Visualisierung von Graphen

Size: px
Start display at page:

Download "Visualisierung von Graphen"

Transcription

1 Visualisierung von Graphen Smooth Orthogonal Drawings of Planar Graphs. Vorlesung Sommersemester 205

2 Orthogonal Layouts all edge segments are horizontal or vertical a well-studied drawing convention many examples in applications Philipp Kindermann, Alexander Wolff Lehrstuhl fu r Informatik I Universita t Wu rzburg

3 Orthogonal Layouts Well-Known Results [Tamassia, SIAM J Comp 87] Can minimize number of bends for fixed embedding. [Garg & Tamassia, SIAM J Comp 0] Without fixed embedding, bend minimization is hard to approx. [Biedl & Kant, CGTA 98], [Liu et al., DAM 98] Can compute drawing on the (n n)-grid with 2n + 2 bends for any embedding (and 2 bends/edge except octahedron) [Bläsius et al., ] Given an embedding and a function flex: E N, can compute a drawing with flex(e) bends/edge (if one exists).

4 Smooth Drawings Lombardi drawings circular arc edges perfect angular resolution k -Lombardi drawings each edge sequence of k circular arcs Mark Lombardi ( ) Philipp Kindermann, Alexander Wolff Lehrstuhl fu r Informatik I Universita t Wu rzburg

5 Smooth Orthogonal Layouts Combine both worlds: edges leave and enter vertices horizontally or vertically each edge is drawn as a sequence of axis-aligned line segments and circular-arc segments without bends there are no edge-crossings (for planar graphs) orthogonal smooth orthogonal

6 Edge Complexity complexity of an edge: number of arcs edge complexity: maximum complexity over all edges orthogonal smooth orthogonal

7 Fixed Layouts fixed: vertex topology edge topology vertex positions layout: edge complexity: orthogonal smooth orthogonal k 2k

8 Layout Stretching fixed: vertex topology edge topology edge complexity: 2 2

9 Layout Stretching fixed: vertex topology edge topology 2 edge complexity: k 3/2k

10 Liu et al. Algorithm biconnected 4 -planar graph orthogonal complexity-3 layout choose vertices s and t place vertices by their st-numbering Invariant: When we fix an endpoint of edge e, we associate e with a column. Use ports in this order: out: in: Eliminate S-shapes n 3 2

11 SC 2 -Layouts biconnected 4 -planar graph orthogonal complexity-2 layout smooth n 3 2

12 Crossings

13 Cut Def. y-monotone curve consists of horizontal, vertical and circular segments divides the current drawing into a left and a right part intersects only horizontal segments u u u u u Problems:

14 Invariants (I ) Every open edge is associated with a column (I 2 ) An L-shape always contains a horizontal segment; it never contains a vertical segment. (I 3 ) A C-shape always has a horizontal segment incident to its bottom vertex.

15 Maintain invariants L-shape Double C-shape C-shape protected

16 Invariants, updated (I ) Every open edge is associated with a column (I 2 ) An L-shape always contains a horizontal segment; it never contains a vertical segment. (I 3 ) An unprotected C-shape always has a horizontal segment incident to its bottom vertex.

17 Eliminate crossings. move v up 2. find a cut 3. move vertices to the left v u v u

18 Example Run [Theorem] Every biconnected 4-planar graph admits an SC 2 -layout

19 Extension to Arbitrary Graphs cutvertices bridges

20 Extension to Arbitrary Graphs cutvertices bridges Draw specific vertex on outer face Draw cut vertices with right angles

21 Extension to Arbitrary Graphs cutvertices bridges Draw specific vertex on outer face Draw cut vertices with right angles

22 Extension to Arbitrary Graphs [Theorem] Every 4-planar graph admits an SC 2 -layout Draw specific vertex on outer face Draw cut vertices with right angles Connect the pieces

23 SC -Layouts [Theorem] Every biconnected 4-outerplanar graph admits an SC -layout Consider the dual tree Pick a root, traverse the tree

24 SC -Layouts [Theorem] Every biconnected 4-outerplanar graph admits an SC -layout [Theorem] Any triconnected 3-planar graph admits an SC -layout. [Theorem] Any Hamiltonian 3-planar graph admits an SC -layout.

25 Area Requirement of SC -Layouts [Theorem] There is an infinite class of graphs that require exponential area if they are drawn with SC.

26 Biconnected Graphs without SC -Layout [Theorem] There exists a biconnected 4-planar graph that admits an OC 2 -layout, but does not admit an SC -layout.

27 Biconnected Graphs without SC -Layout [Theorem] There exists a biconnected 4-planar graph that admits an OC 2 -layout, but does not admit an SC -layout

28 Kandinsky Layouts [Theorem] Any planar Hamiltonian graph admits an SC -layout in the Kandinsky model. [Theorem] Any planar graph admits an SC 2 -layout in the Kandinsky model. Draw planar graphs with degree > 4

29 Open Problems Do all 4-planar graphs admit an SC 2 -layout in polynomial area? Do all 4-outerplanar graphs admit an SC -layout? Do all 3-planar graphs admit an SC -layout? Is it NP-hard to decide whether a 4-planar graph admits an SC -layout?

WP04 Constrained Embeddings Dorothea Wagner

WP04 Constrained Embeddings Dorothea Wagner WP04 Constrained Embeddings Dorothea Wagner top left bottom bottom top right Ignaz Rutter October 3, 2012 Intuitively Readable Drawings Meet the user s expectations about arrangement of objects in drawing

More information

Different geometry in the two drawings, but the ordering of the edges around each vertex is the same

Different geometry in the two drawings, but the ordering of the edges around each vertex is the same 6 6 6 6 6 6 Different geometry in the two drawings, but the ordering of the edges around each vertex is the same 6 6 6 6 Different topology in the two drawings 6 6 6 6 Fàry s Theorem (96): If a graph admits

More information

arxiv: v2 [cs.ds] 7 Jan 2015

arxiv: v2 [cs.ds] 7 Jan 2015 Orthogonal Graph Drawing with Inflexible Edges Thomas Bläsius, Sebastian Lehmann, Ignaz Rutter Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany arxiv:404.2943v2 [cs.ds] 7 Jan 205

More information

Planar Octilinear Drawings with One Bend Per Edge

Planar Octilinear Drawings with One Bend Per Edge Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 19, no. 2, pp. 0 0 (2015) DOI: 10.7155/jgaa.00369 Planar Octilinear Drawings with One Bend Per Edge M. A. Bekos 1 M. Gronemann 2 M. Kaufmann

More information

Circle-Representations of Simple 4-Regular Planar Graphs

Circle-Representations of Simple 4-Regular Planar Graphs Circle-Representations of Simple 4-Regular Planar Graphs Michael A. Bekos 1 and Chrysanthi N. Raftopoulou 2 1 University of Tübingen, Institute for Informatics, Germany bekos@informatik.uni-tuebingen.de

More information

Drawing Simultaneously Embedded Graphs with Few Bends

Drawing Simultaneously Embedded Graphs with Few Bends Drawing Simultaneously Embedded Graphs with Few Bends Luca Grilli 1, Seok-Hee Hong 2, Jan Kratochvíl 3, and Ignaz Rutter 3,4 1 Dipartimento di Ingegneria, Università degli Studi di Perugia luca.grilli@unipg.it

More information

DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS*

DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS* DRAWING NON-PLANAR GRAPHS WITH CROSSING-FREE SUBGRAPHS* Patrizio Angelini 1, Carla Binucci 2, Giordano Da Lozzo 1, Walter Didimo 2, Luca Grilli 2, Fabrizio Montecchiani 2, Maurizio Patrignani 1, and Ioannis

More information

Planar Graph (7A) Young Won Lim 5/21/18

Planar Graph (7A) Young Won Lim 5/21/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time

Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time Testing Maximal 1-planarity of Graphs with a Rotation System in Linear Time Peter Eades 1, Seok-Hee Hong 1, Naoki Katoh 2, Giuseppe Liotta 3, Pascal Schweitzer 4, and Yusuke Suzuki 5 1 University of Sydney,

More information

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy R O M A TRE DIA Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Non-Convex Representations of Graphs Giuseppe Di Battista, Fabrizio

More information

Bend Minimization in Planar Orthogonal Drawings

Bend Minimization in Planar Orthogonal Drawings Bend Minimization in Planar Orthogonal Drawings Theory, Implementation and Evaluation Bachelor Thesis of Sebastian Lehmann At the Department of Informatics Institute of Theoretical Computer Science Reviewers:

More information

Planar Graph (7A) Young Won Lim 6/20/18

Planar Graph (7A) Young Won Lim 6/20/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves

Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves (Extended Abstract) Emilio Di Giacomo and Walter Didimo Università di Perugia ({digiacomo,didimo}@diei.unipg.it). Abstract. We study how to

More information

A Note on Rectilinearity and Angular Resolution

A Note on Rectilinearity and Angular Resolution Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 8, no. 1, pp. 89 94 (2004) A Note on Rectilinearity and Angular Resolution Hans L. Bodlaender Gerard Tel Institute of Information and

More information

Graph Drawing via Canonical Orders

Graph Drawing via Canonical Orders Algorithms for Graph Visualization Summer Semester 2016 Lecture # 3 Graph Drawing via Canonical Orders (Partly based on lecture slides by Philipp Kindermann & Alexander Wolff) 1 Outline Planar Graphs:

More information

UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione. Constrained Simultaneous and Near-Simultaneous Embeddings

UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione. Constrained Simultaneous and Near-Simultaneous Embeddings R O M A TRE DIA UNIVERSITÀ DEGLI STUDI DI ROMA TRE Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Constrained Simultaneous and Near-Simultaneous Embeddings FABRIZIO

More information

Drawing Outer 1-planar Graphs with Few Slopes

Drawing Outer 1-planar Graphs with Few Slopes Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 19, no. 2, pp. 707 741 (2015) DOI: 10.7155/jgaa.00376 Drawing Outer 1-planar Graphs with Few Slopes Emilio Di Giacomo Giuseppe Liotta

More information

arxiv: v1 [cs.cg] 30 Aug 2016

arxiv: v1 [cs.cg] 30 Aug 2016 Simultaneous Orthogonal Planarity Patrizio Angelini 1, Steven Chaplick 2, Sabine Cornelsen 3, Giordano Da Lozzo 4, Giuseppe Di Battista 4, Peter Eades 5, Philipp Kindermann 6, Jan Kratochvíl 7, Fabian

More information

Upward Planar Drawings and Switch-regularity Heuristics

Upward Planar Drawings and Switch-regularity Heuristics Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 1, no. 2, pp. 259 285 (26) Upward Planar Drawings and Switch-regularity Heuristics Walter Didimo Dipartimento di Ingegneria Elettronica

More information

2-Layer Fan-planarity: From Caterpillar to Stegosaurus

2-Layer Fan-planarity: From Caterpillar to Stegosaurus 2-Layer Fan-planarity: From Caterpillar to Stegosaurus Carla Binucci 1, Markus Chimani 2, Walter Didimo 1, Martin Gronemann 3, Karsten Klein 4, Jan Kratochvil 5, Fabrizio Montecchiani 1, Ioannis G. Tollis

More information

Revolve Vertices. Axis of revolution. Angle of revolution. Edge sense. Vertex to be revolved. Figure 2-47: Revolve Vertices operation

Revolve Vertices. Axis of revolution. Angle of revolution. Edge sense. Vertex to be revolved. Figure 2-47: Revolve Vertices operation Revolve Vertices The Revolve Vertices operation (edge create revolve command) creates circular arc edges or helixes by revolving existing real and/or non-real vertices about a specified axis. The command

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 408 (2008) 129 142 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Drawing colored graphs on colored points

More information

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges UITS Journal Volume: Issue: 2 ISSN: 2226-32 ISSN: 2226-328 Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges Muhammad Golam Kibria Muhammad Oarisul Hasan Rifat 2 Md. Shakil Ahamed

More information

Straight-line Drawability of Embedded Graphs

Straight-line Drawability of Embedded Graphs Straight-line Drawability of Embedded Graphs Hiroshi Nagamochi Department of Applied Mathematics and Physics, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan. nag@amp.i.kyoto-u.ac.jp Abstract:

More information

arxiv: v1 [cs.cg] 14 Apr 2014

arxiv: v1 [cs.cg] 14 Apr 2014 Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model arxi:1405.23001 [cs.cg] 14 Apr 2014 Thomas Bläsius Guido Brückner Ignaz Rutter Abstract We show that finding orthogonal grid-embeddings

More information

Lecture 4: Bipartite graphs and planarity

Lecture 4: Bipartite graphs and planarity Lecture 4: Bipartite graphs and planarity Anders Johansson 2011-10-22 lör Outline Bipartite graphs A graph G is bipartite with bipartition V1, V2 if V = V1 V2 and all edges ij E has one end in V1 and V2.

More information

Drawing planar graphs with prescribed face areas

Drawing planar graphs with prescribed face areas Drawing planar graphs with prescribed face areas by Lesvia Elena Ruiz Velázquez A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Augmenting the Connectivity of Planar and Geometric Graphs

Augmenting the Connectivity of Planar and Geometric Graphs Augmenting the Connectivity of Planar and Geometric Graphs Ignaz Rutter Alexander Wolff Technical Report 2008-3 Fakultät für Informatik, Universität Karlsruhe Abstract In this paper we study some connectivity

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 013 1 Basic results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number of

More information

The complexity of Domino Tiling

The complexity of Domino Tiling The complexity of Domino Tiling Therese Biedl Abstract In this paper, we study the problem of how to tile a layout with dominoes. For non-coloured dominoes, this can be determined easily by testing whether

More information

arxiv: v2 [cs.cg] 27 Sep 2015

arxiv: v2 [cs.cg] 27 Sep 2015 Graph Drawings with One Bend and Few Slopes Kolja Knauer 1, and Bartosz Walczak 2, arxiv:1506.04423v2 [cs.cg] 27 Sep 2015 1 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France kolja.knauer@lif.univ-mrs.fr

More information

Morphing Planar Graph Drawings

Morphing Planar Graph Drawings Morphing Planar Graph Drawings Giuseppe Di Battista Università degli Studi Roma Tre The 12th International Conference and Workshops on Algorithms and Computation WALCOM 2018 Basic definitions Graph drawing

More information

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing David Eppstein Computer Science Dept. Univ. of California, Irvine Graph drawing: visual display of symbolic information Vertices and

More information

EPG-representations with small grid-size

EPG-representations with small grid-size EPG-representations with small grid-size Martin Derka mderka@uwaterloo.ca David R. Cheriton School of Computer Science University of Waterloo GD 2017 September 26, 2017 Joint work with T. Biedl, V. Dujmovic,

More information

DC2 File Format. 1. Header line 2. Entity line 3. Point line 4. String line

DC2 File Format. 1. Header line 2. Entity line 3. Point line 4. String line DC2 File Format The DesignCAD DC2 drawing file is an ASCII file, with the data present in character format. Each "record" in the file is actually a line in a text file. There are four types of records,

More information

Lombardi Spring Embedder (Short Demo)

Lombardi Spring Embedder (Short Demo) Lombardi Spring Embedder (Short Demo) Roman Chernobelskiy, Kathryn Cunningham, and Stephen G. Kobourov Department of Computer Science, University of Arizona Tucson, AZ, USA Abstract. A Lombardi drawing

More information

Planar Bus Graphs. Michael Kaufmann 3,a.

Planar Bus Graphs. Michael Kaufmann 3,a. Planar Bus Graphs Till Bruckdorfer 1,a bruckdor@informatik.uni-tuebingen.de Michael Kaufmann 3,a mk@informatik.uni-tuebingen.de Stefan Felsner 2,b felsner@math.tu-berlin.de Abstract Bus graphs are used

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

arxiv: v2 [cs.cg] 3 May 2015

arxiv: v2 [cs.cg] 3 May 2015 Contact Representations of Graphs in 3D Md. Jawaherul Alam, William Evans, Stephen G. Kobourov, Sergey Pupyrev, Jackson Toeniskoetter, and Torsten Ueckerdt 3 arxiv:50.00304v [cs.cg] 3 May 05 Department

More information

T. Biedl and B. Genc. 1 Introduction

T. Biedl and B. Genc. 1 Introduction Complexity of Octagonal and Rectangular Cartograms T. Biedl and B. Genc 1 Introduction A cartogram is a type of map used to visualize data. In a map regions are displayed in their true shapes and with

More information

Computing Large Matchings Fast

Computing Large Matchings Fast Computing Large Matchings Fast IGNAZ RUTTER Universität Karlsruhe (TH), KIT and ALEXANDER WOLFF Technische Universiteit Eindhoven In this article we present algorithms for computing large matchings in

More information

Ansoft HFSS Solids Menu

Ansoft HFSS Solids Menu Ansoft HFSS Use the commands on the Solids menu to: Draw simple 3D objects such as cylinders, boxes, cones, and spheres. Draw a spiral or helix. Sweep a 2D object to create a 3D object. 2D objects can

More information

ALTERNATING PATHS AND CYCLES OF MINIMUM LENGTH. William Evans. Giuseppe Liotta. Henk Meijer. Stephen Wismath

ALTERNATING PATHS AND CYCLES OF MINIMUM LENGTH. William Evans. Giuseppe Liotta. Henk Meijer. Stephen Wismath ALTERNATING PATHS AND CYCLES OF MINIMUM LENGTH William Evans University of British Columbia, Canada Giuseppe Liotta Universitá degli Studi di Perugia, Italy Henk Meijer U. C. Roosevelt, the Netherlands

More information

On Graphs Supported by Line Sets

On Graphs Supported by Line Sets On Graphs Supported by Line Sets Vida Dujmović, William Evans, Stephen Kobourov, Giuseppe Liotta, Christophe Weibel, and Stephen Wismath School of Computer Science Carleton University cgm.cs.mcgill.ca/

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy

Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, Roma, Italy R O M A TRE DIA Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 046 Roma, Italy Topological Morphing of Planar Graphs P. Angelini, P.F. Cortese,

More information

Lesson 14 Blends. For Resources go to > click on the Creo Parametric 2.0 Book cover

Lesson 14 Blends. For Resources go to  > click on the Creo Parametric 2.0 Book cover Lesson 14 Blends Figure 14.1 Cap OBJECTIVES Create a Parallel Blend feature Use the Shell Tool Create a Hole Pattern REFERENCES AND RESOURCES For Resources go to www.cad-resources.com > click on the Creo

More information

Algorithms for Graph Visualization Layered Layout

Algorithms for Graph Visualization Layered Layout Algorithms for Graph Visualization Layered Layout INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze 13.12.2017 1 Dr. Tamara Mchedlidze Algorithmen zur Visualisierung von Graphen

More information

Discrete Wiskunde II. Lecture 6: Planar Graphs

Discrete Wiskunde II. Lecture 6: Planar Graphs , 2009 Lecture 6: Planar Graphs University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Planar Graphs Given an undirected graph (or multigraph) G = (V, E). A planar embedding of G is

More information

Lesson 14 Blends. For Resources go to > click on the Creo Parametric Book cover

Lesson 14 Blends. For Resources go to  > click on the Creo Parametric Book cover Lesson 14 Blends Figure 14.1 Cap OBJECTIVES Create a Parallel Blend feature Use the Shell Tool Create a Swept Blend REFERENCES AND RESOURCES For Resources go to www.cad-resources.com > click on the Creo

More information

Alternating Paths and Cycles of Minimum Length

Alternating Paths and Cycles of Minimum Length Alternating Paths and Cycles of Minimum Length Will Evans 1, Giuseppe Liotta 2, Henk Meijer 3, and Stephen Wismath 4 1 University of British Columbia, Canada 2 Universitá degli Studi di Perugia, Italy

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Journal of Graph Algorithms and Applications

Journal of Graph Algorithms and Applications Journal of Graph Algorithms and Applications http://www.cs.brown.edu/publications/jgaa/ vol. 6, no. 1, pp. 115 129 (2002) Embedding Vertices at Points: Few Bends suffice for Planar Graphs Michael Kaufmann

More information

Incremental Convex Planarity Testing 1

Incremental Convex Planarity Testing 1 Information and Computation 169, 94 126 (2001) doi:10.1006/inco.2001.3031, available online at http://www.idealibrary.com on Incremental Convex Planarity Testing 1 Giuseppe Di Battista 2 Dipartimento di

More information

8 Spine and Radial Drawings

8 Spine and Radial Drawings 8 Spine and Radial Drawings Emilio Di Giacomo University of Perugia Walter Didimo University of Perugia Giuseppe Liotta University of Perugia 8.1 Introduction... 247 8.2 A Unified Framework for Spine and

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Philipp Kindermann. Angular Schematization in Graph Drawing

Philipp Kindermann. Angular Schematization in Graph Drawing Philipp Kindermann Angular Schematization in Graph Drawing Philipp Kindermann Angular Schematization in Graph Drawing Dissertation, Julius-Maximilians-Universität Würzburg Fakultät für Mathematik und

More information

Accepting that the simple base case of a sp graph is that of Figure 3.1.a we can recursively define our term:

Accepting that the simple base case of a sp graph is that of Figure 3.1.a we can recursively define our term: Chapter 3 Series Parallel Digraphs Introduction In this chapter we examine series-parallel digraphs which are a common type of graph. They have a significant use in several applications that make them

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Graphs and transformations 4G

Graphs and transformations 4G Graphs and transformations 4G a f(x + ) is a translation by one unit to the left. d A (0, ), B ( ),0, C (, 4), D (, 0) A (, ), B (0, 0), C (, 4), D (5, 0) e f(x) is a stretch with scale factor b f(x) 4

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Paperclip graphs Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Abstract By taking a strip of paper and forming an S curve with paperclips

More information

Linear-Time Algorithms for Proportional Contact Graph Representations

Linear-Time Algorithms for Proportional Contact Graph Representations Linear-Time Algorithms for Proportional Contact Graph Representations Technical Report CS-2011-19 Md. J. Alam ½, T. Biedl ¾, S. Felsner, A. Gerasch, M. Kaufmann, and S. G. Kobourov ½ ¾ ½ Department of

More information

Dedicated to Godfried Toussaint on his 60th birthday.

Dedicated to Godfried Toussaint on his 60th birthday. DRAWINGS OF PLANAR GRAPHS WITH FEW SLOPES AND SEGMENTS Dedicated to Godfried Toussaint on his 60th birthday. Vida Dujmović David Eppstein Matthew Suderman David R. Wood Submitted: July 28, 2005; Revised:

More information

Simultaneous Graph Embedding with Bends and Circular Arcs

Simultaneous Graph Embedding with Bends and Circular Arcs Simultaneous Graph Embedding with Bends and Circular Arcs Justin Cappos, Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov Department of Computer Science, University of Arizona {justin,aestrell,jfowler,kobourov}@cs.arizona.edu

More information

Minimum Depth Graph Embeddings and Quality of the Drawings: An Experimental Analysis

Minimum Depth Graph Embeddings and Quality of the Drawings: An Experimental Analysis Minimum Depth Graph Embeddings and Quality of the Drawings: An Experimental Analysis Maurizio Pizzonia Dipartimento di Informatica e Automazione, Università RomaTre,Italy pizzonia@dia.uniroma.it Abstract.

More information

QUADRATIC AND CUBIC GRAPHS

QUADRATIC AND CUBIC GRAPHS NAME SCHOOL INDEX NUMBER DATE QUADRATIC AND CUBIC GRAPHS KCSE 1989 2012 Form 3 Mathematics Working Space 1. 1989 Q22 P1 (a) Using the grid provided below draw the graph of y = -2x 2 + x + 8 for values

More information

Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames

Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames Soroush Alamdari and Therese Biedl David R. Cheriton School of Computer Science, University of Waterloo {s6hosse,biedl}@uwaterloo.ca

More information

Augmenting the Connectivity of Planar and Geometric Graphs

Augmenting the Connectivity of Planar and Geometric Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 16, no. 2, pp. 599 628 (2012) DOI: 10.7155/jgaa.00275 Augmenting the Connectivity of Planar and Geometric Graphs Ignaz Rutter 1 Alexander

More information

Complexity of Octagonal and Rectangular Cartograms

Complexity of Octagonal and Rectangular Cartograms Complexity of Octagonal and Rectangular Cartograms T. Biedl and B. Genc December 1, 2005 Abstract In this paper, we study the complexity of rectangular cartograms, i.e., maps where every region is a rectangle,

More information

7/21/2009. Chapters Learning Objectives. Fillet Tool

7/21/2009. Chapters Learning Objectives. Fillet Tool Chapters 12-13 JULY 21, 2009 Learning Objectives Chapter 12 Chapter 13 Use the FILLET tool to draw fillets, rounds, and other rounded corners. Place chamfers and angled corners with the CHAMFER tool. Separate

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (3 minutes)

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (3 minutes) Student Outcomes Students solve problems related to the distance between points that lie on the same horizontal or vertical line Students use the coordinate plane to graph points, line segments and geometric

More information

Delta-Confluent Drawings

Delta-Confluent Drawings Delta-Confluent Drawings David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng School of Information and Computer Science, University of California, Irvine, Irvine, CA 92697, USA {eppstein, goodrich,

More information

Algorithms for GIS csci3225

Algorithms for GIS csci3225 Algorithms for GIS csci3225 Laura Toma Bowdoin College Spatial data types and models Spatial data in GIS satellite imagery planar maps surfaces networks point cloud (LiDAR) Spatial data in GIS satellite

More information

Drawing Metro Maps using Bézier Curves

Drawing Metro Maps using Bézier Curves Drawing Metro Maps using Bézier Curves Martin Fink Lehrstuhl für Informatik I Universität Würzburg Joint work with Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann & Alexander Wolff

More information

Graph Drawings with One Bend and Few Slopes

Graph Drawings with One Bend and Few Slopes Graph Drawings with One Bend and Few Slopes Kolja Knauer 1, and Bartosz Walczak 2, 1 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France kolja.knauer@lif.univ-mrs.fr 2 Theoretical Computer

More information

Edge-weighted contact representations of planar graphs

Edge-weighted contact representations of planar graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 7, no. 4, pp. 44 47 (20) DOI: 0.755/jgaa.00299 Edge-weighted contact representations of planar graphs Martin Nöllenburg Roman Prutkin

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Computational Discrete Mathematics

Computational Discrete Mathematics Computational Discrete Mathematics Combinatorics and Graph Theory with Mathematica SRIRAM PEMMARAJU The University of Iowa STEVEN SKIENA SUNY at Stony Brook CAMBRIDGE UNIVERSITY PRESS Table of Contents

More information

Dominating Sets in Planar Graphs 1

Dominating Sets in Planar Graphs 1 Dominating Sets in Planar Graphs 1 Lesley R. Matheson 2 Robert E. Tarjan 2; May, 1994 Abstract Motivated by an application to unstructured multigrid calculations, we consider the problem of asymptotically

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Comparison of Maximal Upward Planar Subgraph Computation Algorithms

Comparison of Maximal Upward Planar Subgraph Computation Algorithms 01 10th International Conference on Frontiers of Information Technology Comparison of Maximal Upward Planar Subgraph Computation Algorithms Aimal Tariq Rextin Department of Computing and Technology, Abasyn

More information

Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge

Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge Every DFS Tree of a 3-Connected Graph Contains a Contractible Edge Amr Elmasry Kurt Mehlhorn Jens M. Schmidt Abstract Let G be a 3-connected graph on more than 4 vertices. We show that every depth-first-search

More information

t 3 1,1 σ v (2) n u n u n u 0, 0, n l u,v n r u,v 3,3 (a) (b) 6,6 nx,v n x n x n 0, 0, n z 2, s 3 (2) (d) (c)

t 3 1,1 σ v (2) n u n u n u 0, 0, n l u,v n r u,v 3,3 (a) (b) 6,6 nx,v n x n x n 0, 0, n z 2, s 3 (2) (d) (c) Orthogonal and Quasi-Upward Drawings with Vertices of Arbitrary Size Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzonia Dipartimento di Informatica e Automazione, Universita

More information

Strict Confluent Drawing

Strict Confluent Drawing Strict Confluent Drawing David Eppstein 1, Danny Holten 2, Maarten Löffler 3, Martin Nöllenburg 4, Bettina Speckmann 5, and Kevin Verbeek 6 1 Computer Science Department, University of California, Irvine,

More information

Colored Simultaneous Geometric Embeddings and Universal Pointsets

Colored Simultaneous Geometric Embeddings and Universal Pointsets Algorithmica (2011) 60: 569 592 DOI 10.1007/s00453-010-9433-x Colored Simultaneous Geometric Embeddings and Universal Pointsets Ulrik Brandes Cesim Erten Alejandro Estrella-Balderrama J. Joseph Fowler

More information

Image Morphing. The user is responsible for defining correspondences between features Very popular technique. since Michael Jackson s clips

Image Morphing. The user is responsible for defining correspondences between features Very popular technique. since Michael Jackson s clips Image Morphing Image Morphing Image Morphing Image Morphing The user is responsible for defining correspondences between features Very popular technique since Michael Jackson s clips Morphing Coordinate

More information

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use Lectures on Challenging Mathematics c Copyright 2008 2018 Integrated Mathematics 3 Algebra (part 2) Summer 2018 Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeteredu Copyright c 2008 2018 IDEA

More information

Project curves, points, or sketches onto faces and planes.

Project curves, points, or sketches onto faces and planes. Project Curve Path: Curve tab > Derived Curve group > Project Curve Objectives Project curves, points, or sketches onto faces and planes. Prerequisites File tab > Start > Modeling Projecting Curves to

More information

Orientations of Planar Graphs

Orientations of Planar Graphs Orientations of Planar Graphs Doc-Course Bellaterra March 11, 2009 Stefan Felsner Technische Universität Berlin felsner@math.tu-berlin.de Topics α-orientations Sample Applications Counting I: Bounds Counting

More information

Drawing Planar Graphs

Drawing Planar Graphs Drawing Planar Graphs Lucie Martinet November 9, 00 Introduction The field of planar graph drawing has become more and more important since the late 960 s. Although its first uses were mainly industrial,

More information

Automatic Layout of State Diagrams

Automatic Layout of State Diagrams Automatic Layout of State Diagrams Maxim Korotkov evelopers corp. mkorotkov@evelopers.com Abstract. Consider the problem of automatically generating layouts for state diagrams (statecharts). Such diagrams

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

STRAIGHT LINE ORTHOGONAL DRAWINGS OF COMPLETE TERNERY TREES SPUR FINAL PAPER, SUMMER July 29, 2015

STRAIGHT LINE ORTHOGONAL DRAWINGS OF COMPLETE TERNERY TREES SPUR FINAL PAPER, SUMMER July 29, 2015 STRIGHT LINE ORTHOGONL DRWINGS OF COMPLETE TERNERY TREES SPUR FINL PPER, SUMMER 2015 SR LI MENTOR: SYLVIN CRPENTIER PROJECT SUGGESTED Y LRRY GUTH July 29, 2015 bstract. In this paper we study embeddings

More information