Quantification of Imaging Measurement Uncertainty for Gasoline Direct Injection Sprays

Size: px
Start display at page:

Download "Quantification of Imaging Measurement Uncertainty for Gasoline Direct Injection Sprays"

Transcription

1 ILASS Americas, 2 rd Annual Conference on Liquid Atomization and Spray Systems, Ventura, CA, May 20 Quantification of Imaging Measurement Uncertainty for Gasoline Direct Injection Sprays Lee E. Markle*, Ashley L. Lanos, Carlos A. Ospina, and Francis E. Brado Technical Center Rochester Powertrain Systems Division, Delphi Automotive Systems, LLC West Henrietta, NY USA Abstract Digital spray imaging is a measurement technique used to characterize the geometries of sprays including those from gasoline direct injection (G-DI) fuel injectors. While SAE J2 provides a procedure for standardized testing, currently there is no generally accepted standard protocol for defining the measurement uncertainty of the fuel injector spray parameters of spray angle and penetration. This work describes the development of a method to define and document the error present in the measurement of these key parameters of fuel spray characterization. A Six Sigma problem solving methodology provided the framework for investigating the uncertainty and ultimately for refining the testing procedure. With the increasingly stringent fuel economy and emissions requirements for automobiles, spray characteristic tolerances and limits are appearing on fuel injector specification documents. There is a need to more rigorously define the measurement error of the spray testing results, including spray geometry. Digital spray imaging is a technique frequently used in the automotive industry because of its ability to quickly generate global spray geometry characteristics. While digital spray imaging techniques can be used to generate data cost-effectively, the repeatability of data is rarely reported and a protocol for determining uncertainty in spray image measurements has not been previously detailed. Determining the measurement uncertainty can aid business decisions and avoid costly retesting. In this work, the sprays from representative test injectors were imaged many times consecutively on the Generation G-DI imaging system under evaluation. The resultant geometric data was used to document a statement of measurement error with a confidence level of %. This data also allowed for identification of common cause variation, special cause variation and validated the measurement and analysis process. Additionally, a measurement system analysis (MSA) was performed on the Generation G-DI imaging system to separate measurement system error from test injector variability. The MSA was accomplished by analyzing images from sprays and of a set of reference solid cones. These cones were created to represent a range of geometries similarly found in G-DI sprays. The resultant spray and cone image data sets were used to determine the G-DI imaging measurement system repeatability, equipment resolution, measurement linearity and measurement bias. Lastly, to monitor the G-DI imaging measurement system stability and consistency, representative reference injectors were identified and their sprays were imaged regularly over several months to determine the long-term measurement variation in the fuel injector spray parameters of spray angle and penetration. The lessons learned are being implemented for an improved-capability, Generation 2 G-DI imaging system. * Corresponding author: lee.e.markle@delphi.com

2 Definition of the Problem Introduction Today s gasoline direct injection (G-DI) fuel injectors are typically electromagnetic solenoid valves fitted with a multi-hole director plate for metering the fuel and atomizing and guiding the spray. The number and geometry of the holes is unique for the specific engine application of the fuel injector. As the fuel is delivered directly into the combustion chamber of the engine, the spray geometry is critical to avoid impingement on surfaces and to achieve the appropriate air /fuel ratio distribution before ignition. Engine developers typically specify the flow characteristics required of a fuel injector, as well as some basic spray geometry parameters, including spray angle and spray penetration []. The spray angle is a measure of the angular extent of a G-DI fuel spray, and is typically determined by shadowgraphy imaging. It is defined as the angle between the spray edges at the pre-determined locations near the injector tip at a specified time after the beginning of the visible presence of fuel; also know as start of fuel (SOF). See Figures and 2. The spray penetration is defined as the maximum distance along the injector axis between the leading edge of the spray and the tip of the injector, at a specified time after SOF. See Figure. Figure. Determination of SAE J2 Spray Angle and Penetration from Imaging Figure 2. Typical Shadowgraph Image and Analysis of a G-DI spray Digital spray imaging is a measurement technique used to characterize the geometries of sprays including those from G-DI fuel injectors. This technique is frequently used in the automotive industry because of its ability to quickly generate global spray geometry characteristics. The SAE Gasoline Fuel Injection Standards Committee has decided on the use of shadowgraphy in the recommended practice, SAE J2 for obtaining numerical characterization of fuel sprays. Shadowgraphy was chosen because Mie-scatter techniques cause small drops to be disproportionately over-represented in the image, confounding analysis [2]. SAE J2 further defines that the entire spray be imaged using a camera with a minimum pixel resolution of 000 X 000 pixels with a dynamic range of at least 26 levels of gray. A pulsed light source must have a duration of under µs. Furthermore, the image of the pulsed fuel spray is to be captured at. ms after SOF and the size of the image is to be such that the axial distance from the injector tip is 00 mm. While digital spray imaging techniques can be used to generate data quickly and cost-effectively, particularly when the same images are used to determine both the spray angle and penetration, the repeatability of data is rarely reported and a protocol for determining uncertainty in spray image measurements has not been previously detailed. SAE J2 provides a procedure for standardized testing, and makes a statement that all spray measurement tools should undergo repeatability and reproducibility testing. However, currently there is no generally accepted standard protocol for defining the measurement uncertainty of the fuel injector spray parameters of spray angle and penetration.

3 Methodology and Scope This work describes the development of a method to define and document the error present in measurement of spray angle and penetration. A Six Sigma problem solving methodology provided the framework for this measurement system analysis (MSA). Six Sigma is a set of practices originally developed by Motorola Incorporated to systematically improve processes and eliminate defects. It provides a structured, detailed and controlled framework for identifying problems and generating solutions and improvements. The DMAIC (Define the problem, Measure the process, Analyze the process, Improve the process, and Control the process) methodology is a continuous improvement roadmap which can be followed when an existing process with substandard performance is being improved upon. Define: As stated in the introduction, the problem is defined as the lack of quantification of the variation in the Generation G-DI digital spray imaging system. Measure: The baseline performance of the equipment is documented. In order to keep the testing of the fuel injectors repeatable, a detailed digital spray imaging process guaranteed that each test was performed in the same manner and permits further investigation of variation. Analyze: G-DI spray geometric imaging data was used to document a statement of measurement error with a confidence level of %. An MSA was also performed to quantify the measurement system error from the variability associated with the tested hardware. Also, the short-term and long-term measurement variation in spray angle and penetration were calculated. Improve: Opportunities for mitigating uncertainty were identified and addressed. Control: To monitor the G-DI imaging system measurement stability and consistency, representative reference injectors were identified and their sprays were imaged regularly over several months. The stability evaluation effort is still ongoing. This work describes the process used for determining the measurement uncertainty of a specific G-DI digital spray imaging system. However, the DMAIC process and analysis techniques described here can be extended to all digital spray imaging measurements and other spray measurement techniques as was previously demonstrated in the ILASS-Americas 2008 work, Quantification of Variation in Laser Diffraction Gasoline Fuel Injector Droplet Sizing []. Measure the Process Testing Protocol and Set-up The SAE J2 recommended practice dictates the imaging testing techniques and protocol, and the basic specifications for the imaging system components to be used for G-DI spray imaging. Per this recommendation, the Generation imaging system in this work uses the shadowgraphy technique. See Figure. To backlight the spray using visible light, an Nd:YAG laser operating at 2 nm, with a 0 mj, 0 ns pulse provided illumination to a diffuser system comprised of lenses and a translucent screen. The camera was an 8-bit MegaPlus.4i, with a resolution of 2 X 04 pixels. An inhouse-developed, National Instruments LabVIEW software with the IMAQ software kit was used to create the signal controls for the camera, laser and fuel injector, and for the collection and analysis of the images. The images captured were calculated to be 62.0mm (width) X 2.mm (height) in size. Therefore, the pixel resolution of the Generation imaging system is 0.2 mm / pixel. Figure. Basic Schematic of G-DI Shadowgraphy from SAE J2 The injectors were tested per an established inhouse measurement protocol derived from SAE J2. See Table and Figure 4. Fuel Type: n-heptane Injection Pulse Width:.ms Period (Injection Pulse and Camera Trigger): 00ms Image Delay:.ms after SOF Camera Exposure: 00ms Lens: 60mm F-stop: f4 Gain: 6 db Number of Pixels: 2 x 04 Image Size: 62.0 mm x 2. mm Pixel Resolution 0.2 mm / pixel Table. Generation Imaging System Parameters

4 Figure 4. Generation Imaging System G-DI Reference Fuel Injector The G-DI reference fuel injector used to evaluate the Generation imaging system was an inwardlyopening multi-hole fuel injector of a custom-design. The injector delivers 22 mg of n-heptane during a. ms pulse. A high resolution patternator was used to determine the footprint of the injector s 6 spray plumes and their orientation. This pattern was used to position the injector with respect to the camera of the imaging system. See Figure. Camera Figure. Spray Footprint of the G-DI Reference Injector Analyze the Process Diffuser Initial Estimation of Measurement Uncertainty After a thorough definition of the problem, per DMAIC methodology, the baseline performance of the Generation imaging system was determined. This was accomplished by capturing 0 images of the spray from the G-DI reference fuel injector at the same time after the SOF for each image. The number 0 was chosen to allow the data to approach a normal distribution per the Central Limit Theorem. By having a normal distribution of data, a wider range of statistical tools are applicable, allowing for the determination of the measurement s % confidence interval. Minitab statistical analysis software was used extensively for the analysis and the results described in this work [4]. The plots in Figure 6 and Figure display a sequence of spray angle and penetration Individual measurements and their corresponding Moving Ranges. These I-MR charts can illustrate the presence of issues with a measurement process. Using the standard deviation of the entire measurement data set (from 0 images), upper and lower control limits are calculated by adding to and subtracting from the average, three times the standard deviation. If individual measurements fall outside of the control limits, a special cause, or an unusual or unpredictable event, may be influencing the measurements. If the individual measurements fall within the control limits, the process is called statistically stable as only common cause variation from random, uniform fluctuations are influencing the measurements. The creation of these initial I-MR charts allowed for the following discoveries about the Generation imaging system / G-DI reference injector testing:. The difference between the upper and lower control limits of the I-MR plots illustrate the magnitude of measurement variability present between the individual images of the G-DI reference injector pulses. 2. Since the moving range plot contained several points with a zero value (two or more subsequent measurements resulted in the same value), the measurement system s resolution may need improvement.. The Generation imaging system with the G-DI reference injector testing is statistically stable, allowing further analysis to determine an estimate of uncertainty. To evaluate the capability of the measurement process a Type Gage Study was performed on the same initial measurements used for the I-MR plots. Among other statistical parameters, the Type Gage Study yields the measurement standard deviation; also known as the estimated total measurement error, S m. Using Minitab, this type of study was performed on both the spray angle and penetration measurements from Generation imaging system with the reference injector. The standard deviations were then doubled to estimate each geometric characteristic s % confidence interval, a statement of measurement uncertainty. The results are shown in Table 2. G-DI Reference Injector Geometric Parameter S m Type Gage Results % Confidence Interval Spray Angle ( ) 2.2 ±.84 Penetration (mm).60 ±.20 Table 2. Initial Estimation of Measurement Uncertainty for the Generation Imaging System / G-DI Reference Injector

5 Individual Value of Spray A ngle ( ) G-DI Reference Injector Spray Angle I-MR Chart Observation 28 UC L=8.42 X=4. LC L=4. Moving Range, Spray A ngle ( ) Observation UC L=0. MR=.8 LC L=0 Figure 6. Spray Angle Variation from the Generation Imaging System with G-DI Reference Injector Individual Value of Penetration (mm) G-DI Reference Injector Penetration I-MR Chart Observation 28 UC L=2.40 X=6. LC L=6.4 Moving Range, Penetration (mm) Observation UC L=.484 MR=.6 LC L=0 Figure. Penetration Variation from the Generation Imaging System with G-DI Reference Injector

6 These results combine the measurement system error and the G-DI reference injector variability. Also, it is important to note that these estimates of uncertainty contain limited sources contributing to variation: only one test set-up was used, only one operator performed the testing, the testing was performed on one day only, etc. As a result, it must be noted that these estimates of uncertainty reflect a best case. As the sources of variation are increased the estimate of uncertainty has the potential to also increase. Knowing that the estimated measurement error has both the Generation imaging system measurement uncertainty combined with the G-DI reference injector variability, work had to be performed to discern the contribution of only the measurement system. Estimation of Measurement System Uncertainty using Reference Solid Cones Cone Description Because the G-DI reference injector exhibited visible injection-to-injection spray geometry differences typical of inwardly-opening multi-hole fuel injectors, a stable geometric shape that resembled a spray was necessary. A dummy injector with the same internal and external dimensions as the reference injector was fabricated. In addition, solid stainless steel cones with extensions were created with different angles and penetrations lengths. These were made to span the historically observed range of spray angles and penetrations measured by the research laboratory. These cones were measured by the fabricator to determine corresponding geometric reference values. The dummy injector and a sample solid cone are shown in Figure 8. Figure 8. Typical Reference Solid Cone with Dummy G-DI Injector Three cones of different angles and three extension pieces of different lengths were made to span nominal spray angle geometries of 0, 0 and 0 and penetrations of 0 mm, 0 mm and 0 mm. Each combination of angle and length were measured by the fabricator and the values are shown in Table. Combination Length (mm) Angle ( ) 0 Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Cone 0mm Pen Table. The Fabricator s Measured Values of the Reference Cones and Penetration Extensions Combinations Cone Testing and Analysis As was performed during the initial estimation of measurement error with the G-DI reference injector, 0 images of the solid cones were taken consecutively on the Generation imaging system for each of the nine combinations. All of the combinations were then evaluated using I-MR charts for angle (spray angle) and length (penetration). The findings from the angle analyses were similar to that from the initial estimate evaluation for the reference injector. Namely:. The difference between the upper and lower control limits of the I-MR plots illustrate the magnitude of measurement variability present between the individual images of the reference metal cones. This magnitude corresponds to a variation of one pixel. 2. Since the moving range plot contained many points with a zero value, the resolution of the Generation imaging system needs improvement. The measurements were found to toggle between two discrete pixel locations.. The results obtained from the reference solid cones testing are statistically stable, allowing further analysis using a Type Gage Study to determine an estimate of the Generation imaging system s uncertainty. The findings for the penetration extension analysis were unlike those of the angle findings in that no measurement variation was observed. Unlike the variable penetration measurements for the G-DI reference injector, all 0 images of each cone / penetration extension combination gave the same length value. While these results show a high degree of precision due to lack of variation, no statistical methods could be employed.

7 Using the findings from the angle I-MR charts, the combination with the most variation was selected for further analysis using a Type Gage Study. The resultant Minitab analysis is shown in Figure. Gage name:.0 Generation Imaging Stand Highest Variability Cone / Penetration Extension Combination Run Chart Angle (degrees) Ref Observation Basic Statistics Reference 2.4 Mean 2.42 StDev * StDev (SV ) 2.08 Figure. Type Gage Study Angle Variation Results for the Highest Variability Combination of the Reference Solid Cones Similar to the G-DI reference injector, the Type Gage Study yielded the measurement standard deviation, S m. The standard deviation was then doubled to estimate the angle measurement s % confidence interval. The result is shown in Table 4. Again, because of the high precision of the penetration extension length measurements, uncertainty estimates for length (penetration) cannot be calculated. Solid Cones Geometric Parameter S m Type Gage Results % Confidence Interval Angle ( ) 0.4 ± 0.6 Table 4. Estimation of Measurement Uncertainty for the Generation Imaging System using the Reference Solid Cones It can be concluded from the reference solid cone study that the contribution of the measurement uncertainty from the Generation imaging system is a fraction of the total observed angular uncertainty (measurement system error plus product variability): 0.4 versus 2.2. Evaluating the Total Measurement Uncertainty for the Generation Imaging System From the Type Gage Study of the solid cones, it can be concluded that the product measurement error component is the larger contributor to the measurement uncertainty. The relatively large contribution of product variation, in comparison to the contribution of measurement system error, requires a method to mitigate the effects of the product variation on the measured value. In SAE J2, a method for minimizing injector spray variation is prescribed. It calls for averaging the geometric values obtained from a minimum of individual images to obtain one conglomerate value. For the G-DI reference injector, this method was followed and then repeated. To set upper and lower control limits on the geometric results, a minimum of repetitions is needed. For this work, measurements of more than twenty repeated results over a four month time span were evaluated. These results were processed using Minitab yielding an I-MR S (Between / Within) chart, where the between compares the conglomerate averages and the within compares the results from the individual im-

8 ages of each set. The top section of the chart is a graph monitoring control (within upper and lower control limits), and the bottom two sections of the chart allow for a determination of uncertainty. See Figure 0. G-DI Reference Injector Spray Angle I-MR-R/S (Between/Within) Chart Each Subgroup is Derived from Image Values Mean Spray Angle ( ) UCL=2.82 X=4.482 LCL=46.8 MR of Subgroup Mean ( ) UCL=4.0 MR=.2 LCL=0 2 UCL=6.264 Sample StDev ( ) S=2.8 LCL=0 Sample 2 Figure 0. G-DI Reference Injector Spray Angle from Images I-MR-R/S (Between/Within) Chart With the data obtained from Figure 0 (and a corresponding chart for penetration that is not shown here), the total measurement uncertainty was determined using Donald Wheeler s equation of long and short-term measurement error () []. Where short-term measurement error, denoted as S w, only includes limited contributions to variation. Long-term measurement error, denoted S b, includes the many sources of variation influencing the data over the four-month time span. The total measurement error, denoted S m, was calculated as follows. MR s b = d 2 d 2 =.28 MR is the average moving range between the mean of each run divided by d 2, a bias correction factor, employed for a subgroup size of 2 (consecutive runs), and equal to.28 [6] s w = S n = number of runs 2 sw s m = + () The results yielded from equation are contained in Table below. Reference Injector Average of Images Geometric Parameter n Uncertainty Estimate Table. Total Measurement Uncertainty for the Generation Imaging System with G-DI Reference Injector Improve the Process Reducing the Total Measurement Uncertainty by Mitigating the Effect of Product Variability Although the measurement uncertainty results for the SAE J2 minimum recommended number of averaged images () were determined, the opportunity to S m ( s ) 2 % Confidence Interval Spray Angle ( ).4 ±.4 Penetration (mm).0 ±.40 b

9 decrease variability between repeat conglomerate values was present without jeopardizing test throughput. This was accomplished by increasing the number of individual images within the conglomerate value from to 0. In a similar fashion as was performed with the images and shown in Figure 0, I-MR-R/S (Between/Within) charts for spray angle and penetration were created using 0 individual images from the G-DI reference injector. See Figures and 2 below. G-DI Reference Injector Spray Angle I-MR-R/S (Between/Within) Chart Each Subgroup is Derived from 0 Image Values Mean Spray Angle ( ) UCL=. X=4.66 LCL=4. 2 MR of Subgroup Mean ( ) 2 0 UCL=2.6 MR=0.2 LCL=0 2 UCL=4.4 Sample StDev ( ) 4 2 S=.4 LCL=.0 Sample 2 Figure. G-DI Reference Injector Spray Angle from 0 Images I-MR-R/S (Between/Within) Chart G-DI Reference Injector Penetration I-MR-R/S (Between/Within) Chart Each Subgroup is Derived from 0 Image Values 2 UCL=.82 Subgroup Mean 0 68 X=6.48 LCL=6. 2 MR of Subgroup Mean UCL=2.80 MR=0.88 LCL=0 2 Sample StDev UCL=.46 S= LCL=.0 Sample 2 Figure 2. G-DI Reference Injector Penetration from 0 Images I-MR-R/S (Between/Within) Chart

10 The data obtained from the I-MR-R/S (Between/Within) charts using 0 images enabled the utilization of the Wheeler equation to yield our final S m calculations for the Generation imaging system. See Table 6 below. Reference Injector Average of 0 Images Geometric Parameter S m Uncertainty Estimate Table 6. Total Measurement Uncertainty for the Generation Imaging with the G-DI Reference Injector Mitigating Product Variability Effects Clearly, the effect of increasing the number of analyzed images in the conglomerate averaged value mitigates the product variability portion of the total estimated uncertainty. Next, the calculated S m values were used to determine the equipment resolution. Measurement Resolution The equipment resolution is defined as the smallest increment that can be measured by the system. Understanding the measurement resolution is crucial to reporting meaningful and useful results. Wheeler, [] developed criteria that evaluates the effective resolution of a system. See equation 2, below. Equipment resolution 0.< <.0 (2) s m % Confidence Interval Spray Angle ( ) 0.8 ±.4 Penetration (mm) 0.0 ±.80 The minimum resolution of the Generation imaging system was observed in the imaging of the reference solid cones where the geometric values obtained toggled between those corresponding to one pixel. Reference Injector Spray Angle The spray angle resolution of the G-DI reference injector was calculated by averaging the angular changes caused by adding and subtracting one-pixel from the average Spray Angle value: X, 4.6. See Figure. SAE J2 specifies that the spray angle is calculated from four points on the boundary of the spray at mm and mm downstream from the injector tip. See Figure. The resultant change of a single pixel (with a pixel resolution of 0.2 mm / pixel) on a point on the SAE spray boundary yields a Spray Angle resolution of 0.8. The S m for the spray Angle is 0.8 and using Equation 2 shows that the Wheeler equation is satisfied with a value of Therefore the resolution is acceptable. Reference Injector Penetration The penetration resolution of the G-DI reference injector is simply equal to the pixel resolution of 0.2 mm. The S m for the penetration is 0.0 mm. Equation 2 is satisfied with a value of 0.4. As with the spray angle resolution, the penetration resolution is also acceptable. The Generation G-DI imaging system has acceptable resolution for measuring sprays typified by those from the G-DI reference injector. If this system were to be used for testing sprays from G-DI injectors that demonstrated little to no variability (approaching the repeatability of the reference solid cones), then the Generation G-DI imaging system could be found to have insufficient resolution. Discussion of Measurement Linearity and Measurement Bias It is important to verify that the measurement system is suited for use over the expected range of G- DI spray geometries. A linearity and bias study determines the performance with respect to this range. For the reference injector, it is impossible to know the true-value of the spray angle and spray penetration. However, for the reference solid cones, the Generation imaging system measurements can be compared to values obtained by other geometric assessments of this hardware. If the angle and length values provided by the cone fabricator are accepted as true, the measurement linearity (gain) and measurement bias (offset) of the Generation imaging system can be determined. Using Minitab, the geometric values from Table are compared to their corresponding imaging results using a gage linearity and bias study. See Figures and 4 below.

11 Gage Linearity and Bias Study: Penetration Length Gage Linearity and Bias Study: Angle Gage name: Generation Imaging System Gage name: Generation Imaging System 0.20 Regression % CI Regression % CI Data Avg Bias Data Avg Bias Bias (mm) 0.0 Bias ( ) Penetration Length (mm) A ngle ( ) 60 0 Figure. Generation Imaging System Angle Linearity and Bias Evaluation As can be seen in Figures and 4, the Generation imaging system seems to exhibit both linearity and bias concerns. The system seems to underestimate the spray angle and overestimate the spray penetration. Additionally, in both cases the amount of error is not a constant offset. A possible factor in the error is that the number of pixels used in the image analysis is too low, as was discussed in the Cone Testing and Analysis section where toggling of values was observed. A measurement system without linearity and bias problems will have a horizontal line across the tested region with no offset from the true values. Such is not the case with the Generation imaging system, but these issues are being addressed in the ongoing creation of a future G-DI imaging system. Control the Process Next Steps There is a plan to continue testing the G-DI reference injectors in order to monitor the Generation imaging system stability and consistency in reporting spray angle and penetration. With a larger number of points for the average conglomerate data, the upper and lower control limits for the spray angle and penetration can be fixed allowing the use of standard statistical control charts. An assumption was made that the cone fabricator provided angle and length values for the reference solid cones that were accurate. Cone measurements traceable to the National Institute of Standards and Technology (NIST) are planned to better assess the findings that the Generation imaging system has statistically significant bias and linearity issues. Figure 4. Generation Imaging System Penetration Length Linearity and Bias Evaluation Recommendations This work will be presented to the SAE Gasoline Fuel Injection Standards Committee for their consideration in future revisions to the minimum testing and analysis criteria of SAE J2. Given the expectation that G-DI injector sprays will become increasingly less variable, the Generation G-DI imaging system will be increasingly less capable. Its uncertainty will consume an ever larger portion of the tightening spray specification tolerances. A next generation system ( Generation 2 ) is being created with increased pixel resolution. An MSA of this new Generation 2 system will be performed, with the expectation of markedly reduced measurement uncertainty. Conclusions The Generation G-DI imaging system is an appropriate tool for measuring injectors typified by the G-DI reference injectors. The % confidence interval for spray angle is ±.4 and the % confidence interval for spray penetration is ±.80 mm. The resolution of the Generation imaging system is acceptable, but only because of the product variability typified by all inwardly-opening multihole G-DI injectors. This MSA work provides a roadmap for those needing to undertake similar spray measurement uncertainty determination. The DMAIC methodology provides guidance, not only for evaluating measurement uncertainty, but for improving and controlling it as well.

12 Acknowledgements The authors would like to acknowledge the support of individuals that provided guidance for this eight-month project. This includes statistical experts, Craig Smith and Mark Wirth. We are also grateful to our management, especially Tess Wallace, for their support and encouragement. References. Zhao, F., Harrington, D.L., Lai, M-C., Automotive Gasoline Direct-Injection Engines, SAE International, 2002, pp SAE International Surface Vehicle Recommended Practice J2, Gasoline Fuel Injector Spray Measurements and Characterizations, (200), SAE International, Warrendale, Pennsylvania. Chmiel, D.M., Ospina, C.A., Humphrey, W., et al ILASS Americas, 2st Annual Conference on Liquid Atomization and Spray Systems, Orlando, Florida, May 8-2, 2008, Session T-B Minitab Software v...0, StatGuide, Minitab, Incorporated, 200. Wheeler, D., EMP (Evaluating the Measurement Process) III: Using Imperfect Data, SPC Press, Wheeler, D., Lyday, R., Evaluating the Measurement Process, Second Edition, SPC Press, 8, p.4

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers By Jeffrey L. Guttman, Ph.D., Director of Engineering, Ophir-Spiricon Abstract: The Mode-Field Diameter (MFD) and spot

More information

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis Kate Gilland 10/2/13 IE 434 Homework 2 Process Capability 1. Figure 1: Capability Analysis σ = R = 4.642857 = 1.996069 P d 2 2.326 p = 1.80 C p = 2.17 These results are according to Method 2 in Minitab.

More information

Measurement of droplets temperature by using a global rainbow technique with a pulse laser

Measurement of droplets temperature by using a global rainbow technique with a pulse laser , 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 Measurement of droplets temperature by using a global rainbow technique with a pulse laser S. Saengkaew,

More information

Chapter 3. Experimental Procedure

Chapter 3. Experimental Procedure Chapter 3 Experimental Procedure 33 3.1 Burner Systems Startup 3.1.1 Instrumentation power up The instrumentation of the burner including the PC need to be turned on, in order to provide safe ignition

More information

Ch 22 Inspection Technologies

Ch 22 Inspection Technologies Ch 22 Inspection Technologies Sections: 1. Inspection Metrology 2. Contact vs. Noncontact Inspection Techniques 3. Conventional Measuring and Gaging Techniques 4. Coordinate Measuring Machines 5. Surface

More information

MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY

MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY T.M. Kegel and W.R. Johansen Colorado Engineering Experiment Station, Inc. (CEESI) 54043 WCR 37, Nunn, CO, 80648 USA

More information

Development of an Electronic Technique for Determining Rate of Solution of Solid Products

Development of an Electronic Technique for Determining Rate of Solution of Solid Products Development of an Electronic Technique for Determining Rate of Solution of Solid Products Henley and J. B. Porinoff Reprinted from Pharmaceutical Technology West Point, PA During the development of a product

More information

Air Assisted Atomization in Spiral Type Nozzles

Air Assisted Atomization in Spiral Type Nozzles ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Air Assisted Atomization in Spiral Type Nozzles W. Kalata *, K. J. Brown, and R. J. Schick Spray

More information

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time

Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time Tutorial: Instantaneous Measurement of M 2 Beam Propagation Ratio in Real-Time By Allen M. Cary, Jeffrey L. Guttman, Razvan Chirita, Derrick W. Peterman, Photon Inc A new instrument design allows the M

More information

IDENTIFYING WORST CASE DESIGNS THROUGH A COMBINED STRATEGY OF COMPUTATIONAL MODELING, STATISTICAL METHODS, AND BENCH TOP TESTS

IDENTIFYING WORST CASE DESIGNS THROUGH A COMBINED STRATEGY OF COMPUTATIONAL MODELING, STATISTICAL METHODS, AND BENCH TOP TESTS IDENTIFYING WORST CASE DESIGNS THROUGH A COMBINED STRATEGY OF COMPUTATIONAL MODELING, STATISTICAL METHODS, AND BENCH TOP TESTS Payman Afshari Andrew Dooris Pat Fatyol DePuy Synthes Spine, a Johnson and

More information

2010 by Minitab, Inc. All rights reserved. Release Minitab, the Minitab logo, Quality Companion by Minitab and Quality Trainer by Minitab are

2010 by Minitab, Inc. All rights reserved. Release Minitab, the Minitab logo, Quality Companion by Minitab and Quality Trainer by Minitab are 2010 by Minitab, Inc. All rights reserved. Release 16.1.0 Minitab, the Minitab logo, Quality Companion by Minitab and Quality Trainer by Minitab are registered trademarks of Minitab, Inc. in the United

More information

On Generating Combined Drop Size Distributions from Point Measurements in a Spray

On Generating Combined Drop Size Distributions from Point Measurements in a Spray ICLASS 5, 3th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan, August 5 On Generating Combined Drop Size Distributions from Point Measurements in a Spray K. M.

More information

METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY

METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY Nathan Brown 1 and Ronnie Fesperman 2 1 ALIO Industries. Wheat Ridge, CO, USA 2 National Institute of Standards

More information

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI 23 April 2012 PDF-based simulations of turbulent spray combustion in a constant-volume chamber under

More information

Assignment 4/5 Statistics Due: Nov. 29

Assignment 4/5 Statistics Due: Nov. 29 Assignment 4/5 Statistics 5.301 Due: Nov. 29 1. Two decision rules are given here. Assume they apply to a normally distributed quality characteristic, the control chart has three-sigma control limits,

More information

Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong?

Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong? WHITE PAPER Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong? Bob Doering CorrectSPC Page 0 Appendix 7 of the AIAG SPC book contains sample data set and calculations for capability. They

More information

Chapter 6 : Results and Discussion

Chapter 6 : Results and Discussion Refinement and Verification of the Virginia Tech Doppler Global Velocimeter (DGV) 86 Chapter 6 : Results and Discussion 6.1 Background The tests performed as part of this research were the second attempt

More information

Meet MINITAB. Student Release 14. for Windows

Meet MINITAB. Student Release 14. for Windows Meet MINITAB Student Release 14 for Windows 2003, 2004 by Minitab Inc. All rights reserved. MINITAB and the MINITAB logo are registered trademarks of Minitab Inc. All other marks referenced remain the

More information

SPRAYTEC ACCURATE PARTICLE SIZING FOR AEROSOLS AND SPRAYS PARTICLE SIZE

SPRAYTEC ACCURATE PARTICLE SIZING FOR AEROSOLS AND SPRAYS PARTICLE SIZE PARTICLE SIZE SPRAYTEC ACCURATE PARTICLE SIZING FOR AEROSOLS AND SPRAYS INTRODUCING THE MALVERN SPRAYTEC Rapid, reliable particle size measurements made easy. Spray particle and droplet size measurements

More information

Satisfactory Peening Intensity Curves

Satisfactory Peening Intensity Curves academic study Prof. Dr. David Kirk Coventry University, U.K. Satisfactory Peening Intensity Curves INTRODUCTION Obtaining satisfactory peening intensity curves is a basic priority. Such curves will: 1

More information

Toner Cartridge Report Evaluation Report #06-130b Cartridge Type: 12A7465

Toner Cartridge Report Evaluation Report #06-130b Cartridge Type: 12A7465 Toner Cartridge Report Evaluation Report #6-13b Cartridge Type: 12A7465 April 25, 26 122-ELT-12A7465 Cartridges submitted for evaluation by: ELT 4314 W. Military Hwy McAllen TX 7853 National Center for

More information

STATGRAPHICS PLUS for WINDOWS

STATGRAPHICS PLUS for WINDOWS TUTORIALS FOR Quality Control Analyses STATGRAPHICS PLUS for WINDOWS SEPTEMBER 1999 MANUGISTICS, INC 2115 East Jefferson Street Rockville, Maryland 20852 Introduction This manual contains tutorials for

More information

Error Analysis, Statistics and Graphing

Error Analysis, Statistics and Graphing Error Analysis, Statistics and Graphing This semester, most of labs we require us to calculate a numerical answer based on the data we obtain. A hard question to answer in most cases is how good is your

More information

WHITE PAPER. Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials

WHITE PAPER. Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Abstract BSDF measurements are broadly applicable to

More information

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit. Continuous Improvement Toolkit Normal Distribution The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 245 Introduction This procedure generates R control charts for variables. The format of the control charts is fully customizable. The data for the subgroups can be in a single column or in multiple

More information

INSPECTION OF MACHINED PARTS FROM CAD MODEL USING 3D PROFILOMETRY

INSPECTION OF MACHINED PARTS FROM CAD MODEL USING 3D PROFILOMETRY INSPECTION OF MACHINED PARTS FROM CAD MODEL USING 3D PROFILOMETRY Prepared by Duanjie Li, PhD, Erik Steinholt and Jeronimo Silva 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com

More information

A procedure for determining the characteristic value of a geotechnical parameter

A procedure for determining the characteristic value of a geotechnical parameter ISGSR 2011 - Vogt, Schuppener, Straub & Bräu (eds) - 2011 Bundesanstalt für Wasserbau ISBN 978-3-939230-01-4 A procedure for determining the characteristic value of a geotechnical parameter A. J. Bond

More information

Three-Dimensional Laser Scanner. Field Evaluation Specifications

Three-Dimensional Laser Scanner. Field Evaluation Specifications Stanford University June 27, 2004 Stanford Linear Accelerator Center P.O. Box 20450 Stanford, California 94309, USA Three-Dimensional Laser Scanner Field Evaluation Specifications Metrology Department

More information

Response to API 1163 and Its Impact on Pipeline Integrity Management

Response to API 1163 and Its Impact on Pipeline Integrity Management ECNDT 2 - Tu.2.7.1 Response to API 3 and Its Impact on Pipeline Integrity Management Munendra S TOMAR, Martin FINGERHUT; RTD Quality Services, USA Abstract. Knowing the accuracy and reliability of ILI

More information

AN EVALUATION OF NON-CONTACT LASER SCANNER PERFORMANCE USING CALIBRATED ARTIFACTS

AN EVALUATION OF NON-CONTACT LASER SCANNER PERFORMANCE USING CALIBRATED ARTIFACTS AN EVALUATION OF NON-CONTACT LASER SCANNER PERFORMANCE USING CALIBRATED ARTIFACTS Michael Gomez, Colleen Vaccaro, Chase Maness, Connor Lawrence, Carson Murray, Luis Vargas, Greg Caskey, Chris Evans, and

More information

Statistical Process Control: Micrometer Readings

Statistical Process Control: Micrometer Readings Statistical Process Control: Micrometer Readings Timothy M. Baker Wentworth Institute of Technology College of Engineering and Technology MANF 3000: Manufacturing Engineering Spring Semester 2017 Abstract

More information

Using Edge Detection in Machine Vision Gauging Applications

Using Edge Detection in Machine Vision Gauging Applications Application Note 125 Using Edge Detection in Machine Vision Gauging Applications John Hanks Introduction This application note introduces common edge-detection software strategies for applications such

More information

Getting Started with Minitab 17

Getting Started with Minitab 17 2014, 2016 by Minitab Inc. All rights reserved. Minitab, Quality. Analysis. Results. and the Minitab logo are all registered trademarks of Minitab, Inc., in the United States and other countries. See minitab.com/legal/trademarks

More information

Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis

Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis More Info at Open Access Database www.ndt.net/?id=15137 Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis Jean-Simon Fraser, Pierre-Hugues Allard Creaform, 5825 rue St-Georges,

More information

Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine

Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine Computational and Experimental Study of In-cylinder Flow in a Direct Injection Gasoline (DIG) Engine Sudhakar Das and David M. Chmiel Delphi Automotive Systems Technical Center Rochester Rochester, New

More information

Particle size. Spraytec. Accurate particle sizing of aerosols and sprays. detailed specification sheets from

Particle size. Spraytec. Accurate particle sizing of aerosols and sprays. detailed specification sheets from Particle size Spraytec Accurate particle sizing of aerosols and sprays detailed specification sheets from www.malvern.com Introducing the Malvern Spraytec Spray particle size measurements are central to

More information

[ Ω 1 ] Diagonal matrix of system 2 (updated) eigenvalues [ Φ 1 ] System 1 modal matrix [ Φ 2 ] System 2 (updated) modal matrix Φ fb

[ Ω 1 ] Diagonal matrix of system 2 (updated) eigenvalues [ Φ 1 ] System 1 modal matrix [ Φ 2 ] System 2 (updated) modal matrix Φ fb Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Modal Test Data Adjustment For Interface Compliance Ryan E. Tuttle, Member of the

More information

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD CHAPTER - 5 OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD The ever-increasing demand to lower the production costs due to increased competition has prompted engineers to look for rigorous methods

More information

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Frank Hartmann, Stefan Buhl, Florian Gleiß, Christian Hasse Philipp Barth, Martin

More information

Control Charts. An Introduction to Statistical Process Control

Control Charts. An Introduction to Statistical Process Control An Introduction to Statistical Process Control Course Content Prerequisites Course Objectives What is SPC? Control Chart Basics Out of Control Conditions SPC vs. SQC Individuals and Moving Range Chart

More information

Metrology for 3D Printing: Assessing Methods for the Evaluation of 3D Printing Products

Metrology for 3D Printing: Assessing Methods for the Evaluation of 3D Printing Products Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 2-29-2016 Metrology for 3D Printing: Assessing Methods for the Evaluation of 3D Printing Products Bruce Leigh Myers

More information

Synchronizing High Speed Image and Data Acquisition

Synchronizing High Speed Image and Data Acquisition 24 April 2013, Huntsville, AL Frederick 2013-007 Synchronizing High Speed Image and Data Acquisition Mr. Amit Patel 1, Mr. Chad J. Eberhart 2, Dr. Robert A. Frederick 3 University of Alabama in Huntsville

More information

Monitoring of Manufacturing Process Conditions with Baseline Changes Using Generalized Regression

Monitoring of Manufacturing Process Conditions with Baseline Changes Using Generalized Regression Proceedings of the 10th International Conference on Frontiers of Design and Manufacturing June 10~1, 01 Monitoring of Manufacturing Process Conditions with Baseline Changes Using Generalized Regression

More information

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach

Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Simulation of In-Cylinder Flow Phenomena with ANSYS Piston Grid An Improved Meshing and Simulation Approach Dipl.-Ing. (FH) Günther Lang, CFDnetwork Engineering Dipl.-Ing. Burkhard Lewerich, CFDnetwork

More information

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc.

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C is one of many capability metrics that are available. When capability metrics are used, organizations typically provide

More information

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation HOLOEYE Photonics Products and services in the field of diffractive micro-optics Spatial Light Modulator (SLM) for the industrial research R&D in the field of diffractive optics Micro-display technologies

More information

Performance Characterization in Computer Vision

Performance Characterization in Computer Vision Performance Characterization in Computer Vision Robert M. Haralick University of Washington Seattle WA 98195 Abstract Computer vision algorithms axe composed of different sub-algorithms often applied in

More information

Particle Insight Dynamic Image Analyzer

Particle Insight Dynamic Image Analyzer Particle Insight Dynamic Image Analyzer Particle Size and Particle Shape Particle Shape for Characterizing Irregularly Shaped Particles For many years, particle size analyzers have rendered results with

More information

Using surface markings to enhance accuracy and stability of object perception in graphic displays

Using surface markings to enhance accuracy and stability of object perception in graphic displays Using surface markings to enhance accuracy and stability of object perception in graphic displays Roger A. Browse a,b, James C. Rodger a, and Robert A. Adderley a a Department of Computing and Information

More information

S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR

S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR 2/13 Authors Table Name Company Responsibility Date Signature Written by S. Clerc & MPC Team ACRI/Argans Technical Manager 2015-11-30 Verified by O. Devignot

More information

Quantification of the characteristics that influence the monitoring of crimping operations of electric terminals for use in the automotive industry

Quantification of the characteristics that influence the monitoring of crimping operations of electric terminals for use in the automotive industry Quantification of the characteristics that influence the monitoring of crimping operations of electric terminals for use in the automotive industry Vasco A. van Zeller vascovanzeller@ist.utl.pt Instituto

More information

revision of the validation protocol and of the completely executed validation report.

revision of the validation protocol and of the completely executed validation report. John N. Zorich, Jr. Zorich Technical Consulting & Publishing Sunnyvale, California (cell) 408-203-8811 http://www.johnzorich.com johnzorich@yahoo.com This copy of the Validation Protocol / Report # ZTC-7,

More information

*Sebastian Hensel, Kai Herrmann, Reiner Schulz and German Weisser

*Sebastian Hensel, Kai Herrmann, Reiner Schulz and German Weisser Paper templeate (for draft and final papers) Numerical analysis and statistical description of the primary breakup in fuel nozzles of large two stroke engines for the application in CFD engine simulations

More information

USING THE ORTHOGONAL PROJECTION FOR PARAMETER INITIALIZATION IN THE 3D RECONSTRUCTION OF DISTANT OBJECTS INTRODUCTION

USING THE ORTHOGONAL PROJECTION FOR PARAMETER INITIALIZATION IN THE 3D RECONSTRUCTION OF DISTANT OBJECTS INTRODUCTION USING THE ORTHOGONAL PROJECTION FOR PARAMETER INITIALIZATION IN THE 3D RECONSTRUCTION OF DISTANT OBJECTS Keith F. Blonquist, Junior Project Engineer Lidar Pacific Corporation Logan, UT 84341 kfblonquist@lidarpacific.com

More information

NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS

NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 003. NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS D.Stathas, O.Arabatzi, S.Dogouris, G.Piniotis,

More information

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles INTERNATIONAL STANDARD ISO 13320-1 First edition 1999-11-01 Particle size analysis Laser diffraction methods Part 1: General principles Analyse granulométrique Méthodes par diffraction laser Partie 1:

More information

Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing

Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing SAE TECHNICAL PAPER SERIES 2008-01-0288 Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing William Goodwin and Amar Bhatti General Motors Corporation Michael Jensen Synopsys,

More information

Continuous Imaging Fluid Particle Analysis: A Primer

Continuous Imaging Fluid Particle Analysis: A Primer Continuous Imaging Fluid Particle Analysis: A Primer Lew Brown Fluid Imaging Technologies Edgecomb, ME Introduction: Many scientific endeavors involve the use of particulate matter suspended within a liquid.

More information

Effect of Board Clamping System on Solder Paste Print Quality Dr. Rita Mohanty Speedline Technologies Franklin MA

Effect of Board Clamping System on Solder Paste Print Quality Dr. Rita Mohanty Speedline Technologies Franklin MA Effect of Board Clamping System on Solder Paste Print Quality Dr. Rita Mohanty Speedline Technologies Franklin MA Rajiv L. Iyer & Daryl Santos Binghamton University Binghamton, NY Abstract Stencil printing

More information

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 Section G POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 1. INTRODUCTION Modern surveying standards use the concept of positional accuracy instead of error of closure. Although the concepts

More information

MICRO-HITE 350 / 600 / 900 Height Gages MICRO-HITE main instruments 350 / 600 / 900

MICRO-HITE 350 / 600 / 900 Height Gages MICRO-HITE main instruments 350 / 600 / 900 Two-dimensional measurement operations are efficient and cost-effective with the MICRO-HITE Electronic Height Gage. The MICRO-HITE Electronic Height Gage measures in two dimensions in either rectangular

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Mu lt i s p e c t r a l

Mu lt i s p e c t r a l Viewing Angle Analyser Revolutionary system for full spectral and polarization measurement in the entire viewing angle EZContrastMS80 & EZContrastMS88 ADVANCED LIGHT ANALYSIS by Field iris Fourier plane

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 13909-8 First edition 2001-12-15 Hard coal and coke Mechanical sampling Part 8: Methods of testing for bias Houille et coke Échantillonnage mécanique Partie 8: Méthodes de détection

More information

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 23 CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 3.1 DESIGN OF EXPERIMENTS Design of experiments is a systematic approach for investigation of a system or process. A series

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Ultrasonic Multi-Skip Tomography for Pipe Inspection

Ultrasonic Multi-Skip Tomography for Pipe Inspection 18 th World Conference on Non destructive Testing, 16-2 April 212, Durban, South Africa Ultrasonic Multi-Skip Tomography for Pipe Inspection Arno VOLKER 1, Rik VOS 1 Alan HUNTER 1 1 TNO, Stieltjesweg 1,

More information

White Paper: BERT Baseline Polish versus Polishing Process 2

White Paper: BERT Baseline Polish versus Polishing Process 2 White Paper: BERT Baseline Polish versus Polishing Process 2 By Curtis Wright, ECE Electrical Engineer, R&D Introduction Bit Error Rate Testing (BERT) provides cabling and connectivity manufacturers with

More information

White Paper. Abstract

White Paper. Abstract Keysight Technologies Sensitivity Analysis of One-port Characterized Devices in Vector Network Analyzer Calibrations: Theory and Computational Analysis White Paper Abstract In this paper we present the

More information

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing Bansuwada Prashanth Reddy (AMS ) Department of Mechanical Engineering, Malla Reddy Engineering College-Autonomous, Maisammaguda,

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY

SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY SIMULATED LIDAR WAVEFORMS FOR THE ANALYSIS OF LIGHT PROPAGATION THROUGH A TREE CANOPY Angela M. Kim and Richard C. Olsen Remote Sensing Center Naval Postgraduate School 1 University Circle Monterey, CA

More information

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY ENHANCEMENT OF DIFFUSERS BRDF ACCURACY Grégory Bazalgette Courrèges-Lacoste (1), Hedser van Brug (1) and Gerard Otter (1) (1) TNO Science and Industry, Opto-Mechanical Instrumentation Space, P.O.Box 155,

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves 1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path.

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

ANNUAL REPORT OF HAIL STUDIES NEIL G, TOWERY AND RAND I OLSON. Report of Research Conducted. 15 May May For. The Country Companies

ANNUAL REPORT OF HAIL STUDIES NEIL G, TOWERY AND RAND I OLSON. Report of Research Conducted. 15 May May For. The Country Companies ISWS CR 182 Loan c.l ANNUAL REPORT OF HAIL STUDIES BY NEIL G, TOWERY AND RAND I OLSON Report of Research Conducted 15 May 1976-14 May 1977 For The Country Companies May 1977 ANNUAL REPORT OF HAIL STUDIES

More information

And the benefits are immediate minimal changes to the interface allow you and your teams to access these

And the benefits are immediate minimal changes to the interface allow you and your teams to access these Find Out What s New >> With nearly 50 enhancements that increase functionality and ease-of-use, Minitab 15 has something for everyone. And the benefits are immediate minimal changes to the interface allow

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Development of automated ultraviolet laser beam profiling system using fluorometric technique

Development of automated ultraviolet laser beam profiling system using fluorometric technique Development of automated ultraviolet laser beam profiling system using fluorometric technique BB Shrivastava*, NS Benerji, P Bhatnagar, HS Vora a and U Nundy Chemical and Excimer Laser Section a Laser

More information

Time-resolved PIV measurements with CAVILUX HF diode laser

Time-resolved PIV measurements with CAVILUX HF diode laser Time-resolved PIV measurements with CAVILUX HF diode laser Author: Hannu Eloranta, Pixact Ltd 1 Introduction Particle Image Velocimetry (PIV) is a non-intrusive optical technique to measure instantaneous

More information

Boosting the Efficiency of Wind Power Plants. Stringent Demands for Boosting the Efficiency of Wind Power Plants

Boosting the Efficiency of Wind Power Plants. Stringent Demands for Boosting the Efficiency of Wind Power Plants Case Study Boosting the Efficiency of Wind Power Plants By Steffen Schenk and Wolfgang Steindorf Three-dimensional measurement and analysis of rotor blades and their production facility are highly complex

More information

STATISTICAL CALIBRATION: A BETTER APPROACH TO INTEGRATING SIMULATION AND TESTING IN GROUND VEHICLE SYSTEMS.

STATISTICAL CALIBRATION: A BETTER APPROACH TO INTEGRATING SIMULATION AND TESTING IN GROUND VEHICLE SYSTEMS. 2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY SYMPOSIUM Modeling & Simulation, Testing and Validation (MSTV) Technical Session August 2-4, 2016 - Novi, Michigan STATISTICAL CALIBRATION: A

More information

Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011

Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011 Leica ScanStation:: Calibration and QA Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011 1. Summary Leica Geosystems, in creating the Leica Scanstation family of products, has designed and conducted

More information

Analog input to digital output correlation using piecewise regression on a Multi Chip Module

Analog input to digital output correlation using piecewise regression on a Multi Chip Module Analog input digital output correlation using piecewise regression on a Multi Chip Module Farrin Hockett ECE 557 Engineering Data Analysis and Modeling. Fall, 2004 - Portland State University Abstract

More information

PTE 519 Lecture Note Finite Difference Approximation (Model)

PTE 519 Lecture Note Finite Difference Approximation (Model) PTE 519 Lecture Note 3 3.0 Finite Difference Approximation (Model) In this section of the lecture material, the focus is to define the terminology and to summarize the basic facts. The basic idea of any

More information

ZEISS O-SELECT Digital Measuring Projector

ZEISS O-SELECT Digital Measuring Projector ZEISS O-SELECT Digital Measuring Projector 2 Certainty at the push of a button. ZEISS O-SELECT // PRECISION MADE BY ZEISS 3 4 Measure reliably at the push of a button ZEISS O-SELECT makes the optical measurement

More information

Multimedia Technology CHAPTER 4. Video and Animation

Multimedia Technology CHAPTER 4. Video and Animation CHAPTER 4 Video and Animation - Both video and animation give us a sense of motion. They exploit some properties of human eye s ability of viewing pictures. - Motion video is the element of multimedia

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model Boundary Elements XXVII 245 Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model J. J. Rencis & S. R. Pisani Department of Mechanical Engineering,

More information

TIPS4Math Grades 4 to 6 Overview Grade 4 Grade 5 Grade 6 Collect, Organize, and Display Primary Data (4+ days)

TIPS4Math Grades 4 to 6 Overview Grade 4 Grade 5 Grade 6 Collect, Organize, and Display Primary Data (4+ days) Collect, Organize, and Display Primary Data (4+ days) Collect, Organize, Display and Interpret Categorical Data (5+ days) 4m88 Collect data by conducting a survey or an experiment to do with the 4m89 Collect

More information

Advanced materials research using the Real-Time 3D Analytical FIB-SEM 'NX9000'

Advanced materials research using the Real-Time 3D Analytical FIB-SEM 'NX9000' SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation Advanced materials research using the Real-Time 3D Analytical

More information

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook ANSYS DesignXplorer - Crane Hook Purpose Using the crane hook model at right we will demonstrate how the design for six sigma results can be used in DesignXplorer 8.1 Goal Our first goal is to verify that

More information

Fusion AE LC Method Validation Module. S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA USA Phone: URL:

Fusion AE LC Method Validation Module. S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA USA Phone: URL: Fusion AE LC Method Validation Module S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA Phone: 707-441-0404 URL: www.smatrix.com Regulatory Statements and Expectations ICH Q2A The objective

More information

POME A mobile camera system for accurate indoor pose

POME A mobile camera system for accurate indoor pose POME A mobile camera system for accurate indoor pose Paul Montgomery & Andreas Winter November 2 2016 2010. All rights reserved. 1 ICT Intelligent Construction Tools A 50-50 joint venture between Trimble

More information

Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation

Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation Sohrab Esfandiari - ENOVA Engineering Services Robert P. Kennedy- RPK Structural Consulting

More information

Analysis Comparison between CFD and FEA of an Idealized Concept V- Hull Floor Configuration in Two Dimensions

Analysis Comparison between CFD and FEA of an Idealized Concept V- Hull Floor Configuration in Two Dimensions 2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 17-19 DEARBORN, MICHIGAN Analysis Comparison between CFD

More information

SOLAR CELL SURFACE INSPECTION USING 3D PROFILOMETRY

SOLAR CELL SURFACE INSPECTION USING 3D PROFILOMETRY SOLAR CELL SURFACE INSPECTION USING 3D PROFILOMETRY Prepared by Benjamin Mell 6 Morgan, Ste16, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 21

More information

Peak Detector. Minimum Detectable Z Step. Dr. Josep Forest Technical Director. Copyright AQSENSE, S.L.

Peak Detector. Minimum Detectable Z Step. Dr. Josep Forest Technical Director. Copyright AQSENSE, S.L. Peak Detector Minimum Detectable Z Step Dr. Josep Forest Technical Director Peak Detector Minimum Detectable Defect Table of Contents 1.Introduction...4 2.Layout...4 3.Results...8 4.Conclusions...9 Copyright

More information

Friction & Roughness Measurement of Elastomer

Friction & Roughness Measurement of Elastomer Friction & Roughness Measurement of Elastomer Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2010 NANOVEA

More information