1-bend RAC Drawings of 1-Planar Graphs. Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, Fabrizio Montecchiani

Size: px
Start display at page:

Download "1-bend RAC Drawings of 1-Planar Graphs. Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, Fabrizio Montecchiani"

Transcription

1 1-bend RAC Drawings of 1-Planar Graphs Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, Fabrizio Montecchiani

2 Things to avoid in graph drawing

3 Things to avoid in graph drawing Too many crossings

4 Things to avoid in graph drawing Too many crossings Too many bends

5 A good property

6 A good property Right angle crossings (RAC)! [Huang, Hong, Eades 2008]

7 A good property Right angle crossings (RAC)! 1-bend 1-planar RAC drawing [Huang, Hong, Eades 2008]

8 Questions General: Which kind of graphs can be drawn with: a few crossings per edge, a few bends per edge, right angle crossings (RAC)?

9 Questions General: Which kind of graphs can be drawn with: a few crossings per edge, a few bends per edge, right angle crossings (RAC)? Specific: Does every 1-planar graph admit a 1-bend RAC drawing?

10 1-planar RAC drawings Not all 1-planar graphs have a straight-line RAC drawing [consequence of edge density results] Not all straight-line RAC drawable graphs are 1-planar [Eades and Liotta ] Every 1-plane kite-triangulation has a 1-bend RAC drawing [Angelini et al ] Every 1-plane graph with independent crossings (IC-planar) has a straight-line RAC drawing [Brandenburg et al ]

11 Our result Theorem. Every simple 1-planar graph admits a 1-bend RAC drawing, which can be computed in linear time if an initial 1-planar embedding is given

12 Some definitions 1-plane graph (not necessarily simple)

13 Some definitions 1-plane graph (not necessarily simple) kite

14 Some definitions empty kite 1-plane graph (not necessarily simple)

15 Some definitions 1-plane graph (not necessarily simple) not a kite!

16 Observation triangulated 1-plane graph (not necessarily simple)

17 Observation triangulated 1-plane graph (not necessarily simple) empty kite Every pair of crossing edges forms an empty kyte except possibly for a pair of crossing edges on the outer face

18 Observation triangulated 1-plane graph (not necessarily simple) not a kite Every pair of crossing edges forms an empty kyte except possibly for a pair of crossing edges on the outer face

19 Algorithm Outline input G simple 1-plane augmentation (the embedding may change) 1 G + triangulated 1-plane (multi-edges) recursive procedure 2 1-bend 1-planar RAC drawing of G 4 removal of dummy elements + 1-bend 1-planar RAC drawing of G + recursive procedure G * hierarchical contraction of G + 3 output

20 Algorithm Outline input G simple 1-plane augmentation (the embedding may change) 1 G + triangulated 1-plane (multi-edges) recursive procedure 2 1-bend 1-planar RAC drawing of G 4 removal of dummy elements + 1-bend 1-planar RAC drawing of G + recursive procedure G * hierarchical contraction of G + 3 output

21 G simple 1-plane Augmentation

22 Augmentation G simple 1-plane for each pair of crossing edges add an enclosing 4-cycle

23 Augmentation G simple 1-plane for each pair of crossing edges add an enclosing 4-cycle

24 Augmentation G simple 1-plane for each pair of crossing edges add an enclosing 4-cycle

25 Augmentation G simple 1-plane for each pair of crossing edges add an enclosing 4-cycle

26 G simple 1-plane Augmentation remove those multiple edges that belong to the input graph

27 G simple 1-plane Augmentation

28 G simple 1-plane Augmentation remove one (multiple) edge from each face of degree two, if any

29 Augmentation G simple 1-plane triangulate faces of degree > 3 by inserting a star inside them

30 G + triangulated 1-plane Augmentation

31 Algorithm Outline input G simple 1-plane augmentation (the embedding may change) 1 G + triangulated 1-plane (multi-edges) recursive procedure 2 1-bend 1-planar RAC drawing of G 4 removal of dummy elements + 1-bend 1-planar RAC drawing of G + recursive procedure G * hierarchical contraction of G + 3 output

32 Property of G + G + triangulated 1-plane - triangular faces - multiple edges never crossed - only empty kites

33 Property of G + G + triangulated 1-plane - triangular faces - multiple edges never crossed - only empty kites structure of each separation pair

34 Property of G + G + triangulated 1-plane - triangular faces - multiple edges never crossed - only empty kites structure of each separation pair

35 G + triangulated 1-plane Hierarchical contraction contract all inner components of each separation pair into a thick edge structure of each separation pair

36 G + triangulated 1-plane Hierarchical contraction contract all inner components of each separation pair into a thick edge contraction

37 G + triangulated 1-plane Hierarchical contraction contract all inner components of each separation pair into a thick edge contraction

38 G + triangulated 1-plane Hierarchical contraction

39 G + triangulated 1-plane Hierarchical contraction

40 Hierarchical contraction G + triangulated 1-plane G * hierarchical contraction

41 Hierarchical contraction G + triangulated 1-plane G * hierarchical contraction simple 3-connected triangulated 1-plane graph

42 Algorithm Outline input G simple 1-plane augmentation (the embedding may change) 1 G + triangulated 1-plane (multi-edges) recursive procedure 2 1-bend 1-planar RAC drawing of G 4 removal of dummy elements + 1-bend 1-planar RAC drawing of G + recursive procedure G * hierarchical contraction of G + 3 output

43 Drawing procedure remove crossing edges 3-connected plane graph apply Chiba et al convex faces and prescribed outerface reinsert crossing edges partial drawing

44 partial drawing Drawing procedure

45 partial drawing Drawing procedure

46 partial drawing Drawing procedure

47 Drawing procedure partial drawing remove crossing edges

48 partial drawing Drawing procedure

49 Drawing procedure partial drawing apply Chiba et al. 1984

50 Drawing procedure partial drawing reinsert crossing edges

51 partial drawing Drawing procedure

52 partial drawing Drawing procedure

53 Drawing procedure partial drawing remove crossing edges

54 partial drawing Drawing procedure

55 Drawing procedure partial drawing apply Chiba et al. 1984

56 Drawing procedure partial drawing reinsert crossing edges

57 new partial drawing Drawing procedure

58 new partial drawing Drawing procedure

59 Drawing procedure new partial drawing draw it as usual

60 + 1-bend 1-planar RAC drawing of G + Drawing procedure

61 Algorithm Outline input G simple 1-plane augmentation (the embedding may change) 1 G + triangulated 1-plane (multi-edges) recursive procedure 2 1-bend 1-planar RAC drawing of G 4 removal of dummy elements + 1-bend 1-planar RAC drawing of G + recursive procedure G * hierarchical contraction of G + 3 output

62 Drawing procedure + 1-bend 1-planar RAC drawing of G + remove dummy elements

63 Drawing procedure 1-bend 1-planar RAC drawing of G input graph G

64 input graph G Drawing procedure

65 Open problems Our algorithm may give rise to drawings with exponential area: is such an area necessary in some cases? Our algorithm is allowed to change the initial embedding: What if we cannot? Still missing: Characterization of straight-line 1-planar RAC graphs

66 Thank you

DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS*

DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS* DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS* Patrizio Angelini 1, Carla Binucci 2, Giordano Da Lozzo 1, Walter Didimo 2, Luca Grilli 2, Fabrizio Montecchiani 2, Maurizio Patrignani 1, and Ioannis

More information

2-Layer Fan-planarity: From Caterpillar to Stegosaurus

2-Layer Fan-planarity: From Caterpillar to Stegosaurus 2-Layer Fan-planarity: From Caterpillar to Stegosaurus Carla Binucci 1, Markus Chimani 2, Walter Didimo 1, Martin Gronemann 3, Karsten Klein 4, Jan Kratochvil 5, Fabrizio Montecchiani 1, Ioannis G. Tollis

More information

Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves

Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves (Extended Abstract) Emilio Di Giacomo and Walter Didimo Università di Perugia ({digiacomo,didimo}@diei.unipg.it). Abstract. We study how to

More information

Giuseppe Liotta (University of Perugia)

Giuseppe Liotta (University of Perugia) Drawing Graphs with Crossing Edges Giuseppe Liotta (University of Perugia) Outline Motivation and research agenda - Graph Drawing and the planarization handicap - Mutzel s intuition and Huang s experiment

More information

2-Layer Right Angle Crossing Drawings

2-Layer Right Angle Crossing Drawings DOI 10.1007/s00453-012-9706-7 2-Layer Right Angle Crossing Drawings Emilio Di Giacomo Walter Didimo Peter Eades Giuseppe Liotta Received: 26 July 2011 / Accepted: 24 October 2012 Springer Science+Business

More information

SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs

SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs Patrizio Angelini 1, William Evans 2, Fabrizio Frati 1, Joachim Gudmundsson 3 1 Dipartimento di Ingegneria, Roma Tre University,

More information

Straight-line Drawability of Embedded Graphs

Straight-line Drawability of Embedded Graphs Straight-line Drawability of Embedded Graphs Hiroshi Nagamochi Department of Applied Mathematics and Physics, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan. nag@amp.i.kyoto-u.ac.jp Abstract:

More information

Straight-line Drawings of 1-planar Graphs

Straight-line Drawings of 1-planar Graphs Straight-line Drawings of 1-planar Graphs Peter Eades 1, Seok-Hee Hong 1, Giuseppe Liotta 2, and Sheung-Hung Poon 3 1 University of Sydney, Australia {peter,shhong}@it.usyd.edu.au 2 Università di Perugia,

More information

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy R O M A TRE DIA Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Non-Convex Representations of Graphs Giuseppe Di Battista, Fabrizio

More information

Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli

Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli Graph G = (V,E) Vertices are points Edges are straight-line segments Planar: edges

More information

Morphing Planar Graph Drawings

Morphing Planar Graph Drawings Morphing Planar Graph Drawings Giuseppe Di Battista Università degli Studi Roma Tre The 12th International Conference and Workshops on Algorithms and Computation WALCOM 2018 Basic definitions Graph drawing

More information

8 Spine and Radial Drawings

8 Spine and Radial Drawings 8 Spine and Radial Drawings Emilio Di Giacomo University of Perugia Walter Didimo University of Perugia Giuseppe Liotta University of Perugia 8.1 Introduction... 247 8.2 A Unified Framework for Spine and

More information

Upward Planar Drawings and Switch-regularity Heuristics

Upward Planar Drawings and Switch-regularity Heuristics Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 1, no. 2, pp. 259 285 (26) Upward Planar Drawings and Switch-regularity Heuristics Walter Didimo Dipartimento di Ingegneria Elettronica

More information

Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames

Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames Soroush Alamdari and Therese Biedl David R. Cheriton School of Computer Science, University of Waterloo {s6hosse,biedl}@uwaterloo.ca

More information

arxiv: v2 [math.co] 21 Jun 2018

arxiv: v2 [math.co] 21 Jun 2018 Edge Partitions of Optimal 2-plane and 3-plane Graphs Michael Bekos 1, Emilio Di Giacomo 2, Walter Didimo 2, Giuseppe Liotta 2, Fabrizio Montecchiani 2, Chrysanthi Raftopoulou 3 1 Institut für Informatik,

More information

Computing Radial Drawings on the Minimum Number of Circles

Computing Radial Drawings on the Minimum Number of Circles Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 9, no. 3, pp. 365 389 (2005) Computing Radial Drawings on the Minimum Number of Circles Emilio Di Giacomo Walter Didimo Giuseppe Liotta

More information

Special Issue on Graph Drawing Beyond Planarity Guest Editors Foreword and Overview

Special Issue on Graph Drawing Beyond Planarity Guest Editors Foreword and Overview Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 22, no. 1, pp. 1 10 (2018) DOI: 10.7155/jgaa.00459 Special Issue on Graph Drawing Beyond Planarity Guest Editors Foreword and Overview

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 408 (2008) 129 142 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Drawing colored graphs on colored points

More information

On Graphs Supported by Line Sets

On Graphs Supported by Line Sets On Graphs Supported by Line Sets Vida Dujmović, William Evans, Stephen Kobourov, Giuseppe Liotta, Christophe Weibel, and Stephen Wismath School of Computer Science Carleton University cgm.cs.mcgill.ca/

More information

Intersection-Link Representations of Graphs

Intersection-Link Representations of Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 21, no. 4, pp. 731 755 (2017) DOI: 10.7155/jgaa.00437 Intersection-Link Representations of Graphs Patrizio Angelini 1 Giordano Da Lozzo

More information

1-Planar RAC Drawings with Bends

1-Planar RAC Drawings with Bends Master Thesis 1-Planar RAC Drawings with Bends Johannes Zink Date of Submission: December 1, 2017 Advisors: Prof. Dr. Alexander Wolff Dr. Steven Chaplick Fabian Lipp, M. Sc. Julius-Maximilians-Universität

More information

Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation

Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation 1 Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation In Module 5, we will learn how to create a 3D folded model of a sheet metal transition

More information

Simultaneous Graph Embedding with Bends and Circular Arcs

Simultaneous Graph Embedding with Bends and Circular Arcs Simultaneous Graph Embedding with Bends and Circular Arcs Justin Cappos, Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov Department of Computer Science, University of Arizona {justin,aestrell,jfowler,kobourov}@cs.arizona.edu

More information

UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione. Constrained Simultaneous and Near-Simultaneous Embeddings

UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione. Constrained Simultaneous and Near-Simultaneous Embeddings R O M A TRE DIA UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Constrained Simultaneous and Near-Simultaneous Embeddings FABRIZIO

More information

Finding Bimodal and Acyclic Orientations of Mixed Planar Graphs is NP-Complete

Finding Bimodal and Acyclic Orientations of Mixed Planar Graphs is NP-Complete Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Finding Bimodal and Acyclic Orientations of Mixed Planar Graphs is NP-Complete Maurizio Patrignani RT-DIA-188-2011

More information

Graph Drawing via Canonical Orders

Graph Drawing via Canonical Orders Algorithms for Graph Visualization Summer Semester 2016 Lecture # 3 Graph Drawing via Canonical Orders (Partly based on lecture slides by Philipp Kindermann & Alexander Wolff) 1 Outline Planar Graphs:

More information

Journal of Graph Algorithms and Applications

Journal of Graph Algorithms and Applications Journal of Graph Algorithms and Applications http://www.cs.brown.edu/publications/jgaa/ vol. 6, no. 1, pp. 115 129 (2002) Embedding Vertices at Points: Few Bends suffice for Planar Graphs Michael Kaufmann

More information

DRAWING PLANAR GRAPHS WITH MANY COLLINEAR VERTICES

DRAWING PLANAR GRAPHS WITH MANY COLLINEAR VERTICES DRAWING PLANAR GRAPHS WITH MANY COLLINEAR VERTICES Giordano Da Lozzo, Vida Dujmovi, Fabrizio Frati, Tamara Mchedlidze, Ÿ and Vincenzo Roselli Abstract. Consider the following problem: Given a planar graph

More information

arxiv: v2 [cs.cg] 27 Sep 2015

arxiv: v2 [cs.cg] 27 Sep 2015 Graph Drawings with One Bend and Few Slopes Kolja Knauer 1, and Bartosz Walczak 2, arxiv:1506.04423v2 [cs.cg] 27 Sep 2015 1 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France kolja.knauer@lif.univ-mrs.fr

More information

Drawing cubic graphs with at most five slopes

Drawing cubic graphs with at most five slopes Drawing cubic graphs with at most five slopes B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth Abstract We show that every graph G with maximum degree three has a straight-line drawing in the plane using

More information

Universal Line-Sets for Drawing Planar 3-Trees

Universal Line-Sets for Drawing Planar 3-Trees Universal Line-Sets for Drawing Planar -Trees Md. Iqbal Hossain, Debajyoti Mondal, Md. Saidur Rahman, and Sammi Abida Salma Graph Drawing and Information Visualization Laboratory, Department of Computer

More information

Drawing Outer 1-planar Graphs with Few Slopes

Drawing Outer 1-planar Graphs with Few Slopes Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 19, no. 2, pp. 707 741 (2015) DOI: 10.7155/jgaa.00376 Drawing Outer 1-planar Graphs with Few Slopes Emilio Di Giacomo Giuseppe Liotta

More information

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX)

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) A master bijection for planar maps and its applications Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) UCLA, March 0 Planar maps. Definition A planar map is a connected planar graph embedded

More information

WP04 Constrained Embeddings Dorothea Wagner

WP04 Constrained Embeddings Dorothea Wagner WP04 Constrained Embeddings Dorothea Wagner top left bottom bottom top right Ignaz Rutter October 3, 2012 Intuitively Readable Drawings Meet the user s expectations about arrangement of objects in drawing

More information

How to Draw a Graph Revisited. Peter Eades University of Sydney

How to Draw a Graph Revisited. Peter Eades University of Sydney How to Draw a Graph Revisited Peter Eades University of Sydney W. T. Tutte 1917-2002 Code breaker at Bletchley park Pioneer of matroid theory Pioneer of graph theory Inventor of the first graph drawing

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

MPM1D Page 1 of 6. length, width, thickness, area, volume, flatness, infinite extent, contains infinite number of points. A part of a with endpoints.

MPM1D Page 1 of 6. length, width, thickness, area, volume, flatness, infinite extent, contains infinite number of points. A part of a with endpoints. MPM1D Page 1 of 6 Unit 5 Lesson 1 (Review) Date: Review of Polygons Activity 1: Watch: http://www.mathsisfun.com/geometry/dimensions.html OBJECT Point # of DIMENSIONS CHARACTERISTICS location, length,

More information

Drawing Problem. Possible properties Minimum number of edge crossings Small area Straight or short edges Good representation of graph structure...

Drawing Problem. Possible properties Minimum number of edge crossings Small area Straight or short edges Good representation of graph structure... Graph Drawing Embedding Embedding For a given graph G = (V, E), an embedding (into R 2 ) assigns each vertex a coordinate and each edge a (not necessarily straight) line connecting the corresponding coordinates.

More information

The Straight-Line RAC Drawing Problem is NP-Hard

The Straight-Line RAC Drawing Problem is NP-Hard The Straight-Line RAC Drawing Problem is NP-Hard Evmora N. Argyriou 1, Michael A. Bekos 1, and Antonios Symvonis 1 School of Applied Mathematical & Physical Sciences, National Technical University of Athens,

More information

A Note on Rectilinearity and Angular Resolution

A Note on Rectilinearity and Angular Resolution Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 8, no. 1, pp. 89 94 (2004) A Note on Rectilinearity and Angular Resolution Hans L. Bodlaender Gerard Tel Institute of Information and

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

Data Structures and their Planar Graph Layouts

Data Structures and their Planar Graph Layouts Journal of Graph Algorithms and Applications http://jgaa.info/ vol., no., pp. 0 (08) DOI: 0.55/jgaa.0045 Data Structures and their Planar Graph Layouts Christopher Auer Christian Bachmaier Franz J. Brandenburg

More information

Acyclic Colorings of Graph Subdivisions

Acyclic Colorings of Graph Subdivisions Acyclic Colorings of Graph Subdivisions Debajyoti Mondal, Rahnuma Islam Nishat, Sue Whitesides, and Md. Saidur Rahman 3 Department of Computer Science, University of Manitoba Department of Computer Science,

More information

Lecture 4: Bipartite graphs and planarity

Lecture 4: Bipartite graphs and planarity Lecture 4: Bipartite graphs and planarity Anders Johansson 2011-10-22 lör Outline Bipartite graphs A graph G is bipartite with bipartition V1, V2 if V = V1 V2 and all edges ij E has one end in V1 and V2.

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

How to Draw a Graph, Revisited. Peter Eades University of Sydney

How to Draw a Graph, Revisited. Peter Eades University of Sydney How to Draw a Graph, Revisited Peter Eades University of Sydney This talk 1. Review a) Graphs b) Planar graphs 2. How to draw a planar graph? a) Before Tutte: 1920s 1950s b) Tutte: 1960s c) After Tutte:

More information

Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs

Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs Peter Eades 1 Qiug-Wen Feng 1 Xuemin Lin z 1 Department of Computer Science and Software Engineering, University of Newcastle,

More information

Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time

Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time Peter Eades 1, Seok-Hee Hong 1, Naoki Katoh 2, Giuseppe Liotta 3, Pascal Schweitzer 4, and Yusuke Suzuki 5 1 University of Sydney,

More information

Straight-Line Rectangular Drawings of Clustered Graphs

Straight-Line Rectangular Drawings of Clustered Graphs Discrete Comput Geom (2011) 45: 88 140 DOI 10.1007/s00454-010-9302-z Straight-Line Rectangular Drawings of Clustered Graphs Patrizio Angelini Fabrizio Frati Michael Kaufmann Received: 15 August 2009 /

More information

Characterizing Families of Cuts That Can Be Represented by Axis-Parallel Rectangles

Characterizing Families of Cuts That Can Be Represented by Axis-Parallel Rectangles Characterizing Families of Cuts That Can Be Represented by Axis-Parallel Rectangles Ulrik Brandes 1, Sabine Cornelsen 2, and Dorothea Wagner 3 1 Fakultät für Mathematik & Informatik, Universität Passau.

More information

Windrose Planarity: Embedding Graphs with Direction-Constrained Edges

Windrose Planarity: Embedding Graphs with Direction-Constrained Edges Windrose Planarity: Embedding Graphs with Direction-Constrained Edges Patrizio Angelini Giordano Da Lozzo Giuseppe Di Battista Valentino Di Donato Philipp Kindermann Günter Rote Ignaz Rutter Abstract Gien

More information

Drawing Simultaneously Embedded Graphs with Few Bends

Drawing Simultaneously Embedded Graphs with Few Bends Drawing Simultaneously Embedded Graphs with Few Bends Luca Grilli 1, Seok-Hee Hong 2, Jan Kratochvíl 3, and Ignaz Rutter 3,4 1 Dipartimento di Ingegneria, Università degli Studi di Perugia luca.grilli@unipg.it

More information

Drawing Planar Graphs

Drawing Planar Graphs Drawing Planar Graphs Lucie Martinet November 9, 00 Introduction The field of planar graph drawing has become more and more important since the late 960 s. Although its first uses were mainly industrial,

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017

AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017 AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017 Marie Albenque (CNRS, LIX, École Polytechnique) Mini-school on Random Maps and the Gaussian Free Field ProbabLyon Plan Yesterday : Construction

More information

Thickness and Colorability of Geometric Graphs

Thickness and Colorability of Geometric Graphs Thickness and Colorability of Geometric Graphs Stephane Durocher, Ellen Gethner, and Debajyoti Mondal Department of Computer Science, University of Manitoba Department of Computer Science, University of

More information

Tradeoffs between Bends and Displacement in Anchored Graph Drawing

Tradeoffs between Bends and Displacement in Anchored Graph Drawing CCCG 2015, Kingston, Ontario, August 10 12, 2015 Tradeoffs between Bends and Displacement in Anchored Graph Drawing Martin Fink Subhash Suri Abstract Many graph drawing applications entail geographical

More information

arxiv: v1 [math.co] 16 Mar 2012

arxiv: v1 [math.co] 16 Mar 2012 Which point sets admit a k-angulation? Michael S. Payne Jens M. Schmidt David R. Wood Monday 19 th March, 2012 arxiv:1203.3618v1 [math.co] 16 Mar 2012 Abstract For k 3, a k-angulation is a 2-connected

More information

Characterizing Families of Cuts that can be Represented by Axis-Parallel Rectangles

Characterizing Families of Cuts that can be Represented by Axis-Parallel Rectangles Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 9, no., pp. 99 5 (005) Characterizing Families of Cuts that can be Represented by Axis-Parallel Rectangles Ulrik Brandes Fachbereich

More information

Edge-weighted contact representations of planar graphs

Edge-weighted contact representations of planar graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 7, no. 4, pp. 44 47 (20) DOI: 0.755/jgaa.00299 Edge-weighted contact representations of planar graphs Martin Nöllenburg Roman Prutkin

More information

Straight-line drawing of quadrangulations

Straight-line drawing of quadrangulations traight-line drawing of quadrangulations Éric Fusy Algorithms Project (IRIA Rocquencourt) and LIX (École Polytechnique) eric.fusy@inria.fr Abstract. This article introduces a straight-line drawing algorithm

More information

Overlapping Cluster Planarity.

Overlapping Cluster Planarity. Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 12, no. 3, pp. 267 291 (2008) Overlapping Cluster Planarity. Walter Didimo 1 Francesco Giordano 1 Giuseppe Liotta 1 1 Dipartimento di

More information

Drawing Cubic Graphs with the Four Basic Slopes

Drawing Cubic Graphs with the Four Basic Slopes Drawing Cubic Graphs with the Four Basic Slopes Padmini Mukkamala and Dömötör Pálvölgyi McDaniel College, Budapest and Eötvös University, Budapest Abstract. We show that every cubic graph can be drawn

More information

Computing NodeTrix Representations of Clustered Graphs

Computing NodeTrix Representations of Clustered Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 22, no. 2, pp. 139 176 (2018) DOI: 10.7155/jgaa.00461 Computing NodeTrix Representations of Clustered Graphs Giordano Da Lozzo Giuseppe

More information

Graph Drawings with One Bend and Few Slopes

Graph Drawings with One Bend and Few Slopes Graph Drawings with One Bend and Few Slopes Kolja Knauer 1, and Bartosz Walczak 2, 1 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France kolja.knauer@lif.univ-mrs.fr 2 Theoretical Computer

More information

Planar Open Rectangle-of-Influence Drawings

Planar Open Rectangle-of-Influence Drawings Planar Open Rectangle-of-Influence Drawings by Soroush Hosseini Alamdari A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Module 4B: Creating Sheet Metal Parts Enclosing The 3D Space of Right and Oblique Pyramids With The Work Surface of Derived Parts

Module 4B: Creating Sheet Metal Parts Enclosing The 3D Space of Right and Oblique Pyramids With The Work Surface of Derived Parts Inventor (5) Module 4B: 4B- 1 Module 4B: Creating Sheet Metal Parts Enclosing The 3D Space of Right and Oblique Pyramids With The Work Surface of Derived Parts In Module 4B, we will learn how to create

More information

Comparison of Maximal Upward Planar Subgraph Computation Algorithms

Comparison of Maximal Upward Planar Subgraph Computation Algorithms 01 10th International Conference on Frontiers of Information Technology Comparison of Maximal Upward Planar Subgraph Computation Algorithms Aimal Tariq Rextin Department of Computing and Technology, Abasyn

More information

Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs

Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs Peter Eades Qingwen Feng Xuemin Lin Hiroshi Nagamochi November 25, 2004 Abstract Hierarchical graphs and clustered graphs are

More information

Optimal Polygonal Representation of Planar Graphs

Optimal Polygonal Representation of Planar Graphs Optimal Polygonal Representation of Planar Graphs Emden Gansner 1, Yifan Hu 1, Michael Kaufmann 2, and Stephen G. Kobourov 1 1 AT&T Labs - Research Florham Park, NJ USA {erg, yifanhu, skobourov}@research.att.com

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Recall: Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Recall: Planar Graphs The drawing

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

A Local O(1)-Approximation for Dominating Sets on Bounded Genus Graphs

A Local O(1)-Approximation for Dominating Sets on Bounded Genus Graphs A Local O(1)-Approximation for Dominating Sets on Bounded Genus Graphs Saeed Akhoondian Amiri Stefan Schmid Sebastian Siebertz Table of contents 1 Introduction 2 Definitions and Prelims 3 Algorithm 4 Analysis

More information

On the Page Number of Upward Planar Directed Acyclic Graphs

On the Page Number of Upward Planar Directed Acyclic Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 17, no. 3, pp. 221 244 (2013) DOI: 10.7155/jgaa.00292 On the Page Number of Upward Planar Directed Acyclic Graphs Fabrizio Frati 1 Radoslav

More information

Optimal Polygonal Representation of Planar Graphs

Optimal Polygonal Representation of Planar Graphs Optimal Polygonal Representation of Planar Graphs E. R. Gansner 2, Y. F. Hu 2, M. Kaufmann 3, and S. G. Kobourov 4 1 AT&T Research Labs, Florham Park, NJ {erg, yifanhu}@research.att.com 2 Wilhelm-Schickhard-Institut

More information

Different geometry in the two drawings, but the ordering of the edges around each vertex is the same

Different geometry in the two drawings, but the ordering of the edges around each vertex is the same 6 6 6 6 6 6 Different geometry in the two drawings, but the ordering of the edges around each vertex is the same 6 6 6 6 Different topology in the two drawings 6 6 6 6 Fàry s Theorem (96): If a graph admits

More information

Drawing cubic graphs with at most five slopes

Drawing cubic graphs with at most five slopes Drawing cubic graphs with at most five slopes Balázs Keszegh János Pach Dömötör Pálvölgyi Géza Tóth October 17, 2006 Abstract We show that every graph G with maximum degree three has a straight-line drawing

More information

Euler s formula n e + f = 2 and Platonic solids

Euler s formula n e + f = 2 and Platonic solids Euler s formula n e + f = and Platonic solids Euler s formula n e + f = and Platonic solids spherical projection makes these planar graphs Euler s formula n e + f = and Platonic solids spherical projection

More information

EULER S FORMULA AND THE FIVE COLOR THEOREM

EULER S FORMULA AND THE FIVE COLOR THEOREM EULER S FORMULA AND THE FIVE COLOR THEOREM MIN JAE SONG Abstract. In this paper, we will define the necessary concepts to formulate map coloring problems. Then, we will prove Euler s formula and apply

More information

Reversible Hyperbolic Triangulations

Reversible Hyperbolic Triangulations Reversible Hyperbolic Triangulations Circle Packing and Random Walk Tom Hutchcroft 1 Joint work with O. Angel 1, A. Nachmias 1 and G. Ray 2 1 University of British Columbia 2 University of Cambridge Probability

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Name: Permissible Aides: The small ruler distributed by the proctor Prohibited: Class Notes Class Handouts Study Guides and Materials The Book

More information

Toroidal Maps: Schnyder Woods, Orthogonal Surfaces and Straight-Line Representations

Toroidal Maps: Schnyder Woods, Orthogonal Surfaces and Straight-Line Representations Discrete Comput Geom (2014) 51:67 131 DOI 10.1007/s00454-013-9552-7 Toroidal Maps: Schnyder Woods, Orthogonal Surfaces and Straight-Line Representations Daniel Gonçalves Benjamin Lévêque Received: 6 July

More information

Practical Level Planarity Testing and Layout with Embedding Constraints

Practical Level Planarity Testing and Layout with Embedding Constraints Practical Level Planarity Testing and Layout with Embedding Constraints Martin Harrigan and Patrick Healy Department of Computer Science and Information Systems, University of Limerick, Ireland {martin.harrigan,

More information

arxiv: v3 [cs.cg] 20 Jul 2017

arxiv: v3 [cs.cg] 20 Jul 2017 An annotated bibliography on 1-planarity Stephen G. Kobourov 1, Giuseppe Liotta 2, Fabrizio Montecchiani 2 1 Dep. of Computer Science, University of Arizona, Tucson, USA kobourov@cs.arizona.edu 2 Dip.

More information

Remarks on Kuratowski s Planarity Theorem. A planar graph is a graph that can be drawn in a plane without edges crossing one another.

Remarks on Kuratowski s Planarity Theorem. A planar graph is a graph that can be drawn in a plane without edges crossing one another. Remarks on Kuratowski s Planarity Theorem A planar graph is a graph that can be drawn in a plane without edges crossing one another. This theorem says that a graph is planar if and only if it does not

More information

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up

LAMC Advanced Circle October 9, Oleg Gleizer. Warm-up LAMC Advanced Circle October 9, 2016 Oleg Gleizer prof1140g@math.ucla.edu Warm-up Problem 1 Prove that a straight line tangent to a circle is perpendicular to the radius connecting the tangency point to

More information

1.6 Classifying Polygons

1.6 Classifying Polygons www.ck12.org Chapter 1. Basics of Geometry 1.6 Classifying Polygons Learning Objectives Define triangle and polygon. Classify triangles by their sides and angles. Understand the difference between convex

More information

DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS

DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS Linda Kleist Abstract. We study straight-line drawings of planar graphs where every inner face has a prescribed area. A plane graph is area-universal if

More information

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges UITS Journal Volume: Issue: 2 ISSN: 2226-32 ISSN: 2226-328 Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges Muhammad Golam Kibria Muhammad Oarisul Hasan Rifat 2 Md. Shakil Ahamed

More information

Computational Geometry Lecture Delaunay Triangulation

Computational Geometry Lecture Delaunay Triangulation Computational Geometry Lecture Delaunay Triangulation INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 7.12.2015 1 Modelling a Terrain Sample points p = (x p, y p, z p ) Projection π(p) = (p

More information

On the Queue Number of Planar Graphs

On the Queue Number of Planar Graphs On the Queue Number of Planar Graphs Giuseppe Di Battista, Fabrizio Frati Dipartimento di Informatica e Automazione Roma Tre University Rome, Italy {gdb,frati}@dia.uniroma3.it János Pach School of Basic

More information

Visualisierung von Graphen

Visualisierung von Graphen Visualisierung von Graphen Smooth Orthogonal Drawings of Planar Graphs. Vorlesung Sommersemester 205 Orthogonal Layouts all edge segments are horizontal or vertical a well-studied drawing convention many

More information

ON THE NUMBER OF DIRECTIONS IN VISIBILITY REPRESENTATIONS OF. University of Ottawa, Department of Computer Science, Ottawa, ON, Canada

ON THE NUMBER OF DIRECTIONS IN VISIBILITY REPRESENTATIONS OF. University of Ottawa, Department of Computer Science, Ottawa, ON, Canada ON THE NUMBER OF DIRECTIONS IN VISIBILITY REPRESENTATIONS OF GRAPHS? (Extended Abstract) Evangelos Kranakis 1 (kranakis@scs.carleton.ca) Danny Krizanc 1 (krizanc@scs.carleton.ca) Jorge Urrutia 2 (jorge@csi.uottawa.ca)

More information

Completely Connected Clustered Graphs

Completely Connected Clustered Graphs Completely Connected Clustered Graphs Sabine Cornelsen 1 and Dorothea Wagner 2 1 Università dell Aquila, Dipartimento di Ingegneria Elettrica, cornelse@inf.uni-konstanz.de 2 University of Karlsruhe, Department

More information

Colored Simultaneous Geometric Embeddings and Universal Pointsets

Colored Simultaneous Geometric Embeddings and Universal Pointsets Algorithmica (2011) 60: 569 592 DOI 10.1007/s00453-010-9433-x Colored Simultaneous Geometric Embeddings and Universal Pointsets Ulrik Brandes Cesim Erten Alejandro Estrella-Balderrama J. Joseph Fowler

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

An Algorithm for Constructing a Planar Layout of a Graph with a Regular Polygon as Outer Face

An Algorithm for Constructing a Planar Layout of a Graph with a Regular Polygon as Outer Face January, 1995 This paper appeared in Utilitas Mathematica 48 (1995), 161-178. An Algorithm for Constructing a Planar Layout of a Graph with a Regular Polygon as Outer Face William Kocay* and Christian

More information

Planarity-preserving clustering and embedding for large planar graphs

Planarity-preserving clustering and embedding for large planar graphs Computational Geometry 24 (2003) 95 114 www.elsevier.com/locate/comgeo Planarity-preserving clustering and embedding for large planar graphs Christian A. Duncan a, Michael T. Goodrich b, Stephen G. Kobourov

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information