Fall 2018 September 18, Written Homework 02

Size: px
Start display at page:

Download "Fall 2018 September 18, Written Homework 02"

Transcription

1 S1800 Discrete Structures Profs. Gold, Pavlu, Rachlin & Sundaram Fall 2018 September 18, 2018 ssigned: Tue 18 Sep 2018 Due: Tue 25 Sep 2018 Instructions: Written Homework 02 The assignment has to be uploaded to lackboard by the due date. NO assignment will be accepted after 11:59pm on that day. We expect that you will study with friends and often work out problem solutions together, but you must write up your own solutions, in your own words. heating will not be tolerated. Professors, Ts, and peer tutors will be available to answer questions but will not do your homework for you. One of our course goals is to teach you how to think on your own. guitar You may turn in work to lackboard that is either handwritten and scanned, written in a word processor such as Word, or typeset in LaTeX. In the case of handwritten work, we may deduct points if the scan is upside down or thework isillegible. To get full credit, show INTERMEDITE steps leading to your answers, throughout. Problem 1 [26 pts (2,2,12,4,6)]: Sets asics i. Let S = {1, 3, 4, 8, 9, 11, 15, 17}. Describe the following sets by listing their elements between braces (listing method). 1. {2n + 1 prime : n S} The set of all prime values 2n + 1 such that n is in S: {3, 7, 17, 19, 23, 31} 2. {n S : 2n + 1 S} The set of all n in S such that 2n + 1 is also in S: {1, 4, 8} ( ) ( ) ii. Shade the indicated regions of the following Venn diagrams. ( ) ( ) ( ) 1

2 ) ( ) ( ) ( ) ( ) ( ) Two notes: (1) ( ) = = = (2) ( ) = ( ) = ( ) ( ) = iii. Let D = {(x, y) R 2 : x 2 + y 2 = 1}. re there sets, R such that D =? Your answer should either describe sets and with the required property or prove that they can t exist. Note that D is the disk of radius 1 centered at the origin. It includes the points (1,0) and (0,1). Were D to be a cartesian product D =, then we would have 1 as (1, 0) D and 1 as (0, 1) D. This would imply (1, 1) which is impossible as (1, 1) / D. Thus D is not a artesian product. iv. onsider the sets = {(x, y) R 2 : 4x y = 3}, = {(t + 1, 4t + 1) : t R}, = {(2a, 8a 3) : a R}. Prove that = =. (Hint: proving that two sets and are equal often involves showing the two inclusions and.) We prove and. : Suppose that (x, y). Note that then y = 4x 3. To show (x, y), we look for a value t such that (t + 1, 4t + 1) = (x, y). Setting t = x 1 we see that indeed x = t + 1 and y = 4x 3 = 4(t + 1) 3 = 4t + 1. Thus (x, y). : Suppose that (x, y). To show that (x, y), we need to verify that 4x y = 1. y definition of, the fact that (x, y) implies that there is some value t such that x = t + 1 and y = 4t + 1. Then 4x y = 4(t + 1) (4t + 1) = 3 and therefore (x, y). = : Since (x, y) in set contains all real values x and exactly one pair-value y = 4x 3 for each one of them, we can do a change in the iterator (variable) x = 2a which still iterates through all real values, and have corresponding y = 4x 3 = 4 2a 3 = 8a 3 2

3 pair value, thus iterating over the same pairs. This is a dangerous method to use without certain checks on variable domain (see change of variable for calculus). Problem 2 [22 pts (5, 4, 1, 3, 3, 6)]: ounting i. Students enrolled in S1800 are 300 women and 423 men. There are four sections, each of size at least 171, and each with at most 80 women enrolled. Prove that at least one section has at least 100 men, and that no section has more than 150 men enrolled. Proof. Pigeonhole principle gives us that at least one section has at least 423/4 = men. For the upper bound: every section has at least =91 men, so every three sections have together at least 91*3 = 273 men, leaving at most =150 men for the fourth section. ii. math professor wears for each class a combination of : one of his three hats (red, blue, green); one of his pants (black, blue, white, green); one of his shirts (white, red, black); and one of his pair of shoes (black, red, blue, white). He never wears combinations with three items of the same color. How many different combinations are wearable? There are 3*4*3*4 total combinations (product rule), including the following 13 invalid ones with three items of the same color: - 4 combinations with common red - 3 combinations with common blue - 3 combinations with common black - 3 combinations with common white Thus =131 valid combinations. iii. The professor is teaching 70 lectures for the term. an he wear a different combination for each lecture during one term? Yes, because 131 > 70 iv. If he does wear a different combination each lecture, prove that he must use either the red or the blue shoes that term. If the professor restricts combinations to only white and black shoes, he has only 3*4*3*2-3-3 =66 valid combinations, not enough for 70 lectures. v. There are 4 terms for the year. Prove that at least one combination will be used at least 3 times during the year. 3

4 Proof. 4*70 = 280 lectures. Pigeonhole principle gives that one dressing combination will be used at least 280/131 = 2.14 lectures, thus 3 lectures. vi. How many valid combinations have blue hat or shoes? 1) We compute the complement, i.e. number of combinations without blue hat or blue shoes, that is with hats red or green and shoes black red or white: there are 2*4*3*3 = 72 possibilites out of which invalid are - 4 for common red - 2 for common black - 2 for common white So 72-8 = 64 combinations without required blue. The final answer is = 67 combinations have blue hat or shoes (includes combinations with both blue) 2) by Inclusion-Exclusion H = set of combinations with blue hat S = set of combinations with blue shoes H S = set of combinations with blue hat ND shoes ounting H : 4*3*4 excluding 3 (blue) + 1 (black) + 1 (white) = 48-5=43 ounting S : 3*4*3 excluding 3 (blue) = 36-3=33 ounting H S : 4*3 excluding 3 (blue) = 9 Finally H S = H + S H S = = 67 Problem 3 [17 pts (4, 8, 5)]: ridges again Let edge (u, v) be part of undirected graph G, and we define the sets S u = {x vertex path(x, u) exists which does not pass through v} (includes u) S v = {x vertex path(x, v) exists which does not pass through u} (includes v) i. Prove that union S u S v is exactly one of the connected components of the graph. Proof. Let be the component that contains vertices u and v. ny other vertex x in this component is connected to u, thus a simple path(x, u) exists. If this path contains v, then x S v, otherwise x S u. Further, any vertex y in either of the sets is connected to both u and v, thus part of. ii. Prove that edge (u, v) is a bridge if and only if the two sets are disjoint (S u S v = ) Proof. (u, v) not bridge u, v is part of a simple cycle (u, v, x 1, x 2,..., x k, u) with k 1 there exists x i in both S u (connected to u without passing through v) and S v (connected to v without passing through u) S u S v 4

5 iii. Prove or disprove: the two sets are not disjoint if and only if they are they are equal. Not true, see counterexample. oth sets contain vertex x, but vertices a and b are part of only one set each. Problem 4 [24 pts (6, 5, 3, 10)]: ottleneck Two fixed vertices s and t in the undirected connected graph G=(V,E) have the shortest path p(s, t) of length L. Our goal in this problem is to show that if all paths p(s, t) are long, then there is a bottleneck common to all of them. i. Using set builder notation, list the sets of vertice organized by minimum distance from s: For example S 1 should be the set of vertices that has an edge to s since their shortest path to s is 1; S 2 should be the set of vertices reachable directly from S 1, but not directly from s, etc, up to S L Define the following sets of vertices S 1 = {x V x reachable from s with 1 edge} S 2 = {x V x reachable from s with 2 edges (but not fewer)} S 3 = {x V x reachable from s with 3 edges (but not fewer)} S k = {x V x reachable from s with k edges (but not fewer)} S L = {x V x reachable from s with L edges (but not fewer)} ii. Prove that the sets up to S L are disjoint and non-empty. These sets are non-empty because there is a path L long. Disjoint because they are defined that way: each set contains vertices not already listed in previous sets (therefore not listed in future sets). 5

6 iii. Show that one of the sets has at most ( V 1)/L vertices. If all sets had more than ( V 1)/L vertices (hypothetically), being disjoint sets, the union via sum rule would have more than V 1 vertices, not including s. Thats too many, contradiction. iv. If shortest path p(s, t) has length L > V /2 edges (all paths s t are long), show that all paths from s to t must have a common vertex v (not equal to either s or t) Sets S 1, S 2,..., S L 1 total at most V 2 vertices excluding s and t, and they are L 1 sets, so one must have at most V 2 /(L 1) elements. Now L > V /2 V 2 /(L 1) < 2 which means one must have exactly one element, say vertex v in set S k. ut every path must pass through set S k (because path length is more than k) so all paths must contain v. k > 0 means v is not the start s, and k < L means v is not the end t. n alternative derivation is below. There are others, and they worth full credit if complete. Starting from part (iii), the number of vertices in some set is at most ( V 1)/(L 1) ( V 1)/( V / )... 2( V 1)/ V... < 2 So, a set must have a size 1. If this is not the set S L containing t, that solo vertex is the bottleneck. 6

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, CS1800 Discrete Structures Final

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, CS1800 Discrete Structures Final CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, 2016 Instructions: CS1800 Discrete Structures Final 1. The exam is closed book and closed notes. You may

More information

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, CS1800 Discrete Structures Final

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, CS1800 Discrete Structures Final CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague December 16, 2016 Instructions: CS1800 Discrete Structures Final 1. The exam is closed book and closed notes. You may

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

CS1800 Discrete Structures Final Version A

CS1800 Discrete Structures Final Version A CS1800 Discrete Structures Fall 2017 Profs. Aslam, Gold, & Pavlu December 11, 2017 CS1800 Discrete Structures Final Version A Instructions: 1. The exam is closed book and closed notes. You may not use

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

Counting: Basics. Rosen, Chapter 6.1

Counting: Basics. Rosen, Chapter 6.1 Counting: Basics Rosen, Chapter 6.1 A simple counting problem n You have 6 pairs of pants and 10 shirts. How many different outfits does this give? n Possible answers: A) 6 x 10 B) 6 + 10 Counting: the

More information

CS1800 Discrete Structures Final Version B

CS1800 Discrete Structures Final Version B CS1800 Discrete Structures Fall 2017 Profs. Aslam, Gold, & Pavlu December 15, 2017 CS1800 Discrete Structures Final Version B Instructions: 1. The exam is closed book and closed notes. You may not use

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Math Exam 2 Solutions. Problem 1 (8 points) Problem 2 (8 points) Problem 3 (12 points) Problem 4 (26 points) Problem 5 (14 points)

Math Exam 2 Solutions. Problem 1 (8 points) Problem 2 (8 points) Problem 3 (12 points) Problem 4 (26 points) Problem 5 (14 points) Math 400 - Exam 2 Solutions Name: ID: Problem 1 (8 points) Problem 2 (8 points) Problem 3 (12 points) Problem 4 (26 points) Problem 5 (14 points) Problem 6 (6 points) Problem 7 (12 points) Problem 8 (14

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye HW 2

Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye HW 2 CS 70 Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye HW 2 Due Tuesday July 5 at 1:59PM 1. (8 points: 3/5) Hit or miss For each of the claims and proofs below, state whether

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Design and Analysis of Algorithms February, 01 Massachusetts Institute of Technology 6.046J/18.410J Profs. Dana Moshkovitz and Bruce Tidor Handout 8 Problem Set Solutions This problem set is due at 9:00pm

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying.

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying. May 9, 2003 Show all work Name There are 260 points available on this test 1 (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying where

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

It is important that you show your work. There are 134 points available on this test.

It is important that you show your work. There are 134 points available on this test. Math 1165 Discrete Math Test April 4, 001 Your name It is important that you show your work There are 134 points available on this test 1 (10 points) Show how to tile the punctured chess boards below with

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 2-1Numeration Systems Hindu-Arabic Numeration System Tally Numeration System Egyptian Numeration System Babylonian Numeration System Mayan Numeration System Roman Numeration System Other Number Base Systems

More information

CSE Winter 2015 Quiz 1 Solutions

CSE Winter 2015 Quiz 1 Solutions CSE 101 - Winter 2015 Quiz 1 Solutions January 12, 2015 1. What is the maximum possible number of vertices in a binary tree of height h? The height of a binary tree is the length of the longest path from

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 PRINT Your Name:, (last) READ AND SIGN The Honor Code: As a member of the UC Berkeley community, I act with honesty,

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

Counting. Rosen, Chapter 6 Walls and Mirrors, Chapter 3

Counting. Rosen, Chapter 6 Walls and Mirrors, Chapter 3 Counting Rosen, Chapter 6 Walls and Mirrors, Chapter 3 Spock's dilemma (Walls and mirrors) n planets in the solar system can only visit k

More information

Graph Representation

Graph Representation Graph Representation Adjacency list representation of G = (V, E) An array of V lists, one for each vertex in V Each list Adj[u] contains all the vertices v such that there is an edge between u and v Adj[u]

More information

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Fall 2006 c Heather Ramsey Page 1 Math 166 - Week in Review #5 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that can

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

Discrete Mathematics Exam File Fall Exam #1

Discrete Mathematics Exam File Fall Exam #1 Discrete Mathematics Exam File Fall 2015 Exam #1 1.) Which of the following quantified predicate statements are true? Justify your answers. a.) n Z, k Z, n + k = 0 b.) n Z, k Z, n + k = 0 2.) Prove that

More information

Solution for Homework set 3

Solution for Homework set 3 TTIC 300 and CMSC 37000 Algorithms Winter 07 Solution for Homework set 3 Question (0 points) We are given a directed graph G = (V, E), with two special vertices s and t, and non-negative integral capacities

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Solutions to In Class Problems Week 9, Fri.

Solutions to In Class Problems Week 9, Fri. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science November 4 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised November 4, 2005, 1254 minutes Solutions

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

Sets. {1, 2, 3, Calvin}.

Sets. {1, 2, 3, Calvin}. ets 2-24-2007 Roughly speaking, a set is a collection of objects. he objects are called the members or the elements of the set. et theory is the basis for mathematics, and there are a number of axiom systems

More information

Notes on Minimum Spanning Trees. Red Rule: Given a cycle containing no red edges, select a maximum uncolored edge on the cycle, and color it red.

Notes on Minimum Spanning Trees. Red Rule: Given a cycle containing no red edges, select a maximum uncolored edge on the cycle, and color it red. COS 521 Fall 2009 Notes on Minimum Spanning Trees 1. The Generic Greedy Algorithm The generic greedy algorithm finds a minimum spanning tree (MST) by an edge-coloring process. Initially all edges are uncolored.

More information

Math 454 Final Exam, Fall 2005

Math 454 Final Exam, Fall 2005 c IIT Dept. Applied Mathematics, December 12, 2005 1 PRINT Last name: Signature: First name: Student ID: Math 454 Final Exam, Fall 2005 I. Examples, Counterexamples and short answer. (6 2 ea.) Do not give

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

1 Algorithm and Proof for Minimum Vertex Coloring

1 Algorithm and Proof for Minimum Vertex Coloring Solutions to Homework 7, CS 173A (Fall 2018) Homework 7 asked you to show that the construction problems Maximum Independent Set, Minimum Vertex Coloring, and Maximum Clique could all be solved in polynomial

More information

Midterm CSE 21 Fall 2012

Midterm CSE 21 Fall 2012 Signature Name Student ID Midterm CSE 21 Fall 2012 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 _ (20 points) _ (15 points) _ (21 points) _ (13 points) _ (9 points) _ (7 points) Total _ (85 points) (80 points

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

Math 3336 Section 6.1 The Basics of Counting The Product Rule The Sum Rule The Subtraction Rule The Division Rule

Math 3336 Section 6.1 The Basics of Counting The Product Rule The Sum Rule The Subtraction Rule The Division Rule Math 3336 Section 6.1 The Basics of Counting The Product Rule The Sum Rule The Subtraction Rule The Division Rule Examples, Examples, and Examples Tree Diagrams Basic Counting Principles: The Product Rule

More information

Solution : a) C(18, 1)C(325, 1) = 5850 b) C(18, 1) + C(325, 1) = 343

Solution : a) C(18, 1)C(325, 1) = 5850 b) C(18, 1) + C(325, 1) = 343 DISCRETE MATHEMATICS HOMEWORK 5 SOL Undergraduate Course College of Computer Science Zhejiang University Fall-Winter 2014 HOMEWORK 5 P344 1. There are 18 mathematics majors and 325 computer science majors

More information

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008

Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Ten questions, each worth the same amount. Complete six of your choice. I will only grade the first six I see. Make sure your name

More information

REU 2006 Discrete Math Lecture 5

REU 2006 Discrete Math Lecture 5 REU 2006 Discrete Math Lecture 5 Instructor: László Babai Scribe: Megan Guichard Editors: Duru Türkoğlu and Megan Guichard June 30, 2006. Last updated July 3, 2006 at 11:30pm. 1 Review Recall the definitions

More information

Counting: Basics. A simple counting problem. Counting: the product rule. Relation to Cartesian products. Relation to Cartesian products

Counting: Basics. A simple counting problem. Counting: the product rule. Relation to Cartesian products. Relation to Cartesian products A simple counting problem Counting: Basics Possible answers: 6 x 10 6 + 10 Rosen, Chapter 6.1 Counting: the product rule If there are n1 ways of doing one task, and for each of those there are n2 ways

More information

CS1800 Discrete Structures Spring 2017 Profs. Gold & Schnyder April 28, CS1800 Discrete Structures Final

CS1800 Discrete Structures Spring 2017 Profs. Gold & Schnyder April 28, CS1800 Discrete Structures Final S1800 Discrete Structures Spring 2017 Profs. Gold & Schnyder pril 28, 2017 S1800 Discrete Structures Final Instructions: 1. The exam is closed book and closed notes. You may not use a calculator or any

More information

Counting Product Rule

Counting Product Rule Counting Product Rule Suppose a procedure can be broken down into a sequence of two tasks. If there are n 1 ways to do the first task and n 2 ways to do the second task, then there are n 1 * n 2 ways to

More information

Solution: It may be helpful to list out exactly what is in each of these events:

Solution: It may be helpful to list out exactly what is in each of these events: MATH 5010(002) Fall 2017 Homework 1 Solutions Please inform your instructor if you find any errors in the solutions. 1. You ask a friend to choose an integer N between 0 and 9. Let A = {N 5}, B = {3 N

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

Math 187 Sample Test II Questions

Math 187 Sample Test II Questions Math 187 Sample Test II Questions Dr. Holmes October 2, 2008 These are sample questions of kinds which might appear on Test II. There is no guarantee that all questions on the test will look like these!

More information

Discrete Structures. Fall Homework3

Discrete Structures. Fall Homework3 Discrete Structures Fall 2015 Homework3 Chapter 5 1. Section 5.1 page 329 Problems: 3,5,7,9,11,15 3. Let P(n) be the statement that 1 2 + 2 2 + +n 2 = n(n + 1)(2n + 1)/6 for the positive integer n. a)

More information

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, 2013 Midterm 1 Solutions 1 True/False 1. The Mayan base 20 system produces representations of size that is asymptotically

More information

Basic Graph Algorithms (CLRS B.4-B.5, )

Basic Graph Algorithms (CLRS B.4-B.5, ) Basic Graph Algorithms (CLRS B.-B.,.-.) Basic Graph Definitions A graph G = (V,E) consists of a finite set of vertices V and a finite set of edges E. Directed graphs: E is a set of ordered pairs of vertices

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University

Sets. X. Zhang Dept. of Computer & Information Sciences Fordham University Sets! X. Zhang Dept. of Computer & Information Sciences Fordham University 1 Outline on sets! Basics!! Specify a set by enumerating all elements!! Notations!! Cardinality!! Venn Diagram!! Relations on

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

CSC 172 Data Structures and Algorithms. Lecture 24 Fall 2017

CSC 172 Data Structures and Algorithms. Lecture 24 Fall 2017 CSC 172 Data Structures and Algorithms Lecture 24 Fall 2017 ANALYSIS OF DIJKSTRA S ALGORITHM CSC 172, Fall 2017 Implementation and analysis The initialization requires Q( V ) memory and run time We iterate

More information

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so:

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: Math 15 - Spring 2017 - Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: dm = {0: [1,15], 1: [2,16,31], 2: [3,17,32], 3: [4,18,33], 4: [5,19,34],

More information

CS261: Problem Set #1

CS261: Problem Set #1 CS261: Problem Set #1 Due by 11:59 PM on Tuesday, April 21, 2015 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions by

More information

CSE 21 Summer 2017 Homework 4

CSE 21 Summer 2017 Homework 4 CSE 21 Summer 201 Homework Key Concepts Minimum Spanning Trees, Directed Acyclic Graphs, Topological Sorting, Single source shortest paths, Counting, Basic probability principles, Independence, Linearity

More information

Definition. A set is a collection of objects. The objects in a set are elements.

Definition. A set is a collection of objects. The objects in a set are elements. Section 1.1: Sets Definition A set is a collection of objects. The objects in a set are elements. Definition A set is a collection of objects. The objects in a set are elements. Examples: {1, cat, ψ} (Sets

More information

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Greedy Algorithms A greedy algorithm is one where you take the step that seems the best at the time while executing the algorithm. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Coin

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

CSCE 310 Assignment 3 Summer 2018

CSCE 310 Assignment 3 Summer 2018 Name(s) CSE Login Programming Language(s) Used Question Points Score 1 10 2 10 3 20 4 5 5 5 6 10 7 20 8 120 Total: 200 Graders Notes: Instructions Follow instructions carefully, failure to do so may result

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: 1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: Input: A CNF formula ϕ with n variables x 1, x 2,..., x n. Output: True if there is an

More information

Basic Counting Principles: The Product Rule

Basic Counting Principles: The Product Rule Section 6.1 Basic Counting Principles: The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n 1 ways to do the first task and n 2 ways to do the second

More information

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 Why this document? Did you ever feel frustrated because of a nasty bug in your code? Did you spend hours looking at the

More information

The Inclusion-Exclusion Principle

The Inclusion-Exclusion Principle The Inclusion-Exclusion Principle Table of Contents 1 Order of a Set 1 2 The Inclusion-Exclusion Principle 1 3 Examples 2 4 Homework Problems 5 4.1 Instructions...................................... 5

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

Graphs and Algorithms 2015

Graphs and Algorithms 2015 Graphs and Algorithms 2015 Teachers: Nikhil Bansal and Jorn van der Pol Webpage: www.win.tue.nl/~nikhil/courses/2wo08 (for up to date information, links to reading material) Goal: Have fun with discrete

More information

Algorithms Activity 6: Applications of BFS

Algorithms Activity 6: Applications of BFS Algorithms Activity 6: Applications of BFS Suppose we have a graph G = (V, E). A given graph could have zero edges, or it could have lots of edges, or anything in between. Let s think about the range of

More information

Finding Strongly Connected Components

Finding Strongly Connected Components Yufei Tao ITEE University of Queensland We just can t get enough of the beautiful algorithm of DFS! In this lecture, we will use it to solve a problem finding strongly connected components that seems to

More information

Cs445 Homework #1. Due 9/9/ :59 pm DRAFT

Cs445 Homework #1. Due 9/9/ :59 pm DRAFT Cs5 Homework #. Due 9/9/06 :59 pm DRAFT Instructions.. Solution may not be submitted by students in pairs.. You may submit a pdf of the homework, either printed or hand-written and scanned, as long as

More information

Graph: representation and traversal

Graph: representation and traversal Graph: representation and traversal CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Acknowledgement The set of slides have use materials from the following resources Slides for textbook

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Graphs Applications of DFS Topological sort Strongly connected components Sofya Raskhodnikova S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith,

More information

Sets. Sets. Subset, universe. Specifying sets, membership. Examples: Specifying a set using a predicate. Examples

Sets. Sets. Subset, universe. Specifying sets, membership. Examples: Specifying a set using a predicate. Examples Sets 2/36 We will not give a precise definition of what is a set, but we will say precisely what you can do with it. Sets Lectures 7 and 8 (hapter 16) (Think of a set as a collection of things of which

More information

Ideally your algorithms for both parts should run in linear time. You will receive partial credit for a polynomial-time algorithm.

Ideally your algorithms for both parts should run in linear time. You will receive partial credit for a polynomial-time algorithm. HW 7: Extra problems Instructor: Sariel Har-Peled CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.0 1 Consider a directed graph G, where each edge is colored either red, white, or

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

Sets and set operations

Sets and set operations CS 44 Discrete Mathematics for CS Lecture Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 3: Due today Homework 4: Due next week on Friday,

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year 1//3. Find all the ways of placing the integers 1,, 3,..., 16 in the boxes below, such that each integer appears in exactly one box, and the sum of every pair of neighboring integers is a perfect square.

More information

CSE 21 Spring 2016 Homework 5. Instructions

CSE 21 Spring 2016 Homework 5. Instructions CSE 21 Spring 2016 Homework 5 Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the quarter. Problems should be solved together,

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

COMP Logic for Computer Scientists. Lecture 17

COMP Logic for Computer Scientists. Lecture 17 COMP 1002 Logic for Computer Scientists Lecture 17 5 2 J Puzzle: the barber In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

More information

Homework 4 Solutions

Homework 4 Solutions CS3510 Design & Analysis of Algorithms Section A Homework 4 Solutions Uploaded 4:00pm on Dec 6, 2017 Due: Monday Dec 4, 2017 This homework has a total of 3 problems on 4 pages. Solutions should be submitted

More information

Figure 1: A directed graph.

Figure 1: A directed graph. 1 Graphs A graph is a data structure that expresses relationships between objects. The objects are called nodes and the relationships are called edges. For example, social networks can be represented as

More information

Quiz 1 Solutions. [1 point] No hackers are willing to waltz. Solution. x R(x) S(x) [1 point] No artists are unwilling to waltz.

Quiz 1 Solutions. [1 point] No hackers are willing to waltz. Solution. x R(x) S(x) [1 point] No artists are unwilling to waltz. Massachusetts Institute of Technology Handout 26 6.042J/18.062J: Mathematics for Computer Science March 15 2000 Professors David Karger and Nancy Lynch Quiz 1 Solutions Problem 1 [10 points] Quantifiers

More information

Chapter 23. Minimum Spanning Trees

Chapter 23. Minimum Spanning Trees Chapter 23. Minimum Spanning Trees We are given a connected, weighted, undirected graph G = (V,E;w), where each edge (u,v) E has a non-negative weight (often called length) w(u,v). The Minimum Spanning

More information