Semi-Supervised PCA-based Face Recognition Using Self-Training Fabio Roli and Gian Luca Marcialis Dept. of Electrical and Electronic Engineering, University of Cagliari Piazza d Armi, 09123 Cagliari, Italy

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Manifold Clustering. Abstract. 1. Introduction

Manifold Clustering. Abstract. 1. Introduction Manifold Clustering Richard Souvenir and Robert Pless Washington University in St. Louis Department of Computer Science and Engineering Campus Box 1045, One Brookings Drive, St. Louis, MO 63130 {rms2,

More information

Facial Expression Recognition Using Expression- Specific Local Binary Patterns and Layer Denoising Mechanism

Facial Expression Recognition Using Expression- Specific Local Binary Patterns and Layer Denoising Mechanism Facial Expression Recognition Using Expression- Specific Local Binary Patterns and Layer Denoising Mechanism 1 2 Wei-Lun Chao, Jun-Zuo Liu, 3 Jian-Jiun Ding, 4 Po-Hung Wu 1, 2, 3, 4 Graduate Institute

More information

Face Recognition using Tensor Analysis. Prahlad R. Enuganti

Face Recognition using Tensor Analysis. Prahlad R. Enuganti Face Recognition using Tensor Analysis Prahlad R. Enuganti The University of Texas at Austin Final Report EE381K 14 Multidimensional Digital Signal Processing May 16, 2005 Submitted to Prof. Brian Evans

More information

Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction

Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction Wei Wang 1, Yan Huang 1, Yizhou Wang 2, Liang Wang 1 1 Center for Research on Intelligent Perception and Computing, CRIPAC

More information

Non-linear CCA and PCA by Alignment of Local Models

Non-linear CCA and PCA by Alignment of Local Models Non-linear CCA and PCA by Alignment of Local Models Jakob J. Verbeek, Sam T. Roweis, and Nikos Vlassis Informatics Institute, University of Amsterdam Department of Computer Science,University of Toronto

More information

LOCAL APPEARANCE BASED FACE RECOGNITION USING DISCRETE COSINE TRANSFORM

LOCAL APPEARANCE BASED FACE RECOGNITION USING DISCRETE COSINE TRANSFORM LOCAL APPEARANCE BASED FACE RECOGNITION USING DISCRETE COSINE TRANSFORM Hazim Kemal Ekenel, Rainer Stiefelhagen Interactive Systems Labs, University of Karlsruhe Am Fasanengarten 5, 76131, Karlsruhe, Germany

More information

Face Recognition Using Wavelet Based Kernel Locally Discriminating Projection

Face Recognition Using Wavelet Based Kernel Locally Discriminating Projection Face Recognition Using Wavelet Based Kernel Locally Discriminating Projection Venkatrama Phani Kumar S 1, KVK Kishore 2 and K Hemantha Kumar 3 Abstract Locality Preserving Projection(LPP) aims to preserve

More information

The Role of Manifold Learning in Human Motion Analysis

The Role of Manifold Learning in Human Motion Analysis The Role of Manifold Learning in Human Motion Analysis Ahmed Elgammal and Chan Su Lee Department of Computer Science, Rutgers University, Piscataway, NJ, USA {elgammal,chansu}@cs.rutgers.edu Abstract.

More information

Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models

Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models Person Authentication from Video of Faces: A Behavioral and Physiological Approach Using Pseudo Hierarchical Hidden Markov Models Manuele Bicego 1, Enrico Grosso 1, and Massimo Tistarelli 2 1 DEIR - University

More information

Differential Structure in non-linear Image Embedding Functions

Differential Structure in non-linear Image Embedding Functions Differential Structure in non-linear Image Embedding Functions Robert Pless Department of Computer Science, Washington University in St. Louis pless@cse.wustl.edu Abstract Many natural image sets are samples

More information

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Markus Turtinen, Topi Mäenpää, and Matti Pietikäinen Machine Vision Group, P.O.Box 4500, FIN-90014 University

More information

Sparse Manifold Clustering and Embedding

Sparse Manifold Clustering and Embedding Sparse Manifold Clustering and Embedding Ehsan Elhamifar Center for Imaging Science Johns Hopkins University ehsan@cis.jhu.edu René Vidal Center for Imaging Science Johns Hopkins University rvidal@cis.jhu.edu

More information

Diagonal Principal Component Analysis for Face Recognition

Diagonal Principal Component Analysis for Face Recognition Diagonal Principal Component nalysis for Face Recognition Daoqiang Zhang,2, Zhi-Hua Zhou * and Songcan Chen 2 National Laboratory for Novel Software echnology Nanjing University, Nanjing 20093, China 2

More information

Global versus local methods in nonlinear dimensionality reduction

Global versus local methods in nonlinear dimensionality reduction Global versus local methods in nonlinear dimensionality reduction Vin de Silva Department of Mathematics, Stanford University, Stanford. CA 94305 silva@math.stanford.edu Joshua B. Tenenbaum Department

More information

Multidirectional 2DPCA Based Face Recognition System

Multidirectional 2DPCA Based Face Recognition System Multidirectional 2DPCA Based Face Recognition System Shilpi Soni 1, Raj Kumar Sahu 2 1 M.E. Scholar, Department of E&Tc Engg, CSIT, Durg 2 Associate Professor, Department of E&Tc Engg, CSIT, Durg Email:

More information

Global versus local methods in nonlinear dimensionality reduction

Global versus local methods in nonlinear dimensionality reduction Global versus local methods in nonlinear dimensionality reduction Vin de Silva Department of Mathematics, Stanford University, Stanford. CA 94305 silva@math.stanford.edu Joshua B. Tenenbaum Department

More information

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting

Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Iterative Non-linear Dimensionality Reduction by Manifold Sculpting Mike Gashler, Dan Ventura, and Tony Martinez Brigham Young University Provo, UT 84604 Abstract Many algorithms have been recently developed

More information

Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction

Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction Ham Rara, Shireen Elhabian, Asem Ali University of Louisville Louisville, KY {hmrara01,syelha01,amali003}@louisville.edu Mike Miller,

More information

Sensitivity to parameter and data variations in dimensionality reduction techniques

Sensitivity to parameter and data variations in dimensionality reduction techniques Sensitivity to parameter and data variations in dimensionality reduction techniques Francisco J. García-Fernández 1,2,MichelVerleysen 2, John A. Lee 3 and Ignacio Díaz 1 1- Univ. of Oviedo - Department

More information

A new Graph constructor for Semi-supervised Discriminant Analysis via Group Sparsity

A new Graph constructor for Semi-supervised Discriminant Analysis via Group Sparsity 2011 Sixth International Conference on Image and Graphics A new Graph constructor for Semi-supervised Discriminant Analysis via Group Sparsity Haoyuan Gao, Liansheng Zhuang, Nenghai Yu MOE-MS Key Laboratory

More information

PATTERN RECOGNITION USING NEURAL NETWORKS

PATTERN RECOGNITION USING NEURAL NETWORKS PATTERN RECOGNITION USING NEURAL NETWORKS Santaji Ghorpade 1, Jayshree Ghorpade 2 and Shamla Mantri 3 1 Department of Information Technology Engineering, Pune University, India santaji_11jan@yahoo.co.in,

More information

Facial Expression Recognition with Emotion-Based Feature Fusion

Facial Expression Recognition with Emotion-Based Feature Fusion Facial Expression Recognition with Emotion-Based Feature Fusion Cigdem Turan 1, Kin-Man Lam 1, Xiangjian He 2 1 The Hong Kong Polytechnic University, Hong Kong, SAR, 2 University of Technology Sydney,

More information

3D Posture Representation Using Meshless Parameterization with Cylindrical Virtual Boundary

3D Posture Representation Using Meshless Parameterization with Cylindrical Virtual Boundary 3D Posture Representation Using Meshless Parameterization with Cylindrical Virtual Boundary Yunli Lee and Keechul Jung School of Media, College of Information Technology, Soongsil University, Seoul, South

More information

A Discriminative Non-Linear Manifold Learning Technique for Face Recognition

A Discriminative Non-Linear Manifold Learning Technique for Face Recognition A Discriminative Non-Linear Manifold Learning Technique for Face Recognition Bogdan Raducanu 1 and Fadi Dornaika 2,3 1 Computer Vision Center, 08193 Bellaterra, Barcelona, Spain bogdan@cvc.uab.es 2 IKERBASQUE,

More information

Curvilinear Distance Analysis versus Isomap

Curvilinear Distance Analysis versus Isomap Curvilinear Distance Analysis versus Isomap John Aldo Lee, Amaury Lendasse, Michel Verleysen Université catholique de Louvain Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium {lee,verleysen}@dice.ucl.ac.be,

More information

Using Graph Model for Face Analysis

Using Graph Model for Face Analysis Report No. UIUCDCS-R-05-2636 UILU-ENG-05-1826 Using Graph Model for Face Analysis by Deng Cai, Xiaofei He, and Jiawei Han September 05 Using Graph Model for Face Analysis Deng Cai Xiaofei He Jiawei Han

More information

Modelling and Visualization of High Dimensional Data. Sample Examination Paper

Modelling and Visualization of High Dimensional Data. Sample Examination Paper Duration not specified UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Modelling and Visualization of High Dimensional Data Sample Examination Paper Examination date not specified Time: Examination

More information

A Real Time Facial Expression Classification System Using Local Binary Patterns

A Real Time Facial Expression Classification System Using Local Binary Patterns A Real Time Facial Expression Classification System Using Local Binary Patterns S L Happy, Anjith George, and Aurobinda Routray Department of Electrical Engineering, IIT Kharagpur, India Abstract Facial

More information

An Improved Face Recognition Technique Based on Modular LPCA Approach

An Improved Face Recognition Technique Based on Modular LPCA Approach Journal of Computer Science 7 (12): 1900-1907, 2011 ISSN 1549-3636 2011 Science Publications An Improved Face Recognition Technique Based on Modular LPCA Approach 1 Mathu Soothana S. Kumar, 1 Retna Swami

More information

Rate-coded Restricted Boltzmann Machines for Face Recognition

Rate-coded Restricted Boltzmann Machines for Face Recognition Rate-coded Restricted Boltzmann Machines for Face Recognition Yee Whye Teh Department of Computer Science University of Toronto Toronto M5S 2Z9 Canada ywteh@cs.toronto.edu Geoffrey E. Hinton Gatsby Computational

More information

APPLICATION OF LOCAL BINARY PATTERN AND PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION

APPLICATION OF LOCAL BINARY PATTERN AND PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION APPLICATION OF LOCAL BINARY PATTERN AND PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION 1 CHETAN BALLUR, 2 SHYLAJA S S P.E.S.I.T, Bangalore Email: chetanballur7@gmail.com, shylaja.sharath@pes.edu Abstract

More information

Local Discriminant Embedding and Its Variants

Local Discriminant Embedding and Its Variants Local Discriminant Embedding and Its Variants Hwann-Tzong Chen Huang-Wei Chang Tyng-Luh Liu Institute of Information Science, Academia Sinica Nankang, Taipei 115, Taiwan {pras, hwchang, liutyng}@iis.sinica.edu.tw

More information

Linear Discriminant Analysis for 3D Face Recognition System

Linear Discriminant Analysis for 3D Face Recognition System Linear Discriminant Analysis for 3D Face Recognition System 3.1 Introduction Face recognition and verification have been at the top of the research agenda of the computer vision community in recent times.

More information

Integrating Face-ID into an Interactive Person-ID Learning System

Integrating Face-ID into an Interactive Person-ID Learning System Integrating Face-ID into an Interactive Person-ID Learning System Stephan Könn, Hartwig Holzapfel, Hazım Kemal Ekenel, Alex Waibel InterACT Research, Interactive Systems Labs, Universität Karlsruhe, Germany

More information

Gait analysis for person recognition using principal component analysis and support vector machines

Gait analysis for person recognition using principal component analysis and support vector machines Gait analysis for person recognition using principal component analysis and support vector machines O V Strukova 1, LV Shiripova 1 and E V Myasnikov 1 1 Samara National Research University, Moskovskoe

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Linear Laplacian Discrimination for Feature Extraction

Linear Laplacian Discrimination for Feature Extraction Linear Laplacian Discrimination for Feature Extraction Deli Zhao Zhouchen Lin Rong Xiao Xiaoou Tang Microsoft Research Asia, Beijing, China delizhao@hotmail.com, {zhoulin,rxiao,xitang}@microsoft.com Abstract

More information

Extended Isomap for Pattern Classification

Extended Isomap for Pattern Classification From: AAAI- Proceedings. Copyright, AAAI (www.aaai.org). All rights reserved. Extended for Pattern Classification Ming-Hsuan Yang Honda Fundamental Research Labs Mountain View, CA 944 myang@hra.com Abstract

More information

An Efficient Face Recognition using Discriminative Robust Local Binary Pattern and Gabor Filter with Single Sample per Class

An Efficient Face Recognition using Discriminative Robust Local Binary Pattern and Gabor Filter with Single Sample per Class An Efficient Face Recognition using Discriminative Robust Local Binary Pattern and Gabor Filter with Single Sample per Class D.R.MONISHA 1, A.USHA RUBY 2, J.GEORGE CHELLIN CHANDRAN 3 Department of Computer

More information

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 38 CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 3.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 3.1.1 Introduction In the previous chapter, a brief literature review on conventional

More information

Discriminative Locality Alignment

Discriminative Locality Alignment Discriminative Locality Alignment Tianhao Zhang 1, Dacheng Tao 2,3,andJieYang 1 1 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China 2 School of Computer

More information

Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation

Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation Chan-Su Lee and Ahmed Elgammal Rutgers University, Piscataway, NJ, USA {chansu, elgammal}@cs.rutgers.edu Abstract. We

More information

A Stochastic Optimization Approach for Unsupervised Kernel Regression

A Stochastic Optimization Approach for Unsupervised Kernel Regression A Stochastic Optimization Approach for Unsupervised Kernel Regression Oliver Kramer Institute of Structural Mechanics Bauhaus-University Weimar oliver.kramer@uni-weimar.de Fabian Gieseke Institute of Structural

More information

Heat Kernel Based Local Binary Pattern for Face Representation

Heat Kernel Based Local Binary Pattern for Face Representation JOURNAL OF LATEX CLASS FILES 1 Heat Kernel Based Local Binary Pattern for Face Representation Xi Li, Weiming Hu, Zhongfei Zhang, Hanzi Wang Abstract Face classification has recently become a very hot research

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Video Based Face Recognition Using Graph Matching

Video Based Face Recognition Using Graph Matching 1 2 Video Based Face Recognition Using Graph Matching 3 4 5 6 Gayathri Mahalingam and Chandra Kambhamettu Video/Image Modeling and Synthesis (VIMS) Laboratory, Department of Computer and Information Sciences,

More information

Laplacian Faces: A Face Recognition Tool

Laplacian Faces: A Face Recognition Tool Laplacian Faces: A Face Recognition Tool Prof. Sami M Halwani 1, Prof. M.V.Ramana Murthy 1, Prof. S.B.Thorat 1 Faculty of Computing and Information Technology, King Abdul Aziz University, Rabigh, KSA,Email-mv.rm50@gmail.com,

More information

CHAPTER 5 GLOBAL AND LOCAL FEATURES FOR FACE RECOGNITION

CHAPTER 5 GLOBAL AND LOCAL FEATURES FOR FACE RECOGNITION 122 CHAPTER 5 GLOBAL AND LOCAL FEATURES FOR FACE RECOGNITION 5.1 INTRODUCTION Face recognition, means checking for the presence of a face from a database that contains many faces and could be performed

More information

Linear local tangent space alignment and application to face recognition

Linear local tangent space alignment and application to face recognition Neurocomputing 70 (2007) 1547 1553 Letters Linear local tangent space alignment and application to face recognition Tianhao Zhang, Jie Yang, Deli Zhao, inliang Ge Institute of Image Processing and Pattern

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

IMAGE RETRIEVAL USING EFFICIENT FEATURE VECTORS GENERATED FROM COMPRESSED DOMAIN

IMAGE RETRIEVAL USING EFFICIENT FEATURE VECTORS GENERATED FROM COMPRESSED DOMAIN IMAGE RERIEVAL USING EFFICIEN FEAURE VECORS GENERAED FROM COMPRESSED DOMAIN Daidi Zhong, Irek Defée Department of Information echnology, ampere University of echnology. P.O. Box 553, FIN-33101 ampere,

More information

Facial Expression Recognition Using Non-negative Matrix Factorization

Facial Expression Recognition Using Non-negative Matrix Factorization Facial Expression Recognition Using Non-negative Matrix Factorization Symeon Nikitidis, Anastasios Tefas and Ioannis Pitas Artificial Intelligence & Information Analysis Lab Department of Informatics Aristotle,

More information

Local Similarity based Linear Discriminant Analysis for Face Recognition with Single Sample per Person

Local Similarity based Linear Discriminant Analysis for Face Recognition with Single Sample per Person Local Similarity based Linear Discriminant Analysis for Face Recognition with Single Sample per Person Fan Liu 1, Ye Bi 1, Yan Cui 2, Zhenmin Tang 1 1 School of Computer Science and Engineering, Nanjing

More information

Image-Based Face Recognition using Global Features

Image-Based Face Recognition using Global Features Image-Based Face Recognition using Global Features Xiaoyin xu Research Centre for Integrated Microsystems Electrical and Computer Engineering University of Windsor Supervisors: Dr. Ahmadi May 13, 2005

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information