Statistical Process Control: Micrometer Readings

Size: px
Start display at page:

Download "Statistical Process Control: Micrometer Readings"

Transcription

1 Statistical Process Control: Micrometer Readings Timothy M. Baker Wentworth Institute of Technology College of Engineering and Technology MANF 3000: Manufacturing Engineering Spring Semester 2017 Abstract This document provides an example of a statistical process control (SPC) report for a given dataset in a manufacturing setting. By applying statistical and manufacturing methodologies to the recorded set of micrometer measurements, the effectiveness of the process can be determined. To show this, a grouped data analysis, process control charts, and process capability calculations are performed and displayed. I. INTRODUCTION Given twenty-five manufactured components, micrometer readings were taken at a specified location. For each part, a total of four readings were taken using the millimeter micrometer with the datum being 6 millimeters. The lower specification limit (LSL) and upper specification limits (LSL) are 6.3 mm and 6.5 mm respectively. II. BACKGROUND To thoroughly understand the statistical analysis of this manufacturing process, basic statistical concepts should be understood. A. Statistical Process Control Statistical process control (SPC) is a proven method of detecting assignable variability in a process. SPC procedures help monitor the behavior of a process where control charts are perhaps the most successful tool. A control chart facilitates in the differentiation between two different types of process variation: 1. Common cause variation (natural variation) is a caused by unknown factors that result in a steady but random distribution of output around the mean of the data. This variation is caused by categories commonly referred to as Manpower, Material, Method, Measurement, Machine, and Environment. [1] 2. Special cause variation (assignable variation) is caused by known factors that result in a non-random distribution of the output around the mean of the data. It can be directly accounted for and potentially removed or controlled. [2] D. The Normal Distribution The normal distribution (Gaussian distribution) is a function that needs only the mean and dispersion to completely characterize itself. In this case, the data is evenly distributed around a central value with no bias left or right. This means that 50% of values are greater than the mean, and 50% are less than the mean. C. The Mean The mean shows the value that the measurements tend to cluster around (measure of central tendency) and is also known as the average [3]. It is calculated using the equation: x = x 1+x 2 +x 3 + +x n n x = mean, average value x i = measurements n = number of measurements Eq. 1 D. Dispersion Dispersion indicates how much variability is present in a set of measurements. Dispersion also determines the width of the normal curve. Two of the most common measures of dispersion include the range, R, and the standard deviation, s. The range is defined by the following equation: 1

2 R = x max x min Eq. 2 R = range x max = largest measured value x min = smallest measured value The standard deviation can be calculated by the following equation: s = n i=1 (x i x ) 2 n 1 s = sample standard deviation x = mean, average value x i = measurements n = number of measurements Eq. 3 E. Process Capability Process capability determines if a process is capable of meeting specifications. It is the relationship between the specified limits for a value and the limits of the natural variability of the value. [3] The process capability ratio, C p, is a measure that has the natural limits centered within the specified limits. It is calculated by dividing the difference in the specified limits by the total amount of variation expected in the process. For grouped data analysis the process capability is defined as: C p = USL LSL 6σ Eq. 4 For statistical process control (SPC), the process capability is defined as: C p = USL LSL 6σ USL = upper specified limit LSL = lower specified limit σ = sample standard deviation σ = process standard deviation Eq. 5 σ = R d 2 Eq. 6 R = average of subgroup ranges d 2 = function of subgroup size [4] (Table 5) If the C p is less than one, a significant amount of parts will be produced that will be deemed defective, or out of specification. The larger the C p value, the more capable the process is of producing good parts. If C p < 1.33 the process is general considered unacceptable. [3] The process capability index, C pk, numerically describes how close a process is to running to its specification limits relative to the natural variability of the process. It considers both process centering and process capability This determines how close the process is to the specification as well as how consistent the process is around its average performance. The equation below defines the C pk : C pk = nearest specification x 3σ nearest specification = USL or LSL σ = process standard deviation Eq. 7 F. Control Charts A control chart is a plot of a quality characteristic with respect to time. This quality characteristic is compared to the control limits which help determine whether the process is varying within acceptable limits or if it is out of control. These control limits define the range in which the process can be considered acceptable. Two of the most common and useful control charts are the x (x-bar) and R-charts. The x (x-bar) chart shows the quality characteristic of the average of the sample. The R-chart shows the quality characteristic of the range of the sample. The control limits of these charts can be found by using the following equations: 2

3 UCL x = x + 3σ x = x + A 2 R Eq. 8 LCL x = x 3σ x = x A 2 R Eq. 9 UCL R = R + 3σ R = x + D 4 R Eq. 10 UCL R = R + 3σ R = x + D 4 R Eq. 11 x = avaerage of the subgroup of averages σ x = standard deviation of the subgroup averages R = average of the subgroup ranges σ = standard deviation of the subgroup ranges A 2,D 4 = functions of the subgroup size [4] (Table 5) By using Eq. 12 we can reconfigure the data into its final measurement value. Table 2 below displays the translated micrometer measurements in mm interpreted from the raw data. Table 2. III. GROUPED DATA ANALYSIS The raw data displayed in Table 1 is a set of micrometer measurements in millimeters where the values are based off of a 6 mm datum. The sample calculation below displays how the raw data can be properly translated: n 1,x 1 = 6.35 n 1,x 2 = 6.40 n 1,x 3 = 6.32 n y,x x = (x x ) Eq. 12 n y = subgroup x x = sample measurement Table 1 From these micrometer measurements, a grouped data analysis can be performed to help evaluate the process. By using Eq. 1-4 and 7, the mean, dispersion, and process capabilities can be calculated. Table 3 displays their values for this process. Table 3. Based on these values we can see that the average micrometer measurement is 6.41, which approximately in the middle of our USL 3

4 and LSL. However, it is important to note that the process capability, C p, is well below 1 which makes the process unacceptable. Also from the translated data, a frequency array can be constructed. Table 4 displays the frequency of a micrometer measurement occurs within a specific range using a 0.05 mm step. Table 4. several variables that must be calculated. Listed below are the variables to be calculated and the equations to be used to do so: 1. Average of each sample (Eq. 1) 2. Range of each sample (Eq. 2) 3. Average of all of the sample averages (Eq. 1) 4. x upper control limit (Eq. 7) 5. x lower control limit (Eq. 8) 6. Average of all of the sample ranges (Eq. 1) 7. R upper control limit (Eq. 9) 8. R lower control limit (Eq. 10) When calculating the control limits, constants based on the size of the subgroup are needed. In this case, the subgroup size is four. Refer to Table 5 for constants A 2 and D 4 when calculating the x-bar and R control limits. Table 5. This frequency array allows us to create a histogram (Fig. 1) in which the average and specification limits are also displayed. From this histogram we can see that the micrometer measurements create a mostly normal distribution with the most measurements clustered around the average. There are, however, several measurements that lie outside of the upper and lower tolerances for this process. These values directly affect the dispersion of the measurements which result in a lower process capability. Table 6 below displays the calculated values of variables 1-8 described above. Table 6. Fig. 1. IV. STATISTICAL PROCESS CONTROL In order to properly construct the control charts for this manufacturing process, there are 4

5 Using the values from Table 6, an x-bar chart (Fig. 2a) and R chart (Fig. 2b) can be plotted. Notice that each chart shows the upper and lower control limits as well as the value in which the sample measurements should be centered around. In the x-bar chart that would be the x value and in the R chart it would be the R value. Fig. 2 (a) V. CONCLUSION By performing a grouped data analysis on the given micrometer measurements, it is easy to see that the process is not performing up to specifications. Looking at the histogram shows us that there are several parts produced outside of the specification limits. When analyzing the process from a SPC standpoint, the control charts show that the process is out of control. The random dispersion of sample measurements on both the x-bar and R charts show that there is outlying data No trend can be seen from these charts, thus resulting in an undetermined root cause. From both quality analyses, the process capability was calculated with the grouped data C p being and the SPC C p being Both of these capabilities show that the process is no good as it does not have the minimum C p standard value of 1.3. References Fig. 2 (b) Lastly, the process capability based on the statistical process control can be calculated and evaluated. By using Eq. 5 and Eq. 6 [1] "Special Cause Variation, isixsigma", Isixsigma.com, [Online]. [2] Common Cause Variation, isixsigma, Isixsigma.com, [Online]. [3] P. D. Rufe, Fundamentals of manufacturing [4] Quality America Inc., Control Chart Constants. [Online]. Center/statisticalprocesscontrol/control_chart_constants.ph p. σ = R d 2 = = C p = USL LSL 6σ = (0.043) = = This process capability is well below 1, thus making the process unacceptable. 5

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis Kate Gilland 10/2/13 IE 434 Homework 2 Process Capability 1. Figure 1: Capability Analysis σ = R = 4.642857 = 1.996069 P d 2 2.326 p = 1.80 C p = 2.17 These results are according to Method 2 in Minitab.

More information

Department of Industrial Engineering. Chap. 8: Process Capability Presented by Dr. Eng. Abed Schokry

Department of Industrial Engineering. Chap. 8: Process Capability Presented by Dr. Eng. Abed Schokry Department of Industrial Engineering Chap. 8: Process Capability Presented by Dr. Eng. Abed Schokry Learning Outcomes: After careful study of this chapter, you should be able to do the following: Investigate

More information

2.3. Quality Assurance: The activities that have to do with making sure that the quality of a product is what it should be.

2.3. Quality Assurance: The activities that have to do with making sure that the quality of a product is what it should be. 5.2. QUALITY CONTROL /QUALITY ASSURANCE 5.2.1. STATISTICS 1. ACKNOWLEDGEMENT This paper has been copied directly from the HMA Manual with a few modifications from the original version. The original version

More information

Six Sigma Green Belt Part 5

Six Sigma Green Belt Part 5 Six Sigma Green Belt Part 5 Process Capability 2013 IIE and Aft Systems, Inc. 5-1 Process Capability Is the measured, inherent reproducibility of the product turned out by the process. It can be quantified

More information

Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong?

Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong? WHITE PAPER Capability Calculations: Are AIAG SPC Appendix F Conclusions Wrong? Bob Doering CorrectSPC Page 0 Appendix 7 of the AIAG SPC book contains sample data set and calculations for capability. They

More information

Diploma of Laboratory Technology. Assessment 2 Control charts. Data Analysis. MSL Analyse data and report results.

Diploma of Laboratory Technology. Assessment 2 Control charts. Data Analysis. MSL Analyse data and report results. Diploma of Laboratory Technology Assessment 2 Control charts Data Analysis MSL925001 Analyse data and report results www.cffet.net PURPOSE 2 ASSESSMENT MAP 2 SUBMISSION 2 GETTING STARTED 3 TASK 1 X CHART

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 245 Introduction This procedure generates R control charts for variables. The format of the control charts is fully customizable. The data for the subgroups can be in a single column or in multiple

More information

Quality Improvement Tools

Quality Improvement Tools CHAPTER SIX SUPPLEMENT Quality Improvement Tools McGraw-Hill/Irwin Copyright 2011 by the McGraw-Hill Companies, Inc. All rights reserved. Learning Objectives 1. Apply quality management tools for problem

More information

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc.

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C is one of many capability metrics that are available. When capability metrics are used, organizations typically provide

More information

Assignment 9 Control Charts, Process capability and QFD

Assignment 9 Control Charts, Process capability and QFD Instructions: Assignment 9 Control Charts, Process capability and QFD 1. Total No. of Questions: 25. Each question carries one point. 2. All questions are objective type. Only one answer is correct per

More information

Tools For Recognizing And Quantifying Process Drift Statistical Process Control (SPC)

Tools For Recognizing And Quantifying Process Drift Statistical Process Control (SPC) Tools For Recognizing And Quantifying Process Drift Statistical Process Control (SPC) J. Scott Tarpley GE Intelligent Platforms, Inc. December, 200 Process Analytical Technology (PAT) brings us? Timely

More information

Chapter 5snow year.notebook March 15, 2018

Chapter 5snow year.notebook March 15, 2018 Chapter 5: Statistical Reasoning Section 5.1 Exploring Data Measures of central tendency (Mean, Median and Mode) attempt to describe a set of data by identifying the central position within a set of data

More information

Moving Average (MA) Charts

Moving Average (MA) Charts Moving Average (MA) Charts Summary The Moving Average Charts procedure creates control charts for a single numeric variable where the data have been collected either individually or in subgroups. In contrast

More information

Acceptance Sampling by Variables

Acceptance Sampling by Variables Acceptance Sampling by Variables Advantages of Variables Sampling o Smaller sample sizes are required o Measurement data usually provide more information about the manufacturing process o When AQLs are

More information

Statistical Techniques for Validation Sampling. Copyright GCI, Inc. 2016

Statistical Techniques for Validation Sampling. Copyright GCI, Inc. 2016 Statistical Techniques for Validation Sampling Tie Risk to Sampling Data Type Confidence Level Reliability and Risk Typical Performance Levels One-sided or two-sided spec Distribution (variables) Risk

More information

What is Process Capability?

What is Process Capability? 6. Process or Product Monitoring and Control 6.1. Introduction 6.1.6. What is Process Capability? Process capability compares the output of an in-control process to the specification limits by using capability

More information

α - CUT FUZZY CONTROL CHARTS FOR BOTTLE BURSTING STRENGTH DATA

α - CUT FUZZY CONTROL CHARTS FOR BOTTLE BURSTING STRENGTH DATA International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD ISSN 2249-684X Vol. 2 Issue 4 Dec 2012 17-30 TJPRC Pvt. Ltd., α - CUT FUZZY CONTROL

More information

AC : DETERMINING PROCESS CAPABILITY OF AN INDUSTRIAL PROCESS IN LABORATORY USING COMPUTER AIDED HARDWARE AND SOFTWARE TOOLS

AC : DETERMINING PROCESS CAPABILITY OF AN INDUSTRIAL PROCESS IN LABORATORY USING COMPUTER AIDED HARDWARE AND SOFTWARE TOOLS AC 007-150: DETERMINING PROCESS CAPABILITY OF AN INDUSTRIAL PROCESS IN LABORATORY USING COMPUTER AIDED HARDWARE AND SOFTWARE TOOLS Akram Hossain, Purdue University-Calumet Akram Hossain is a professor

More information

3. Data Analysis and Statistics

3. Data Analysis and Statistics 3. Data Analysis and Statistics 3.1 Visual Analysis of Data 3.2.1 Basic Statistics Examples 3.2.2 Basic Statistical Theory 3.3 Normal Distributions 3.4 Bivariate Data 3.1 Visual Analysis of Data Visual

More information

4. RCO Prevention Reduce Chance of Occurrence: Does not Allow defect to occur.

4. RCO Prevention Reduce Chance of Occurrence: Does not Allow defect to occur. GREEN BELT ABBREVIATIONS AND OTHER SUMMARY: 1. VOC Voice of Customer 2. CTQ - Critical to Quality (Characteristics) 3. CTP - Critical to Process (Inputs & Factors) 4. RCO Prevention Reduce Chance of Occurrence:

More information

ONE PROCESS, DIFFERENT RESULTS: METHODOLOGIES FOR ANALYZING A STENCIL PRINTING PROCESS USING PROCESS CAPABILITY INDEX ANALYSES

ONE PROCESS, DIFFERENT RESULTS: METHODOLOGIES FOR ANALYZING A STENCIL PRINTING PROCESS USING PROCESS CAPABILITY INDEX ANALYSES ONE PROCESS, DIFFERENT RESULTS: METHODOLOGIES FOR ANALYZING A STENCIL PRINTING PROCESS USING PROCESS CAPABILITY INDEX ANALYSES Daryl L. Santos 1, Srinivasa Aravamudhan, Anand Bhosale 3, and Gerald Pham-Van-Diep

More information

Chapter 2. Frequency distribution. Summarizing and Graphing Data

Chapter 2. Frequency distribution. Summarizing and Graphing Data Frequency distribution Chapter 2 Summarizing and Graphing Data Shows how data are partitioned among several categories (or classes) by listing the categories along with the number (frequency) of data values

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

Process Capability Analysis in Case Study of Specimens for Rice Polished Cylinder

Process Capability Analysis in Case Study of Specimens for Rice Polished Cylinder International Science Index Vol: 8 No: Part V Process Capability Analysis in Case Study of Specimens for ice Polished Cylinder T. Boonkang, S. Bangphan, P. Bangphan, T. Pothom Abstract Process capability

More information

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd Chapter 3: Data Description - Part 3 Read: Sections 1 through 5 pp 92-149 Work the following text examples: Section 3.2, 3-1 through 3-17 Section 3.3, 3-22 through 3.28, 3-42 through 3.82 Section 3.4,

More information

Multivariate Capability Analysis

Multivariate Capability Analysis Multivariate Capability Analysis Summary... 1 Data Input... 3 Analysis Summary... 4 Capability Plot... 5 Capability Indices... 6 Capability Ellipse... 7 Correlation Matrix... 8 Tests for Normality... 8

More information

Scaling Factors for Process Behavior Charts

Scaling Factors for Process Behavior Charts Quality Digest Daily, Mar. 1, 2010 Manuscript No. 207 Scaling Factors for Process Behavior Charts A Quick Reference Guide In the 1940s the War Production Board trained approximately 50,000 individuals

More information

This is file Q8Intl-IM13C.doc - The third of 5 files for solutions to this chapter.

This is file Q8Intl-IM13C.doc - The third of 5 files for solutions to this chapter. This is file Q8Intl-IM13C.doc - The third of 5 files for solutions to this chapter. 11. For each of the following control charts, assume that the process has been operating in statistical control for some

More information

Control Charts. An Introduction to Statistical Process Control

Control Charts. An Introduction to Statistical Process Control An Introduction to Statistical Process Control Course Content Prerequisites Course Objectives What is SPC? Control Chart Basics Out of Control Conditions SPC vs. SQC Individuals and Moving Range Chart

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

John A. Conte, P.E. 2/22/2012 1

John A. Conte, P.E. 2/22/2012 1 John A. Conte, P.E. 2/22/2012 1 Objectives Excited to be here! Students, faculty, engineers Share my engineering career Some thoughts on Six Sigma Some thoughts on Process Capability Cp, Cpk, Pp and Ppk

More information

Case study for robust design and tolerance analysis

Case study for robust design and tolerance analysis Subject Case study for robust design and tolerance analysis DfSS.nl A good practice in development projects is to take production variation of components into account when making design choices. The properties

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Contents. CRITERION Vantage 3 Analysis Training Manual. Introduction 1. Basic Functionality of CRITERION Analysis 5. Charts and Reports 17

Contents. CRITERION Vantage 3 Analysis Training Manual. Introduction 1. Basic Functionality of CRITERION Analysis 5. Charts and Reports 17 CRITERION Vantage 3 Analysis Training Manual Contents Introduction 1 Basic Functionality of CRITERION Analysis 5 Charts and Reports 17 Preferences and Defaults 53 2 Contents 1 Introduction 4 Application

More information

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit. Continuous Improvement Toolkit Normal Distribution The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

Minitab Training. Leading Innovation. 3 1 s. 6 2 s. Upper Specification Limit. Lower Specification Limit. Mean / Target. High Probability of Failure

Minitab Training. Leading Innovation. 3 1 s. 6 2 s. Upper Specification Limit. Lower Specification Limit. Mean / Target. High Probability of Failure Lower Specification Limit Mean / Target Upper Specification Limit High Probability of Failure Minitab Training 1 3 1 s 3 1 s Much Lower Probability of Failure 1 6 2 s 6 2 s Learning Objectives Understand

More information

Statistics: Interpreting Data and Making Predictions. Visual Displays of Data 1/31

Statistics: Interpreting Data and Making Predictions. Visual Displays of Data 1/31 Statistics: Interpreting Data and Making Predictions Visual Displays of Data 1/31 Last Time Last time we discussed central tendency; that is, notions of the middle of data. More specifically we discussed

More information

Minitab detailed

Minitab detailed Minitab 18.1 - detailed ------------------------------------- ADDITIVE contact sales: 06172-5905-30 or minitab@additive-net.de ADDITIVE contact Technik/ Support/ Installation: 06172-5905-20 or support@additive-net.de

More information

Frequency Distributions

Frequency Distributions Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data so that it is possible to get a general overview of the results. Remember,

More information

Section 1. Introduction. Section 2. Getting Started

Section 1. Introduction. Section 2. Getting Started Section 1. Introduction This Statit Express QC primer is only for Statistical Process Control applications and covers three main areas: entering, saving and printing data basic graphs control charts Once

More information

I/A Series Software FoxSPC.com Statistical Process Control

I/A Series Software FoxSPC.com Statistical Process Control I/A Series Software FoxSPC.com Statistical Process Control PSS 21S-4J2 B3 QUALITY PRODUCTIVITY SQC SPC TQC y y y y y y y y yy y y y yy s y yy s sss s ss s s ssss ss sssss $ x x x x x x x x x x x x x x

More information

Making Science Graphs and Interpreting Data

Making Science Graphs and Interpreting Data Making Science Graphs and Interpreting Data Eye Opener: 5 mins What do you see? What do you think? Look up terms you don t know What do Graphs Tell You? A graph is a way of expressing a relationship between

More information

Lecture 3: Chapter 3

Lecture 3: Chapter 3 Lecture 3: Chapter 3 C C Moxley UAB Mathematics 12 September 16 3.2 Measurements of Center Statistics involves describing data sets and inferring things about them. The first step in understanding a set

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Data Collection and Analysis. ENGR 1181 Class 7

Data Collection and Analysis. ENGR 1181 Class 7 Data Collection and Analysis ENGR 1181 Class 7 Data Collection in the Real World Data is collected all of the time, just think about it. When you are at the grocery store using your loyalty card or when

More information

IAT 355 Visual Analytics. Data and Statistical Models. Lyn Bartram

IAT 355 Visual Analytics. Data and Statistical Models. Lyn Bartram IAT 355 Visual Analytics Data and Statistical Models Lyn Bartram Exploring data Example: US Census People # of people in group Year # 1850 2000 (every decade) Age # 0 90+ Sex (Gender) # Male, female Marital

More information

A CASE STUDY OF QUALITY CONTROL CHARTS IN A MANUFACTURING INDUSTRY

A CASE STUDY OF QUALITY CONTROL CHARTS IN A MANUFACTURING INDUSTRY From the SelectedWorks of Md. Maksudul Islam March, 2014 A CASE STUDY OF QUALITY CONTROL CHARTS IN A MANUFACTURING INDUSTRY Fahim Ahmwdl Touqir Md. Maksudul Islam Lipon Kumar Sarkar Available at: https://works.bepress.com/mdmaksudul_islam/2/

More information

Towards Process Understanding:

Towards Process Understanding: Towards Process Understanding: sta2s2cal analysis applied to the manufacturing process of tablets Drug Product Development: A QbD Approach Nadia Bou-Chacra Faculty of Pharmaceutical Sciences University

More information

Denver, Colorado November 16, 2004 D. R. Corpron Senior Manager & Master Black Belt

Denver, Colorado November 16, 2004 D. R. Corpron Senior Manager & Master Black Belt Using Process Simulation in Quantitative Management Denver, Colorado November 16, 2004 D. R. Corpron Senior Manager & Master Black Belt 1 Preview What is the problem? Why process simulation? Steps to perform

More information

Ch. 1.4 Histograms & Stem-&-Leaf Plots

Ch. 1.4 Histograms & Stem-&-Leaf Plots Ch. 1.4 Histograms & Stem-&-Leaf Plots Learning Intentions: Create a histogram & stem-&-leaf plot of a data set. Given a list of data, use a calculator to graph a histogram. Interpret histograms & stem-&-leaf

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data.

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data. Summary Statistics Acquisition Description Exploration Examination what data is collected Characterizing properties of data. Exploring the data distribution(s). Identifying data quality problems. Selecting

More information

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide - Chapter Statistics. Sampling Techniques Statistics Statistics is the art and science of gathering, analyzing, and making inferences from numerical information

More information

Modified S-Control Chart for Specified value of Cp

Modified S-Control Chart for Specified value of Cp American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 38-349, ISSN (Online): 38-358, ISSN (CD-ROM): 38-369

More information

Getting to Know Your Data

Getting to Know Your Data Chapter 2 Getting to Know Your Data 2.1 Exercises 1. Give three additional commonly used statistical measures (i.e., not illustrated in this chapter) for the characterization of data dispersion, and discuss

More information

APPROACHES TO THE PROCESS CAPABILITY ANALYSIS IN THE CASE OF NON- NORMALLY DISTRIBUTED PRODUCT QUALITY CHARACTERISTIC

APPROACHES TO THE PROCESS CAPABILITY ANALYSIS IN THE CASE OF NON- NORMALLY DISTRIBUTED PRODUCT QUALITY CHARACTERISTIC APPROACHES TO THE PROCESS CAPABILITY ANALYSIS IN THE CASE OF NON- NORMALLY DISTRIBUTED PRODUCT QUALITY CHARACTERISTIC Jiří PLURA, Milan ZEMEK, Pavel KLAPUT VŠB-Technical University of Ostrava, Faculty

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and

CHAPTER-13. Mining Class Comparisons: Discrimination between DifferentClasses: 13.4 Class Description: Presentation of Both Characterization and CHAPTER-13 Mining Class Comparisons: Discrimination between DifferentClasses: 13.1 Introduction 13.2 Class Comparison Methods and Implementation 13.3 Presentation of Class Comparison Descriptions 13.4

More information

Small Tool Instruments and Data Management

Small Tool Instruments and Data Management Small Tool nstruments and Data Management DGMATC Mini-Processors Statistical Process Control Data processing equipment Signal Cables Pages 12 23 Micrometers Test Sets, Setting Rings Threepoint nternal

More information

Lecture Notes 3: Data summarization

Lecture Notes 3: Data summarization Lecture Notes 3: Data summarization Highlights: Average Median Quartiles 5-number summary (and relation to boxplots) Outliers Range & IQR Variance and standard deviation Determining shape using mean &

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

LOCATION AND DISPERSION EFFECTS IN SINGLE-RESPONSE SYSTEM DATA FROM TAGUCHI ORTHOGONAL EXPERIMENTATION

LOCATION AND DISPERSION EFFECTS IN SINGLE-RESPONSE SYSTEM DATA FROM TAGUCHI ORTHOGONAL EXPERIMENTATION Proceedings of the International Conference on Manufacturing Systems ICMaS Vol. 4, 009, ISSN 184-3183 University POLITEHNICA of Bucharest, Machine and Manufacturing Systems Department Bucharest, Romania

More information

Assignment 4/5 Statistics Due: Nov. 29

Assignment 4/5 Statistics Due: Nov. 29 Assignment 4/5 Statistics 5.301 Due: Nov. 29 1. Two decision rules are given here. Assume they apply to a normally distributed quality characteristic, the control chart has three-sigma control limits,

More information

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things.

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. + What is Data? Data is a collection of facts. Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. In most cases, data needs to be interpreted and

More information

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data Chapter 2 Descriptive Statistics: Organizing, Displaying and Summarizing Data Objectives Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

More information

Overview. Frequency Distributions. Chapter 2 Summarizing & Graphing Data. Descriptive Statistics. Inferential Statistics. Frequency Distribution

Overview. Frequency Distributions. Chapter 2 Summarizing & Graphing Data. Descriptive Statistics. Inferential Statistics. Frequency Distribution Chapter 2 Summarizing & Graphing Data Slide 1 Overview Descriptive Statistics Slide 2 A) Overview B) Frequency Distributions C) Visualizing Data summarize or describe the important characteristics of a

More information

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10 8: Statistics Statistics: Method of collecting, organizing, analyzing, and interpreting data, as well as drawing conclusions based on the data. Methodology is divided into two main areas. Descriptive Statistics:

More information

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures Part I, Chapters 4 & 5 Data Tables and Data Analysis Statistics and Figures Descriptive Statistics 1 Are data points clumped? (order variable / exp. variable) Concentrated around one value? Concentrated

More information

Visualizing univariate data 1

Visualizing univariate data 1 Visualizing univariate data 1 Xijin Ge SDSU Math/Stat Broad perspectives of exploratory data analysis(eda) EDA is not a mere collection of techniques; EDA is a new altitude and philosophy as to how we

More information

THE INSTITUTE OF PAPER CHEMISTRY MONTHLY CALIBRATION OF PHYSICAL TESTERS. June, 1955

THE INSTITUTE OF PAPER CHEMISTRY MONTHLY CALIBRATION OF PHYSICAL TESTERS. June, 1955 THE INSTITUTE OF PAPER CHEMISTRY APPLETON, WISCONSIN MONTHLY CALIBRATION OF PHYSICAL TESTERS June, 1955 THE INSTITUTE OF PAPER CHEMISTRY APPLETON, WISCONSIN MONTHLY CALIBRATION OF PHYSICAL TESTERS INTRODUCTION

More information

Basic Statistical Terms and Definitions

Basic Statistical Terms and Definitions I. Basics Basic Statistical Terms and Definitions Statistics is a collection of methods for planning experiments, and obtaining data. The data is then organized and summarized so that professionals can

More information

Process Capability Analysis (Cpk) SixSigmaTV.Net

Process Capability Analysis (Cpk) SixSigmaTV.Net Process Capability Analysis (Cpk) SixSigmaTV.Net Process Capability Using SigmaXL SigmaXL is an easy to use Excel plug-in for Six Sigma graphical and statistical analysis to help with many phases of your

More information

Data Mining. SPSS Clementine k-means Algorithm. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine

Data Mining. SPSS Clementine k-means Algorithm. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine Data Mining SPSS 12.0 6. k-means Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Outline K-Means Algorithm in K-Means Node References K-Means Algorithm in Overview The k-means method is a clustering

More information

Implementing Operational Analytics Using Big Data Technologies to Detect and Predict Sensor Anomalies

Implementing Operational Analytics Using Big Data Technologies to Detect and Predict Sensor Anomalies Implementing Operational Analytics Using Big Data Technologies to Detect and Predict Sensor Anomalies Joseph Coughlin, Rohit Mital, Shashi Nittur, Benjamin SanNicolas, Christian Wolf, Rinor Jusufi Stinger

More information

Process capability analysis

Process capability analysis 6 Process capability analysis In general, process capability indices have been quite controversial. (Ryan, 2000, p. 186) Overview Capability indices are widely used in assessing how well processes perform

More information

Statistical Quality Control Approach in Typical Garments Manufacturing Industry in Bangladesh: A Case Study

Statistical Quality Control Approach in Typical Garments Manufacturing Industry in Bangladesh: A Case Study Statistical Quality Control Approach in Typical Garments Manufacturing Industry in Bangladesh: A Case Study * Md. Mohibul Islam and ** Md. Mosharraf Hossain Garments industry is the most important economic

More information

Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) *

Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) * OpenStax-CNX module: m39305 1 Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX

More information

STA Module 2B Organizing Data and Comparing Distributions (Part II)

STA Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II)

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

SAS/QC 8 AND AN EFFICIENT AND EASY MEANS TO ANALYZE PRODUCT CHARACTERISTICS AND CAPABILITIES. Jim R. McHenry Weirton Steel -Corporation

SAS/QC 8 AND AN EFFICIENT AND EASY MEANS TO ANALYZE PRODUCT CHARACTERISTICS AND CAPABILITIES. Jim R. McHenry Weirton Steel -Corporation SAS/QC 8 AND SAS/GRAPH@ AN EFFICIENT AND EASY MEANS TO ANALYZE PRODUCT CHARACTERISTICS AND CAPABILITIES Jim R. McHenry Weirton Steel -Corporation Weirton IN ABSTRACT This paper introduces the user to the

More information

LABORATORY 1 Data Analysis & Graphing in Excel

LABORATORY 1 Data Analysis & Graphing in Excel LABORATORY 1 Data Analysis & Graphing in Excel Goal: In this lab, you will learn how to enter and manipulate data in Excel and you will learn how to make the graphs you will need for your lab write-ups.

More information

Lesson 18-1 Lesson Lesson 18-1 Lesson Lesson 18-2 Lesson 18-2

Lesson 18-1 Lesson Lesson 18-1 Lesson Lesson 18-2 Lesson 18-2 Topic 18 Set A Words survey data Topic 18 Set A Words Lesson 18-1 Lesson 18-1 sample line plot Lesson 18-1 Lesson 18-1 frequency table bar graph Lesson 18-2 Lesson 18-2 Instead of making 2-sided copies

More information

Downloaded from

Downloaded from UNIT 2 WHAT IS STATISTICS? Researchers deal with a large amount of data and have to draw dependable conclusions on the basis of data collected for the purpose. Statistics help the researchers in making

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

This chapter will show how to organize data and then construct appropriate graphs to represent the data in a concise, easy-to-understand form.

This chapter will show how to organize data and then construct appropriate graphs to represent the data in a concise, easy-to-understand form. CHAPTER 2 Frequency Distributions and Graphs Objectives Organize data using frequency distributions. Represent data in frequency distributions graphically using histograms, frequency polygons, and ogives.

More information

FUSION PRODUCT DEVELOPMENT SOFTWARE

FUSION PRODUCT DEVELOPMENT SOFTWARE FUSION PRODUCT DEVELOPMENT SOFTWARE 12 Reasons Why FPD is the World s Best Quality by Design Software for Formulation & Process Development S-MATRIX CORPORATION www.smatrix.com Contents 1. Workflow Based

More information

Error Analysis, Statistics and Graphing

Error Analysis, Statistics and Graphing Error Analysis, Statistics and Graphing This semester, most of labs we require us to calculate a numerical answer based on the data we obtain. A hard question to answer in most cases is how good is your

More information

And the benefits are immediate minimal changes to the interface allow you and your teams to access these

And the benefits are immediate minimal changes to the interface allow you and your teams to access these Find Out What s New >> With nearly 50 enhancements that increase functionality and ease-of-use, Minitab 15 has something for everyone. And the benefits are immediate minimal changes to the interface allow

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 2 Summarizing and Graphing Data 2-1 Overview 2-2 Frequency Distributions 2-3 Histograms

More information

Graphical Analysis of Data using Microsoft Excel [2016 Version]

Graphical Analysis of Data using Microsoft Excel [2016 Version] Graphical Analysis of Data using Microsoft Excel [2016 Version] Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable physical parameters.

More information

IBMSPSSSTATL1P: IBM SPSS Statistics Level 1

IBMSPSSSTATL1P: IBM SPSS Statistics Level 1 SPSS IBMSPSSSTATL1P IBMSPSSSTATL1P: IBM SPSS Statistics Level 1 Version: 4.4 QUESTION NO: 1 Which statement concerning IBM SPSS Statistics application windows is correct? A. At least one Data Editor window

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA

Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA Copyright 3 SPIE Refined Measurement of Digital Image Texture Loss Peter D. Burns Burns Digital Imaging Fairport, NY USA ABSTRACT Image texture is the term given to the information-bearing fluctuations

More information

Gpufit: An open-source toolkit for GPU-accelerated curve fitting

Gpufit: An open-source toolkit for GPU-accelerated curve fitting Gpufit: An open-source toolkit for GPU-accelerated curve fitting Adrian Przybylski, Björn Thiel, Jan Keller-Findeisen, Bernd Stock, and Mark Bates Supplementary Information Table of Contents Calculating

More information

Chapter 2 Basic Structure of High-Dimensional Spaces

Chapter 2 Basic Structure of High-Dimensional Spaces Chapter 2 Basic Structure of High-Dimensional Spaces Data is naturally represented geometrically by associating each record with a point in the space spanned by the attributes. This idea, although simple,

More information

Measures of Central Tendency

Measures of Central Tendency Page of 6 Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean The sum of all data values divided by the number of

More information