Capturing Cyclic Variability in SI Engines with High-Fidelity LES using a New Parallel Perturbation Approach

Size: px
Start display at page:

Download "Capturing Cyclic Variability in SI Engines with High-Fidelity LES using a New Parallel Perturbation Approach"

Transcription

1 International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress April 3, 2017 Detroit, Michigan Capturing Cyclic Variability in SI Engines with High-Fidelity LES using a New Parallel Perturbation Approach Muhsin M Ameen 1,*, Sibendu Som 1 1 Argonne National Laboratory, Lemont, IL, USA * Corresponding Author mameen@anl.gov 1. Introduction Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation and can result in partial burn, knock and an overall reduction in the reliability of the engine. Prior studies [1] have shown that CCV is caused by a combination of factors including variations in in-cylinder flow pattern, mixture inhomogeneity, turbulence intensity and spark discharge characteristics. The relative importance of these factors will depend on the engine geometry and operating conditions. There have been several experimental studies [2-5] to study CCV in SI engines. However, the experimental studies face a major drawback in that it is difficult to isolate the different coupled processes and hence cannot be used to explain the causes of CCV. Numerical prediction of CCV is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are required to accurately capture the in-cylinder turbulent flow field, and (ii) CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. In spite of these challenges, there have been several numerical studies in recent times where multi-cycle LES has been used to predict CCV. These include simplified geometries resembling piston and/or valve motions [6, 7], realistic engine geometries under motored conditions [8, 9] and under fired conditions [10, 11]. These numerical studies have shown the importance of the in-cylinder flowfield and its cyclic variability on CCV. However the numerical simulation of CCV using multi-cycle LES is still extremely expensive and performing these calculations on computing clusters would require a few months of computational time and thus would not be realistically used in the engine design cycle. Ameen et al. [12] recently developed the parallel perturbation model (PPM), a methodology to reduce the turnaround time in simulating CCV without appreciably sacrificing the accuracy. The strategy is to perform multiple parallel simulations, each of which encompasses 2-3 cycles, by effectively perturbing the simulation parameters such as the initial and boundary conditions. The methodology is schematically shown in Fig. 1. More details of this methodology are explained in Ameen et al. [12]. This methodology was validated for the prediction of CCV due to gas exchange in a motored transparent combustion chamber (TCC) engine by comparing the flowfield statistics with particle image velocimetry (PIV) measurements. It was shown that by perturbing the initial velocity field effectively based on the intensity of the in-cylinder turbulence, the mean and variance of the in-cylinder flow field was captured reasonably well. Recently, Zhao et al. [13] performed LES of 50 consecutive cycles for a fired port fuel injected (PFI) SI engine. They employed the G-equation approach to model the flame propagation and showed that the simulations were able to accurately predict the cyclic variability from the experiments. They also showed that, by decoupling the effects of the velocity field and the equivalence ratio field, the velocity field and not the equivalence ratio field is what dominated the CCV for this engine configuration. This motivates the use of PPM to simulate the CCV for this engine configuration, since PPM was shown to be effective in capturing the cyclic variability of the in-cylinder flowfield. In this paper, the PPM approach is extended to simulate the CCV in a fired PFI SI engine previously studied by Zhao et al. [13]. Two operating conditions are considered a medium CCV operating case corresponding to 2500 rpm and 16 bar BMEP which was studied by Zhao et al. [13] and a low CCV case corresponding to 4000 rpm and 12 bar BMEP. In the next section, the numerical setup employed will be discussed briefly. This will be followed by a 1

2 comparison of the simulated results with the experiments as well as with the consecutive cycle LES results from Zhao et al. [13]. Figure 1. Flowchart showing the Parallel Perturbation Model (PPM) approach 2. Numerical Setup The simulations were performed using the commercial CFD code CONVERGE v2.3 [14]. The numerical setup employed in the present study is exactly the same as that employed by Zhao et al. [13] and hence not shown here for brevity. Table 1 summarizes the important details of the CFD setup. The computational domain is schematically shown in Fig. 2. In the present study, two different operating conditions are employed, the details of which are summarized in Table 2. Case A corresponds to a late spark timing medium CCV condition, and Case B corresponds to a low CCV condition. For both these conditions, 100 parallel cycles were simulated using the approach shown in Fig. 1. The turnaround time for the parallel cycles is about 10 times smaller than the consecutive cycle LES. Table 1. Computational setup CFD software CONVERGE V2.3 Injection model Blob Break-up model KH-RT Collision model NTC Dray-law Dynamic Evaporation model Frossling correlation Combustion model G-Equation Turbulence model LES-dynamic structure Base mesh size 2.8 mm Minimum grid size mm Fixed embedding level 4 in spark gap; 3 in intermediate region around spark gap; 3 in intake valve angle and 2 in exhaust valve angle Time discretization PISO Fuel 95% isooctane, 5% n-heptane 2

3 Figure 2 Engine configuration Table 2. Operating conditions Case A Case B r/min IMEP (bar) Fueling (mg/cycle/cylinder) Spark timing (degrees) Injection timing (degrees) Results and Discussion The principal advantage of the PPM approach is the fast turnaround in predicting the cyclic variability of the incylinder flowfield. Swirl ratio is one of the important indicators of the flowfield and have shown to play a strong role on the burning velocity and CCV [15]. Figure 3 compares the mean and standard deviation in the swirl ratio predicted by the PPM and the consecutive cycle approaches for Case A. It can be seen that both the approaches show good agreement with each other. This is similar to the observation by Ameen et al. [12] for the motored TCC engine. Figure 3. Comparison of the mean and standard deviation of swirl between the consecutive and parallel LES for Case A Figure 4 compares the experimentally measured pressure traces with the mean in-cylinder pressures from the LES cycles. Figure 4(a) shows the pressure traces from the consecutive cycles [13] and Fig. 4(b) shows the pressure traces from the current study. For the experiments, 1000 cycles are considered while the consecutive and parallel LES uses 50 and 100 cycles respectively. It can be seen that both the consecutive and parallel LES approaches show good 3

4 agreement with the experimental measurements. The simulations show a slight discrepancy during the expansion stroke. One of the possible reasons for this could be due to the inaccuracies in the heat transfer models. More importantly, it can be seen that both the consecutive and parallel LES approaches show remarkable similarity with each other although the parallel approach is almost 10-times faster than the consecutive cycle approach. Figure 4. In-cylinder pressure traces for (a) 50 consecutive cycles and (b) 100 parallel cycles for Case A. Also shown are the pressure traces from 1000 experimental cycles. The cyclic variability can be quantified in terms of coefficient of variance (COV), which is the standard deviation divided by the mean value. Figure 5 compares the COV of maximum pressure (Pmax) and burn-rate parameters (CA10, CA50, CA10-75) between the experimental measurements and the simulations. It can be noted that the parallel LES underpredicts the COV as compared the consecutive LES by 1-5%. There are two possible reasons for this behavior: (a) the parallel LES only considers perturbations in the flowfield and ignores variabilities in mixture composition, temperature distributions and so on, and (b) only 50 cycles were performed with consecutive LES while experimental results have shown that at least 100 cycles are required to predict accurate values for COV. The second observation is that the discrepancy between parallel and consecutive LES is the largest for COV of CA10, which is an indicator of the variability in the early stage of combustion, while the difference is less than 3% for the other quantities. This signifies that the cyclic variability in the early stage of combustion could be affected more strongly by the cyclic variabilities of mixture composition and temperature distributions, while the variability in the later stages are driven by the flowfield variabilities. Overall, both the LES approaches show a relatively good quantitative agreement for the COV with the experimental observations. Figure 5. COV of maximum pressure, CA10, CA50, and CA10-75 for experimental, consecutive LES and parallel LES results for Case A. 4

5 All the results in Figs. 3-5 were for Case A, which is a medium CCV operating condition. Parallel LES was also performed for the lower CCV Case B (refer to Table 2). Consecutive cycle LES was not performed for this condition. The objective of this simulation was to determine whether LES was able to correctly predict the trend in CCV with changes in operating conditions. Figure 6 compares the pressure traces from the experimental and parallel LES results for Case B. It can be seen that the LES results agree well with the experimental measurements at this operating condition as well. Figure 7 compares the COV of Pmax between the experiments and parallel LES for Cases A and B. The COV of Pmax predicted by the experiment are 7.6% and 4.1% whereas the parallel LES predicts 9.1% and 6% respectively for Cases A and B. Thus, the parallel LES approach can accurately predict the trends in COV with changing operating conditions. More analysis is needed to compare the COV in other parameters such as IMEP, burnrate parameters and so on for Case B. Figure 6. Comparison of the pressure traces between experimental (Blue) and parallel LES (Red) results for Case B. (a) (b) Figure 7. Variation of COV of Pmax with increasing number of cycles for (a) Experiment and (b) Parallel LES 4. Conclusions In this work, the parallel perturbation model (PPM) approach introduced by Ameen et al. [12] for speeding up CCV simulations was extended to a fired PFI engine. The idea is to launch multiple parallel simulations simultaneously by effectively perturbing the initial flowfield of each of these simulations. It is shown that the PPM approach is able to accurately predict the cyclic variability in the in-cylinder flowfield, pressure and burn rates. It is also shown that the parallel LES approach is able to correctly predict the trends in the CCV with changing operating conditions. It is also shown that the results from the parallel LES match the results from consecutive cycle approach reasonably well. The turnaround time for the parallel LES approach is about 10 times shorter than the consecutive cycle approach. This implies that these CCV calculations can be completed in a few days and can thus be realistically employed in the engine design cycle. 5

6 5. Acknowledgements The research was funded by DOEs Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH The authors wish to acknowledge the computational resources of Fusion and Blues clusters at Argonne National Laboratory. The authors would also like to thank Dr. Janardhan Kodavasal from Argonne National Laboratory for the help with the numerical setup. The authors would also like to acknowledge Mohsen Mirzaeian and Prof. Frederico Millo from Politecnico di Torino for sharing the experimental data for comparison. 6. References 1. Heywood, J. B., 1988, Internal combustion engine fundamentals, Mcgraw-hill New York. 2. Funk, C., Sick, V., Reuss, D. L., and Dahm, W. J., 2002, "Turbulence properties of high and low swirl in-cylinder flows," No , SAE Technical Paper. 3. Schiffmann, P., Gupta, S., Reuss, D., Sick, V., Yang, X., and Kuo, T.-W., 2016, "TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows," Oil & Gas Science and Technology Revue d IFP Energies nouvelles, 71(1), p Baum, E., Peterson, B., Surmann, C., Michaelis, D., Böhm, B., and Dreizler, A., 2013, "Investigation of the 3D flow field in an IC engine using tomographic PIV," Proceedings of the Combustion Institute, 34(2), pp Buhl, S., Gleiss, F., Köhler, M., Hartmann, F., Messig, D., Brücker, C., and Hasse, C., 2016, "A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine," Flow, Turbulence and Combustion, pp Moureau, V., Barton, I., Angelberger, C., and Poinsot, T., 2004, "Towards large eddy simulation in internalcombustion engines: simulation of a compressed tumble flow," No , SAE Technical Paper. 7. Naitoh, K., Ono, M., Kuwahara, K., and Krause, E., 2002, "Cycle-resolved computations of compressible flow in engine," No , SAE Technical Paper. 8. Yang, X., Gupta, S., Kuo, T.-W., and Gopalakrishnan, V., 2014, "RANS and Large Eddy Simulation of Internal Combustion Engine Flows A Comparative Study," Journal of Engineering for Gas Turbines and Power, 136(5), p Enaux, B., Granet, V., Vermorel, O., Lacour, C., Thobois, L., Dugué, V., and Poinsot, T., 2011, "Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation," Flow, turbulence and combustion, 86(2), pp Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., and Veynante, D., 2009, "Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES," Combustion and Flame, 156(8), pp Schmitt, M., Hu, R., Wright, Y. M., Soltic, P., and Boulouchos, K., 2015, "Multiple cycle LES simulations of a direct injection natural gas engine," Flow, Turbulence and Combustion, 95(4), pp Ameen, M. M., Yang, X., Kuo, T.-W., and Som, S., 2016, "Parallel methodology to capture cyclic variability in motored engines," International Journal of Engine Research, p Zhao, E., Moiz, A. A., Som, S., Fogla, N., Bybee, M., Wahiduzzaman, S., Mirzaeian, M., Millo, F., and Kodavasal, J., 2017, "Multi-cycle large eddy simulation to capture cycle-to-cycle variation (CCV) in spark-ignited (SI) engines," Publication in Preparation. 14. Richards, K. J., Senecal, P. K., and Pomraning, E., 2016, "CONVERGE (v2.3)," Convergent Science, Inc., Madison, WI. 15. Nagayama, I., Araki, Y., and Iioka, Y., 1977, "Effects of swirl and squish on SI engine combustion and emission," Society of Automotive Engineers, Warrendale, PA. 6

A Detailed Analysis of the Cycle-To-Cycle Variations featured by RANS Engine Modeling

A Detailed Analysis of the Cycle-To-Cycle Variations featured by RANS Engine Modeling A Detailed Analysis of the Cycle-To-Cycle Variations featured by RANS Engine Modeling Riccardo Scarcelli 1, Thomas Wallner 1, Keith Richards 2, Eric Pomraning 2, P. Kelly Senecal 2 1 Argonne National Laboratories,

More information

Click to edit Master title style

Click to edit Master title style Click to edit Master title style LES LES Applications for for Internal Internal Combustion Engines Engines David Gosman & Richard Johns CD-adapco, June 2011 Some Qs and As Why would we use LES calculations

More information

Validation of an Automatic Mesh Generation Technique in Engine Simulations

Validation of an Automatic Mesh Generation Technique in Engine Simulations International Multidimensional Engine Modeling User's Group Meeting April,, Detroit, Michigan Validation of an Automatic Mesh Generation Technique in Engine s Abstract Long Liang, Anthony Shelburn, Cheng

More information

Development of a CFD methodology for fuel-air mixing and combustion modeling of GDI Engines

Development of a CFD methodology for fuel-air mixing and combustion modeling of GDI Engines Development of a CFD methodology for fuel-air mixing and combustion modeling of GDI Engines T. Lucchini, G. D Errico, L. Cornolti, G. Montenegro, A. Onorati Politecnico di Milano, Dipartimento di Energia,

More information

Applying Solution-Adaptive Mesh Refinement in Engine Simulations

Applying Solution-Adaptive Mesh Refinement in Engine Simulations International Multidimensional Engine Modeling User's Group Meeting April 11, 2016, Detroit, Michigan Applying Solution-Adaptive Mesh Refinement in Engine Simulations Long Liang, Yue Wang, Anthony Shelburn,

More information

MULTIPLE CYCLE LES SIMULATIONS OF A DIRECT

MULTIPLE CYCLE LES SIMULATIONS OF A DIRECT MULTIPLE CYCLE LES SIMULATIONS OF A DIRECT INJECTION METHANE ENGINE Martin Schmitt, Yuri Martin Wright, Christos Frouzakis and Konstantinos Boulouchos Aerothermochemistry and Combustion Systems Laboratory

More information

ICE Roadmap Japanese STAR Conference. Richard Johns

ICE Roadmap Japanese STAR Conference. Richard Johns ICE Roadmap Japanese STAR Conference Richard Johns Introduction Top-Level Roadmap STAR-CCM+ and Internal Combustion Engines Modeling Improvements and Research Support Sprays LES Chemistry Meshing Summary

More information

Modeling of a DaimlerChrysler Truck Engine using an Eulerian Spray Model

Modeling of a DaimlerChrysler Truck Engine using an Eulerian Spray Model Modeling of a DaimlerChrysler Truck Engine using an Eulerian Spray Model C. Hasse, S. Vogel, N. Peters Institut für Technische Mechanik RWTH Aachen Templergraben 64 52056 Aachen Germany c.hasse@itm.rwth-aachen.de

More information

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Frank Hartmann, Stefan Buhl, Florian Gleiß, Christian Hasse Philipp Barth, Martin

More information

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Dipl.-Ing. (FH) Günther Lang, CFDnetwork Engineering Dipl.-Ing. Burkhard Lewerich, CFDnetwork

More information

Crevice and Blowby Model Development and Application

Crevice and Blowby Model Development and Application Crevice and Blowby Model Development and Application Randy P. Hessel University of Wisconsin - Madison Salvador M. Aceves and Dan L. Flowers - Lawrence Livermore National Lab ABSTRACT This paper describes

More information

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI 23 April 2012 PDF-based simulations of turbulent spray combustion in a constant-volume chamber under

More information

STATISTICAL CALIBRATION: A BETTER APPROACH TO INTEGRATING SIMULATION AND TESTING IN GROUND VEHICLE SYSTEMS.

STATISTICAL CALIBRATION: A BETTER APPROACH TO INTEGRATING SIMULATION AND TESTING IN GROUND VEHICLE SYSTEMS. 2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY SYMPOSIUM Modeling & Simulation, Testing and Validation (MSTV) Technical Session August 2-4, 2016 - Novi, Michigan STATISTICAL CALIBRATION: A

More information

PRESSURE DROP AND FLOW UNIFORMITY ANALYSIS OF COMPLETE EXHAUST SYSTEMS FOR DIESEL ENGINES

PRESSURE DROP AND FLOW UNIFORMITY ANALYSIS OF COMPLETE EXHAUST SYSTEMS FOR DIESEL ENGINES PRESSURE DROP AND FLOW UNIFORMITY ANALYSIS OF COMPLETE EXHAUST SYSTEMS FOR DIESEL ENGINES André Bergel 1 Edson L. Duque 2 General Motors Global Propulsion Systems South America 12 E-mail: andrebergel84@yahoo.com.br

More information

Flow in an Intake Manifold

Flow in an Intake Manifold Tutorial 2. Flow in an Intake Manifold Introduction The purpose of this tutorial is to model turbulent flow in a simple intake manifold geometry. An intake manifold is a system of passages which carry

More information

Progress on Engine LES Using STAR-CD

Progress on Engine LES Using STAR-CD www.cd-adapco.com Progress on Engine LES Using STAR-CD A D Gosman CD-adapco Japan STAR Conference 2012, Yokohama INTRODUCTION 1. Nature and motivation for LES of engines 2. LES modelling in STAR-CD 3.

More information

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER CHAPTER 4 ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER 4.1 INTRODUCTION Combustion analysis and optimization of any reciprocating internal combustion engines is too complex and intricate activity. It

More information

LES/FMDF of Spray Combustion in Internal Combustion Engines

LES/FMDF of Spray Combustion in Internal Combustion Engines LES/FMDF of Spray Combustion in Internal Combustion Engines Araz Banaeizadeh *, Harold Schock, and Farhad Jaberi Department of Mechanical Engineering Michigan State University, East Lansing, MI, 48824-1226

More information

Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine

Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine Sudhakar Das and David M. Chmiel Delphi Automotive Systems Technical Center Rochester Rochester, New

More information

Developing LES Models for IC Engine Simulations. June 14-15, 2017 Madison, WI

Developing LES Models for IC Engine Simulations. June 14-15, 2017 Madison, WI Developing LES Models for IC Engine Simulations June 14-15, 2017 Madison, WI 1 2 RANS vs LES Both approaches use the same equation: u i u i u j 1 P 1 u i t x x x x j i j T j The only difference is turbulent

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

IMPORTANCE OF INTERNAL FLOW AND

IMPORTANCE OF INTERNAL FLOW AND IMPORTANCE OF INTERNAL FLOW AND GEOMETRY MODELLING IN THE GM 1.9L LIGHT DUTY ENGINE F. Perini a, P. C. Miles b, R. D. Reitz a a University of Wisconsin-Madison b Sandia National Laboratories ERC Seminar

More information

A Simplified CFD Model for Radiative Heat Transfer in Engines

A Simplified CFD Model for Radiative Heat Transfer in Engines International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI, 9 April 2018 A Simplified CFD Model for Radiative Heat Transfer in Engines D.C. Haworth and C. Paul

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

Cold Flow Simulation Inside an SI Engine

Cold Flow Simulation Inside an SI Engine Tutorial 12. Cold Flow Simulation Inside an SI Engine Introduction The purpose of this tutorial is to illustrate the case setup and solution of the two dimensional, four stroke spark ignition (SI) engine

More information

Coarse Mesh CFD: Trend Analysis In a Fraction of the Time

Coarse Mesh CFD: Trend Analysis In a Fraction of the Time Coarse Mesh CFD: Trend Analysis In a Fraction of the Time Y. He, C. J. Rutland, Z. Nagel, R. P. Hessel, R. D. Reitz, D.E. Foster Engine Research Center, University of Wisconsin-Madison In an effort to

More information

Crank Angle-resolved Realtime Engine Simulation for the Optimization of Control Strategies. Engine Management

Crank Angle-resolved Realtime Engine Simulation for the Optimization of Control Strategies. Engine Management Development Engine Management Crank Angle-resolved Realtime Engine Simulation for the Optimization of Control Strategies An engine simulation model permits new control strategies to be optimized at an

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Integrated analysis of the scavenging process in marine two-stroke diesel engines

Integrated analysis of the scavenging process in marine two-stroke diesel engines Integrated analysis of the scavenging process in marine two-stroke diesel engines Gothenburg regional OpenFOAM user group meeting. 13 november 2013 Fredrik H. Andersen, Industrial Ph.D. student Process

More information

NUMERICAL SIMULATION OF MULTI-CHAMBER PISTON C.I ENGINE

NUMERICAL SIMULATION OF MULTI-CHAMBER PISTON C.I ENGINE IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 58-65 www.iosrjournals.org NUMERICAL SIMULATION OF MULTI-CHAMBER PISTON C.I ENGINE Mr. ARAHANTH 1, Mr. KARTIKA S.B 2 1

More information

On the numerical accuracy of particle dispersion simulation in operating theatres

On the numerical accuracy of particle dispersion simulation in operating theatres On the numerical accuracy of particle dispersion simulation in operating theatres Wiebe Zoon 1,*, Marcel Loomans 1 and Jan Hensen 1 1 Eindhoven University of Technology, Eindhoven, the Netherlands * Corresponding

More information

Creation and Validation of a High-Accuracy, Real-Time-Capable Mean-Value GT-POWER Model

Creation and Validation of a High-Accuracy, Real-Time-Capable Mean-Value GT-POWER Model 1 Creation and Validation of a High-Accuracy, Real-Time-Capable Mean-Value GT-POWER Model Tim Prochnau Advanced Analysis and Simulation Department Engine Group International Truck and Engine Corporation

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Advanced Turbulent Heat Transfer Modeling for IC-Engine Applications Using AVL FIRE

Advanced Turbulent Heat Transfer Modeling for IC-Engine Applications Using AVL FIRE International Multidimensional Engine Modeling User s Group Meeting April 2, 2006, Detroit, MI Advanced Turbulent Heat Transfer Modeling for IC-Engine Applications Using AVL FIRE R. Tatschl, B. Basara,

More information

Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct

Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct Vivek Zolekar Student M. Tech. Mechanical (CAD/CAM) SGGSIE&T Nanded - 431 606 Dr. L.N. Wankhade Professor Department

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Volume-resolved gas velocity and spray measurements in engine applications

Volume-resolved gas velocity and spray measurements in engine applications 80 Volumenaufgelöste Geschwindigkeits- und Spraymessungen für motorische Anwendungen Volume-resolved gas velocity and spray measurements in engine applications Dr. Hao Chen, Prof. Dr. rer. nat. habil.

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD

MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD Blucher Engineering Proceedings Agosto de 2014, Número 2, Volume 1 MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD SIMULATION Filipe Fabian Buscariolo¹, Julio Cesar Lelis Alves², Leonardo

More information

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality Judd Kaiser ANSYS Inc. judd.kaiser@ansys.com 2005 ANSYS, Inc. 1 ANSYS, Inc. Proprietary Overview

More information

Recent applications of overset mesh technology in SC/Tetra

Recent applications of overset mesh technology in SC/Tetra Recent applications of overset mesh technology in SC/Tetra NIA CFD Seminar October 6, 2014 Tomohiro Irie Software Cradle Co., Ltd. 1 Contents Introduction Software Cradle SC/Tetra Background of Demands

More information

Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation

Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation Kaname Kawatsu and Nobuhiro Yamanishi Japan Aerospace Exploration Agency JAXA's Engineering

More information

THREE DIMENSIONAL FLOW FIELD WITHIN A FOUR- VALVE COMBUSTION ENGINE MEASURED BY PARTICLE-IMAGE VELOCIMETRY

THREE DIMENSIONAL FLOW FIELD WITHIN A FOUR- VALVE COMBUSTION ENGINE MEASURED BY PARTICLE-IMAGE VELOCIMETRY ISFV14-14 th International Symposium on Flow Visualization June 21-24, 2010, EXCO Daegu, Korea THREE DIMENSIONAL FLOW FIELD WITHIN A FOUR- VALVE COMBUSTION ENGINE MEASURED BY PARTICLE-IMAGE VELOCIMETRY

More information

Engine Calibration Process for Evaluation across the Torque- Speed Map

Engine Calibration Process for Evaluation across the Torque- Speed Map Engine Calibration Process for Evaluation across the Torque- Speed Map Brian Froelich Tara Hemami Manish Meshram Udaysinh Patil November 3, 2014 Outline : Background Objective Calibration process for torque

More information

A CASE STUDY REGARDING THE IN-CYLINDER AIR MOTION CHARACTERISTICS IN A MOTORED GASOLINE ENGINE: CFD VS. PIV

A CASE STUDY REGARDING THE IN-CYLINDER AIR MOTION CHARACTERISTICS IN A MOTORED GASOLINE ENGINE: CFD VS. PIV A CASE STUDY REGARDING THE IN-CYLINDER AIR MOTION CHARACTERISTICS IN A MOTORED GASOLINE ENGINE: CFD VS. PIV *George Trică a, Iorga-Simăn Victor a, Adrian Clenci a,b, Stéphane Guilain c Amélie Danlos b,

More information

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models D. G. Jehad *,a, G. A. Hashim b, A. K. Zarzoor c and C. S. Nor Azwadi d Department of Thermo-Fluids, Faculty

More information

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD CHAPTER - 5 OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD The ever-increasing demand to lower the production costs due to increased competition has prompted engineers to look for rigorous methods

More information

URANS and SAS analysis of flow dynamics in a GDI nozzle

URANS and SAS analysis of flow dynamics in a GDI nozzle , 3rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 010 J.-M. Shi*, K. Wenzlawski*, J. Helie, H. Nuglisch, J. Cousin * Continental Automotive GmbH Siemensstr.

More information

PUBLISHED VERSION. Originally Published at: PERMISSIONS. 23 August 2015

PUBLISHED VERSION. Originally Published at:   PERMISSIONS. 23 August 2015 PUBLISHED VERSION Yinli Liu, Hao Tang, Zhaofeng Tian, Haifei Zheng CFD simulations of turbulent flows in a twin swirl combustor by RANS and hybrid RANS/LES methods Energy Procedia, 2015 / Jiang, X., Joyce,

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

Numerical study & validation of a complete

Numerical study & validation of a complete Numerical study & validation of a complete SCR system using 1D-3D (CFD) coupling Presenter: Ashish Joshi Manager, Indian Operations Convergent Science Presenting on behalf of: Scott Drennan Director of

More information

Urea Injection Simulation with Adaptive Mesh Refinement for Engine Aftertreatment

Urea Injection Simulation with Adaptive Mesh Refinement for Engine Aftertreatment ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 2014 Urea Injection Simulation with Adaptive Mesh Refinement for Engine Aftertreatment Scott A. Drennan

More information

Dispersion Modelling for Explosion Risk Analysis

Dispersion Modelling for Explosion Risk Analysis Dispersion Modelling for Explosion Risk Analysis Tim Jones, Principal Consultant, MMI Engineering, The Brew House, Wilderspool Park, Greenall s Avenue, Warrington, WA4 6HL The understanding of the explosion

More information

Development of Numerical Model for Simulation Intake Flow in Combustion Chamber of L-Head Engine Type

Development of Numerical Model for Simulation Intake Flow in Combustion Chamber of L-Head Engine Type International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:02 134 Development of Numerical Model for Simulation Intake Flow in Combustion Chamber of L-Head Engine Type Musthafah

More information

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics Rob J.M Bastiaans* Eindhoven University of Technology *Corresponding author: PO box 512, 5600 MB, Eindhoven, r.j.m.bastiaans@tue.nl

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

Program: Advanced Certificate Program

Program: Advanced Certificate Program Program: Advanced Certificate Program Course: CFD-Vehicle Aerodynamics Directorate of Training and Lifelong Learning #470-P, Peenya Industrial Area, 4th Phase Peenya, Bengaluru 560 058 www.msruas.ac.in

More information

Automotive Fluid-Structure Interaction (FSI) Concepts, Solutions and Applications. Laz Foley, ANSYS Inc.

Automotive Fluid-Structure Interaction (FSI) Concepts, Solutions and Applications. Laz Foley, ANSYS Inc. Automotive Fluid-Structure Interaction (FSI) Concepts, Solutions and Applications Laz Foley, ANSYS Inc. Outline FSI Classifications FSI Solutions FSI Modeling Approaches ANSYS Workbench for FSI System

More information

LIF Laser Scanning with pent roof illumination to Investigate Mixture Distribution in IC Engines with limited Optical Access

LIF Laser Scanning with pent roof illumination to Investigate Mixture Distribution in IC Engines with limited Optical Access LIF Laser Scanning with pent roof illumination to Investigate Mixture Distribution in IC Engines with limited Optical Access Richard Welss 1,2*, Philipp Lauschke 1, Michael Wensing 1,2 1: Dept. of Engineering

More information

Flat-Plate As stated earlier, the purpose of the flat-plate study was to create an opportunity for side-by-side comparison of ÒfastÓ RNG and

Flat-Plate As stated earlier, the purpose of the flat-plate study was to create an opportunity for side-by-side comparison of ÒfastÓ RNG and Chapter Six: Comparison of Turbulence Models Performance Comparisons There are a number of criteria by which to judge turbulence models. One criterion sometimes important to mathematicallyminded model

More information

Design, Modification and Analysis of Two Wheeler Cooling Sinusoidal Wavy Fins

Design, Modification and Analysis of Two Wheeler Cooling Sinusoidal Wavy Fins Design, Modification and Analysis of Two Wheeler Cooling Sinusoidal Wavy Fins Vignesh. P Final Year B.E.,Mechanical Mepco Schlenk Engineering College Sivakasi,India P. Selva Muthu Kumar Final year B.E.,

More information

Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters

Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters S. Venkateswaran, and C. Mallika Parveen Abstract The fluid flow and the properties of the hydraulic fluid inside a torque converter

More information

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence Kavya H.P, Banjara Kotresha 2, Kishan Naik 3 Dept. of Studies in Mechanical Engineering, University BDT College of Engineering,

More information

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon

More information

Real-Time Execution in LabVIEWTM

Real-Time Execution in LabVIEWTM 4 High-Performance Physical Modeling and Simulation Mean-Value Internal Combustion Engine Model: Real-Time Execution in LabVIEWTM Introduction The development of high-fidelity predictive models of vehicle

More information

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS U. Bieder, C. Calvin, G. Fauchet CEA Saclay, CEA/DEN/DANS/DM2S P. Ledac CS-SI HPCC 2014 - First International Workshop

More information

Summary of the main PROBAND project results

Summary of the main PROBAND project results Summary of the main PROBAND project results WP2: WP2 was dedicated to the development and validation broadband noise prediction methods. Once validated on non rotating airfoils in WP2, these methods were

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body George Wang (1 ), Kevin Gardner (3), Eric DeHoff (1), Facundo del Pin (2), Inaki Caldichoury (2), Edouard

More information

Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it.

Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it. Thank you! Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it. Have questions? Need more information? Please don t hesitate to contact us! We have plenty more where this came from.

More information

Design Modification and Analysis of Two Wheeler Engine Cooling Fins by CFD

Design Modification and Analysis of Two Wheeler Engine Cooling Fins by CFD Design Modification and Analysis of Two Wheeler Engine Cooling Fins by CFD Mohsin A. Ali and Prof. (Dr.) S.M Kherde Abstract An air-cooled motorcycle engine releases heat to the atmosphere through the

More information

Models, methods and performance when estimating the compression ratio based on the cylinder pressure

Models, methods and performance when estimating the compression ratio based on the cylinder pressure Models, methods and performance when estimating the compression ratio based on the cylinder pressure Marcus Klein and Lars Eriksson Vehicular Systems, Linköpings Universitet, SWEDEN ABSTRACT Four methods

More information

A Compressible Dynamic Solver for the Simulation of Turbulent Flows in IC Engine Geometries

A Compressible Dynamic Solver for the Simulation of Turbulent Flows in IC Engine Geometries International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress The Detroit Downtown Courtyard by Marriott Hotel, Detroit, MI (USA), April 2 th, 21 A Compressible Dynamic Solver

More information

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 1, January 2019, pp. 409 413, Article ID: IJMET_10_01_042 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS 1.1 INTRODUCTION Analysis of physical problems in any area of engineering and science involves a multipronged approach:

More information

in:flux - Intelligent CFD Software

in:flux - Intelligent CFD Software in:flux - Intelligent CFD Software info@insightnumerics.com Fire and Gas Mapping. Optimized. Slide 1 Introduction to in:flux in:flux is a CFD software product to be used for dispersion and ventilation

More information

*Sebastian Hensel, Kai Herrmann, Reiner Schulz and German Weisser

*Sebastian Hensel, Kai Herrmann, Reiner Schulz and German Weisser Paper templeate (for draft and final papers) Numerical analysis and statistical description of the primary breakup in fuel nozzles of large two stroke engines for the application in CFD engine simulations

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Simulation Driven Product Development using ANSYS Technology Padmesh Mandloi Rahul Kumar Samir Kadam 2008 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

More information

1 Introduction. Myung Sik Kim 1, Won Jee Chung 1, Jun Ho Jang 1, Chang Doo Jung 1 1 School of Mechatronics, Changwon National University, South Korea

1 Introduction. Myung Sik Kim 1, Won Jee Chung 1, Jun Ho Jang 1, Chang Doo Jung 1 1 School of Mechatronics, Changwon National University, South Korea Application of SolidWorks & AMESim - based Simulation Technique to Modeling, Cavitation, and Backflow Analyses of Trochoid Hydraulic Pump for Multi-step Transmission Myung Sik Kim 1, Won Jee Chung 1, Jun

More information

Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS)

Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS) The 14 th Asian Congress of Fluid Mechanics - 14ACFM October 15-19, 2013; Hanoi and Halong, Vietnam Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS) Md. Mahfuz

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES Khalil Bensassi, and Herman Deconinck Von Karman Institute for Fluid Dynamics Aeronautics & Aerospace

More information

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 26 Development of a Two-Dimensional Finite Element Model of a Suction Valve for Reduction

More information

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Supervisor: Prof Ken Craig Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Use of CFD in Design and Development of R404A Reciprocating Compressor

Use of CFD in Design and Development of R404A Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Use of CFD in Design and Development of R404A Reciprocating Compressor Yogesh V. Birari

More information

Applying a new dispersion model to turbulent premixed flames

Applying a new dispersion model to turbulent premixed flames Applying a new dispersion model to turbulent premixed flames Federico Ghirelli Fifth OpenFOAM Workshop Gothenburg, 21 24 June 2010 Point source in steady homogeneous turbulence Fundamental experiment:

More information

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM 2 nd Two-day Meeting on ICE Simulations Using OpenFOAM DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM V. K. Krastev 1, G. Bella 2 and G. Campitelli 1 University of Tuscia, DEIM School of Engineering

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 16. Modeling Evaporating Liquid Spray Introduction In this tutorial, FLUENT s air-blast atomizer model is used to predict the behavior of an evaporating methanol spray. Initially, the air flow

More information

How Combustion CFD Makes Design More Robust and Reduces Costs

How Combustion CFD Makes Design More Robust and Reduces Costs How Combustion CFD Makes Design More Robust and Reduces Costs 2018 European Converge User Conference, Bologna March 21, 2018 A. Raulot, C. Ferreira Full Digital Ambition Digital Validation Boost Present

More information

Applications of ICFD solver by LS-DYNA in Automotive Fields to Solve Fluid-Solid-Interaction (FSI) Problems

Applications of ICFD solver by LS-DYNA in Automotive Fields to Solve Fluid-Solid-Interaction (FSI) Problems Applications of ICFD solver by LS-DYNA in Automotive Fields to Solve Fluid-Solid-Interaction (FSI) Problems George Wang(1 ), Facundo del Pin(2), Inaki Caldichoury (2), Prince Rodriguez(3), Jason Tippie

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

EMO A Real-World Application of a Many-Objective Optimisation Complexity Reduction Process

EMO A Real-World Application of a Many-Objective Optimisation Complexity Reduction Process EMO 2013 A Real-World Application of a Many-Objective Optimisation Complexity Reduction Process Robert J. Lygoe, Mark Cary, and Peter J. Fleming 22-March-2013 Contents Introduction Background Process Enhancements

More information

Design optimization method for Francis turbine

Design optimization method for Francis turbine IOP Conference Series: Earth and Environmental Science OPEN ACCESS Design optimization method for Francis turbine To cite this article: H Kawajiri et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 22 012026

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

Chapter 13 RADIATION HEAT TRANSFER

Chapter 13 RADIATION HEAT TRANSFER Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 13 RADIATION HEAT TRANSFER PM Dr Mazlan Abdul Wahid Universiti

More information