Modeling Intelligent Embedded Real-Time Systems using High-Level Petri Nets

Size: px
Start display at page:

Download "Modeling Intelligent Embedded Real-Time Systems using High-Level Petri Nets"

Transcription

1 Modeling Intelligent Embedded Real-Time Systems using High-Level Petri Nets Carsten Rust and Bernd Kleinjohann C-LAB 1,Fürstenallee 11, Paderborn, Germany WWW: {car, Abstract In this paper, an approach for the design of intelligent embedded real-time systems is presented. The approach is based on a design methodology for conventional embedded systems, which was developed at our institute during the last years. The paper first gives an overview over this methodology and afterwards describes in particular, which possibilities for the modeling of intelligent systems are provided by our approach. Furthermore an application scenario with the C-LAB Pathfinder, a small robot with partly autonomous behavior, is described. 1 Introduction Intelligent embedded systems gain increasing importance. A wide range of applications emerges in the domain of elecronic toys and entertainment robots. Examples are Furby, My Real Baby ( and AIBO ( Even in traditional application domains, for instance in automotive systems, novel applications like driver assistance systems and autonomous driving will have to actively sense their environment and feature autonomous behavior. For the future, it may be expected that integrated design environments will be supplied for the design of such intelligent systems. Similar to existing frameworks for hardware design and for conventional embedded real-time system design, these environments should provide tool support for the entire design process from the specification to the implementation of intelligent embedded system. With respect to specification, these environments have to support some typical features of intelligent systems, namely complex algorithms for communication, for processing of perceptions, for orientation, for planning, and for the programming of behavior and learning components apart from the usual paradigms for control and regulation. Our approach, which was presented for the first time in [1], is to extend and modify an existing environment for conventional embedded real-time systems in a way that it is open for the handling of intelligent systems. The 1 C-LAB is a cooperation of University Paderborn and Siemens 1

2 methodology divides the design into the three stages specification and modeling, analysis and partitioning, and synthesis. As underlying formal model we use extended Pr/T Nets, a high-level form of Petri Nets (cf. section 3). The design is supported by the SEA environment ( which provides appropriate tools for each step in the design flow. For a more detailed description of the design flow and the accompanying tool support we refer to [2]. This paper is focussed on modeling and specification. We describe, how our modeling approach, which is well-proven for the design of conventional embedded real-time systems, may be applied to the behaviorbased specification of intelligent embedded real-time systems. 2 Application Example In order to evaluate our concepts for the design of intelligent embedded realtime systems, we developed an experimental application platform, the C-LAB Pathfinder. The pathfinder is a small robot (Figure 1 a) which may either be controlled by humans via the internet or by control algorithms. The latter run on microcontrollers, which are installed on board of the pathfinder. The microcontrollers as well as the actors and sensors installed on the pathfinder are depicted in Figure 1 b). In part c) of the figure, a small application scenario is depicted. In the scenario, several pathfinders are to drive a predefined Figure 1: The C-LAB Pathfinder course of an intersection (thick lines in the figure). The course is indicated by landmarks. Each pathfinder should follow these landmarks using the reflex light barriers installed at its underbody. The landmarks are divided into different segments. At the end of a segment a pathfinder has to find the beginning of the next line segment with the aid of its odometry. Suchlike problems are typical for applications of the pathfinder, e.g. for driving to a loading station or for crossing a prohibited area. 2

3 3 Extended Pr/T Nets Our underlying formal model is an extension of the standard Pr/T Net model introduced by Genrich and Lautenbach in [3]. Pr/T Nets are a high-level form of Petri Nets. Like Petri Nets, Pr/T Nets consist of transitions and places, that are connected by edges. A small example is depicted in Figure 2. The example net contains three places (b in, v in, v out ) and two transitions b in [false] v in [-3,5] on (flag=true) off (flag=false) nx=0; ny=0; [nx,ny] v out b in v in on (flag=true) off (flag=false) nx=0; ny=0; v out [0,0] [nx,ny] Figure 2: A Pr/T Net (on, off). Dependent on a flag, which is stored in the place b in, the net either hands over a vector from the place v in to the place v out by means of transition on or transition off deletes this vector and stores a 0-Vektor in the place v out. As can be seen in the example, transitions are the active elements of Pr/T Nets. They have concession to fire, when appropriate tokens are available on their input places. Furthermore, in case a condition is defined for the transition, the condition must be fulfilled by the values assigned to the involved tokens. During the firing process transitions may evaluate assignments to variables occuring at their outgoing edges. When modeling complex systems hierarchical specifications are needed. An example for a hierarchical Pr/T Net is (partly) depicted in Figure 3. The structured node BScale instanciates the net depicted in Figure 2. Before instanciation, the places b in, v in and v out have been mapped to ports and a graphical representation for the subnet was defined, which is visible in the instanciating node. During simulation of the model, the graphical Figure 3: An extended Pr/T Net representation is animated in order to visualize the state of the associated subnet. 3

4 4 Modeling of Robot Behaviors The approach presented in the following is based on the concepts developed by Arkin [4] and Balch [5]. We adapted their concepts for the specification of robot behavior to our modeling paradigm. Following our approach, the specification of a robot s control is based on the definition of several basic behaviors. The basic behaviors each assign a set of sensor values directly to corresponding values for the actuators. The description of a basic behavior is based on vector fields. For its specification a library is available. Some elements of the libary are visible in Figure 3 which depicts a part of the basic behavior FollowLine. The two elements on the left (OnEvent, OffEvent) yield information about changes in status of one of the reflex light barriers. The element StateLB combines this information into a flag, which represents the status of the light barrier. The output of StateLB is used as input for the element BScale, which was described above. Thus, in case the respective reflex light barrier detects a label, BScale contributes a vector moving the robot along this label to the total behavior. The overall Figure 4: Behavior-based modeling of Pathfinder Control purpose of FollowLine is to move the robot along a landmark. Further basic behaviors are for example AvoidObstacle for the avoidance of obstacles, or MoveToGoal, which leads the robot to a target given in absolute coordinates. The vector fields for two basic behaviors are depicted in Figure 4. For each point in the 2-dimensional space, they define how the robot should move according to the respective behavior. A single vector indicates the direction of the movement and (via the vector s length) the speed. Having defined a set of basic behaviors, a robot control may be specified by combining the basic behaviors to a complex one. In the simplest case, the results of the single behaviors are accumulated using a standard element from our library, for instance a weighted sum of behaviors or an element selecting the currently strongest behavior. This simple architecture is depicted in the lower part of Figure 4 a). Just as for the accumulation of basic behaviors, 4

5 library elements also exist for the conversion of a vector resulting from a complex behavior into actuator values. The simple architecture is well-suited for the specification of simple behaviors like Follow the landmark and thereby avoid obstacles. However, in most control applications, an additional discrete control is necessary which switches between several behaviors. This extension to the simple architecture is depicted in the upper part of Figure 4 a). The discrete control is realized by an automaton. It is notified about important changes in the robot s environment by so called trigger behaviors. A trigger behavior may for instance raise an event, when the robot has reached a certain position, that it has moved towards. Having been triggered, the automaton performs one step leading to a new state. According to the state, the parameterization of the robot s behavior is changed. In the above mentioned example, when the robot has reached a certain position, it may for instance be reasonable to set a new target position. However, it is also possible to let the robot continue with a completely different behavior after the state change. 5 Conclusion In this paper we have presented our approach for behavior-based modeling of intelligent embedded real-time systems using high-level Petri Nets. The approach is part of our ongoing work to open up an existing methodology for the design of embedded real-time systems for intelligent embedded systems. In the future we want to integrate further features of intelligent systems into our modeling approach, e.g. learning algorithms. References [1] B. Kleinjohann, C. Rust, and J. Tacken. Entwurf von autonomen Systemen mit High Level Petrinetzen. In 16. Fachgespräch Autonome Mobile Systeme (AMS 2000), Karlsruhe, Germany, September [2] C. Rust, J. Tacken, and C. Böke. Pr/T Net based Seamless Design of Embedded Real-Time Systems. To appear in Proceedings of ICATPN 2001, [3] H. J. Genrich. Predicate/Transition Nets. In Advances in Petri Nets 1986, volume 254. Springer Verlag, Part I. [4] R. Arkin. Behaviour-Based Robotics. MIT Press, [5] T. Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, Georgia Institute of Technologie,

Modeling of Dynamically Modifiable Embedded Real-Time Systems

Modeling of Dynamically Modifiable Embedded Real-Time Systems ing of Dynamically Modifiable Embedded Real-Time Systems Franz Rammig University of Paderborn Heinz Nixdorf Institute Paderborn, Germany Email: franz@hni.upb.de Telephone: ++49 5251 606500 Fax: ++49 5251

More information

- - PARADISE: Design Environment for Parallel & Distributed, Embedded Real-Time

- - PARADISE: Design Environment for Parallel & Distributed, Embedded Real-Time PARADISE: Design Environment for Parallel & Distributed, Embedded Real-Time - - Systems W.Hardt, P. Altenbernd, C. Bake, G. Del Castillo, C. Ditze, E.Erpenbach, U. Glasser, B. Kleinjohann, G. Lehrenfeld,

More information

DEVELOPMENT OF DISTRIBUTED AUTOMOTIVE SOFTWARE The DaVinci Methodology

DEVELOPMENT OF DISTRIBUTED AUTOMOTIVE SOFTWARE The DaVinci Methodology DEVELOPMENT OF DISTRIBUTED AUTOMOTIVE SOFTWARE The DaVinci Methodology Dr. Uwe Honekamp, Matthias Wernicke Vector Informatik GmbH, Dep. PND - Tools for Networks and distributed Systems Abstract: The software

More information

Managing test suites for services

Managing test suites for services Managing test suites for services Kathrin Kaschner Universität Rostock, Institut für Informatik, 18051 Rostock, Germany kathrin.kaschner@uni-rostock.de Abstract. When developing an existing service further,

More information

On Petri Nets and Predicate-Transition Nets

On Petri Nets and Predicate-Transition Nets On Petri Nets and Predicate-Transition Nets Andrea Röck INRIA - project CODES Roquencourt - BP 105 Le Chesnay Cedex 78153, FRANCE Ray Kresman Department of Computer Science Bowling Green State University

More information

Seamless design methodology of manufacturing cell-control software based on activity-control-condition and object diagram

Seamless design methodology of manufacturing cell-control software based on activity-control-condition and object diagram Seamless design methodology of manufacturing cell-control software based on activity-control-condition and object diagram TOYOAKI TOMURA, SATOSHI KANAI and TAKESHI KISHINAMI Abstract. A manufacturing cell

More information

CODING TCPN MODELS INTO THE SIMIO SIMULATION ENVIRONMENT

CODING TCPN MODELS INTO THE SIMIO SIMULATION ENVIRONMENT CODING TCPN MODELS INTO THE SIMIO SIMULATION ENVIRONMENT Miguel Mujica (a), Miquel Angel Piera (b) (a,b) Autonomous University of Barcelona, Faculty of Telecommunications and Systems Engineering, 08193,

More information

ANSI C CODE SYNTHESIS FOR MLDESIGNER FINITE STATE MACHINES

ANSI C CODE SYNTHESIS FOR MLDESIGNER FINITE STATE MACHINES 49. Internationales Wissenschaftliches Kolloquium Technische Universität Ilmenau 27.-30. September 2004 Holger Rath / Horst Salzwedel ANSI C CODE SYNTHESIS FOR MLDESIGNER FINITE STATE MACHINES Abstract

More information

A Visual Editor for Reconfigurable Object Nets based on the ECLIPSE Graphical Editor Framework

A Visual Editor for Reconfigurable Object Nets based on the ECLIPSE Graphical Editor Framework A Visual Editor for Reconfigurable Object Nets based on the ECLIPSE Graphical Editor Framework Enrico Biermann, Claudia Ermel, Frank Hermann and Tony Modica Technische Universität Berlin, Germany {enrico,lieske,frank,modica}@cs.tu-berlin.de

More information

MANUFACTURING SYSTEM MODELING USING PETRI NETS

MANUFACTURING SYSTEM MODELING USING PETRI NETS International Conference on Economic Engineering and Manufacturing Systems Braşov, 26 27 November 2009 MANUFACTURING SYSTEM MODELING USING PETRI NETS Daniela COMAN, Adela IONESCU, Mihaela FLORESCU University

More information

Expressing Environment Assumptions and Real-time Requirements for a Distributed Embedded System with Shared Variables

Expressing Environment Assumptions and Real-time Requirements for a Distributed Embedded System with Shared Variables Expressing Environment Assumptions and Real-time Requirements for a Distributed Embedded System with Shared Variables Simon Tjell and João M. Fernandes Abstract In a distributed embedded system, it is

More information

Hardware-Software Codesign. 1. Introduction

Hardware-Software Codesign. 1. Introduction Hardware-Software Codesign 1. Introduction Lothar Thiele 1-1 Contents What is an Embedded System? Levels of Abstraction in Electronic System Design Typical Design Flow of Hardware-Software Systems 1-2

More information

Dependability Analysis of Web Service-based Business Processes by Model Transformations

Dependability Analysis of Web Service-based Business Processes by Model Transformations Dependability Analysis of Web Service-based Business Processes by Model Transformations László Gönczy 1 1 DMIS, Budapest University of Technology and Economics Magyar Tudósok krt. 2. H-1117, Budapest,

More information

Extended Coloured Petri Nets with Structured Tokens Formal Method for Distributed Systems

Extended Coloured Petri Nets with Structured Tokens Formal Method for Distributed Systems Extended Coloured Petri Nets with Structured Tokens Formal Method for Distributed Systems Khaoula Al Ali, Wolfgang Fengler, Bernd Däne, Alexander Pacholik Faculty of Computer Science and Automation, Computer

More information

Real-Time Object Detection for Autonomous Robots

Real-Time Object Detection for Autonomous Robots Real-Time Object Detection for Autonomous Robots M. Pauly, H. Surmann, M. Finke and N. Liang GMD - German National Research Center for Information Technology, D-53754 Sankt Augustin, Germany surmann@gmd.de

More information

Probabilistic Planning for Behavior-Based Robots

Probabilistic Planning for Behavior-Based Robots Probabilistic Planning for Behavior-Based Robots Amin Atrash and Sven Koenig College of Computing Georgia Institute of Technology Atlanta, Georgia 30332-0280 {amin, skoenig}@cc.gatech.edu Abstract Partially

More information

Brainstormers Team Description

Brainstormers Team Description Brainstormers 2003 - Team Description M. Riedmiller, A. Merke, M. Nickschas, W. Nowak, and D. Withopf Lehrstuhl Informatik I, Universität Dortmund, 44221 Dortmund, Germany Abstract. The main interest behind

More information

Intelligent Monitoring of Robotic Systems with PIC microcontrollers and a Petri-Net based Approach

Intelligent Monitoring of Robotic Systems with PIC microcontrollers and a Petri-Net based Approach Intelligent Monitoring of Robotic Systems with PIC microcontrollers and a Petri-Net based Approach Dimitris Koutandos McQuay Hellas S.A. Athens, 17123, Hellas dkoutandos@yahoo.gr Abstract This paper investigates

More information

Event category : Docking 1. Motor activation 2. Approach sensor 3. Sensor activation

Event category : Docking 1. Motor activation 2. Approach sensor 3. Sensor activation A Methodology for the Protocol-Centered Design of Agent-Based Systems P.C.P. Bhatt Information Systems Engineering Kochi University oftechnology Kochi 782-8502, Japan bhatt@info.kochi-tech.ac.jp W. Mueller

More information

Exception Handling in S88 using Grafchart *

Exception Handling in S88 using Grafchart * Presented at the World Batch Forum North American Conference Woodcliff Lake, NJ April 7-10, 2002 107 S. Southgate Drive Chandler, Arizona 85226-3222 480-893-8803 Fax 480-893-7775 E-mail: info@wbf.org www.wbf.org

More information

Modelling and verification of cyber-physical system

Modelling and verification of cyber-physical system Modelling and verification of cyber-physical system Michal Pluska, David Sinclair LERO @ DCU Dublin City University School of Computing Dublin 9, Ireland michal.pluska@computing.dcu.ie Abstract * Embedded

More information

Modeling Routing Constructs to Represent Distributed Workflow Processes Using Extended Petri Nets

Modeling Routing Constructs to Represent Distributed Workflow Processes Using Extended Petri Nets Modeling Routing Constructs to Represent Distributed Workflow Processes Using Extended Petri Nets Mehmet Karay * Final International University, Business Administrative, Toroslar Avenue, No:6, 99370, Catalkoy,

More information

USING DYNAMIC MULTIRESOLUTION MODELLING TO ANALYZE LARGE MATERIAL FLOW SYSTEMS. Wilhelm Dangelmaier Bengt Mueck

USING DYNAMIC MULTIRESOLUTION MODELLING TO ANALYZE LARGE MATERIAL FLOW SYSTEMS. Wilhelm Dangelmaier Bengt Mueck Proceedings of the 2004 Winter Simulation Conference R.G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds. USING DYNAMIC MULTIRESOLUTION MODELLING TO ANALYZE LARGE MATERIAL FLOW SYSTEMS Wilhelm

More information

Modelling, Specification and Verification of an Emergency Closing System

Modelling, Specification and Verification of an Emergency Closing System From: FLAIRS-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Modelling, Specification and Verification of an Emergency Closing System Werner Stephan and Georg Rock and Michael

More information

A Consistent Design Methodology for Configurable HW/SW-Interfaces in Embedded Systems Embedded Systems Design

A Consistent Design Methodology for Configurable HW/SW-Interfaces in Embedded Systems Embedded Systems Design A Consistent Design Methodology for Configurable HW/SW-Interfaces in Embedded Systems Embedded Systems Design Stefan llimor, Markus Visarius, Wolfram Hardt {ihmor I visi I hardt}@upb.de University of Paderborn,

More information

Fiona A Tool to Analyze Interacting Open Nets

Fiona A Tool to Analyze Interacting Open Nets Fiona A Tool to Analyze Interacting Open Nets Peter Massuthe and Daniela Weinberg Humboldt Universität zu Berlin, Institut für Informatik Unter den Linden 6, 10099 Berlin, Germany {massuthe,weinberg}@informatik.hu-berlin.de

More information

Sensor Data Representation

Sensor Data Representation CVT 2016 March 8 10, 2016, Kaiserslautern, Germany 71 Sensor Data Representation A System for Processing, Combining, and Visualizing Information from Various Sensor Systems Bernd Helge Leroch 1, Jochen

More information

Self-Coordination as Fundamental Concept for Cyber Physical Systems

Self-Coordination as Fundamental Concept for Cyber Physical Systems Self-Coordination as Fundamental Concept for Cyber Physical Systems Franz J. Rammig Heinz Nixdorf Institut Universität Paderborn, Paderborn, Germany franz@upb.de Abstract. In this paper we discuss using

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Safety and Reliability Analysis Models: Overview

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Safety and Reliability Analysis Models: Overview (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Safety and Reliability Analysis Models: Overview Content Classification Hazard and Operability Study (HAZOP) Preliminary Hazard Analysis (PHA) Event

More information

Robot Task Error Recovery Using Petri Nets Learned from Demonstration

Robot Task Error Recovery Using Petri Nets Learned from Demonstration Robot Task Error Recovery Using Petri Nets Learned from Demonstration Guoting (Jane) Chang and Dana Kulić Abstract The ability to recover from errors is necessary for robots to cope with unexpected situations

More information

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Peter Englert Machine Learning and Robotics Lab Universität Stuttgart Germany

More information

Presentation-Abstraction-Control (PAC) Pattern. PAC Introduction

Presentation-Abstraction-Control (PAC) Pattern. PAC Introduction Presentation-Abstraction-Control (PAC) Pattern PAC Introduction The Presentation-Abstraction-Control architectural pattern (PAC) defines a structure for interactive software systems in the form of a hierarchy

More information

HYBRID PETRI NET MODEL BASED DECISION SUPPORT SYSTEM. Janetta Culita, Simona Caramihai, Calin Munteanu

HYBRID PETRI NET MODEL BASED DECISION SUPPORT SYSTEM. Janetta Culita, Simona Caramihai, Calin Munteanu HYBRID PETRI NET MODEL BASED DECISION SUPPORT SYSTEM Janetta Culita, Simona Caramihai, Calin Munteanu Politehnica University of Bucharest Dept. of Automatic Control and Computer Science E-mail: jculita@yahoo.com,

More information

Modelling Functionality of Train Control Systems using Petri Nets

Modelling Functionality of Train Control Systems using Petri Nets Modelling Functionality of Train Control Systems using Petri Nets Michael Meyer zu Hörste and Hardi Hungar German Aerospace Centre (DLR) Institute of Transportation Systems Lilienthaplatz 7, 38108 Braunschweig,

More information

TIMED PETRI NETS FOR SOFTWARE APPLICATIONS

TIMED PETRI NETS FOR SOFTWARE APPLICATIONS The International Workshop on Discrete-Event System Design, DESDes 01, June 27 29, 2001; Przytok near Zielona Gora, Poland TIMED PETRI NETS FOR SOFTWARE APPLICATIONS Grzegorz ANDRZEJEWSKI Computer Engineering

More information

Safety-critical embedded systems, fault-tolerant control systems, fault detection, fault localization and isolation

Safety-critical embedded systems, fault-tolerant control systems, fault detection, fault localization and isolation Fault detection in safety-critical embedded systems nomen VERBER i, MA TJAl COLNARIC i, AND WOLFGANG A. HALANG 2 JUniversity of Maribor, Faculty of Electrical Engineering and Computer Science, 2000 Maribor,

More information

A Framework for the Design of Mixed-Signal Systems with Polymorphic Signals

A Framework for the Design of Mixed-Signal Systems with Polymorphic Signals A Framework for the Design of Mixed-Signal Systems with Polymorphic Signals Rüdiger Schroll *1) Wilhelm Heupke *1) Klaus Waldschmidt *1) Christoph Grimm *2) *1) Technische Informatik *2) Institut für Mikroelektronische

More information

A Design Methodology for Application-specific Real-Time Interfaces

A Design Methodology for Application-specific Real-Time Interfaces A Design Methodology for Application-specific Real-Time Interfaces S. Ihmor, M. Visarius, W. Hardt Informatik- und Prozess Labor (IPL), Paderborn University, {ihmor, visi, hardt }@upb.de Abstract The complexity

More information

Computer Kit for Development, Modeling, Simulation and Animation of Mechatronic Systems

Computer Kit for Development, Modeling, Simulation and Animation of Mechatronic Systems Computer Kit for Development, Modeling, Simulation and Animation of Mechatronic Systems Karol Dobrovodský, Pavel Andris, Peter Kurdel Institute of Informatics, Slovak Academy of Sciences Dúbravská cesta

More information

Topological Modeling with Fuzzy Petri Nets for Autonomous Mobile Robots

Topological Modeling with Fuzzy Petri Nets for Autonomous Mobile Robots Topological Modeling with Fuzzy Petri Nets for Autonomous Mobile Robots Javier de Lope 1, Darío Maravall 2, and José G. Zato 1 1 Dept. Applied Intelligent Systems, Technical University of Madrid, Spain

More information

Instant Prediction for Reactive Motions with Planning

Instant Prediction for Reactive Motions with Planning The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Instant Prediction for Reactive Motions with Planning Hisashi Sugiura, Herbert Janßen, and

More information

SIMULATION STUDY OF FLEXIBLE MANUFACTURING CELL BASED ON TOKEN-ORIENTED PETRI NET MODEL

SIMULATION STUDY OF FLEXIBLE MANUFACTURING CELL BASED ON TOKEN-ORIENTED PETRI NET MODEL ISSN 1726-4529 Int j simul model 15 (2016) 3, 566-576 Original scientific paper SIMULATION STUDY OF FLEXIBLE MANUFACTURING CELL BASED ON TOKEN-ORIENTED PETRI NET MODEL Nie, X. D. *,** ; Chen, X. D. **

More information

COMPUTER SCIENCE INTERNET SCIENCE AND TECHOLOGY HUMAN MEDIA INTERACTION BUSINESS INFORMATION TECHNOLOGY

COMPUTER SCIENCE INTERNET SCIENCE AND TECHOLOGY HUMAN MEDIA INTERACTION BUSINESS INFORMATION TECHNOLOGY COMPUTER SCIENCE INTERNET SCIENCE AND TECHOLOGY HUMAN MEDIA INTERACTION BUSINESS INFORMATION TECHNOLOGY UNIVERSITY OF DIGITAL REVOLUTION. Fourth industrial revolution is upon us and you can be part of

More information

Environment Identification by Comparing Maps of Landmarks

Environment Identification by Comparing Maps of Landmarks Environment Identification by Comparing Maps of Landmarks Jens-Steffen Gutmann Masaki Fukuchi Kohtaro Sabe Digital Creatures Laboratory Sony Corporation -- Kitashinagawa, Shinagawa-ku Tokyo, 4- Japan Email:

More information

Modeling Robot Path Planning with CD++

Modeling Robot Path Planning with CD++ Modeling Robot Path Planning with CD++ Gabriel Wainer Department of Systems and Computer Engineering. Carleton University. 1125 Colonel By Dr. Ottawa, Ontario, Canada. gwainer@sce.carleton.ca Abstract.

More information

Supporting the Workflow Management System Development Process with YAWL

Supporting the Workflow Management System Development Process with YAWL Supporting the Workflow Management System Development Process with YAWL R.S. Mans 1, W.M.P. van der Aalst 1 Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. ox 513,

More information

Moby/plc { Graphical Development of. University of Oldenburg { Department of Computer Science. P.O.Box 2503, D Oldenburg, Germany

Moby/plc { Graphical Development of. University of Oldenburg { Department of Computer Science. P.O.Box 2503, D Oldenburg, Germany Moby/plc { Graphical Development of PLC-Automata??? Josef Tapken and Henning Dierks University of Oldenburg { Department of Computer Science P.O.Box 2503, D-26111 Oldenburg, Germany Fax: +49 441 798-2965

More information

Instructions to use PIPE+

Instructions to use PIPE+ Instructions to use PIPE+ PIPE+ is implemented under the environment of Eclipse. User can import it into eclipse to view source code as well as run the program. The user can choose RunGUI to run the tool.

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

Complex behavior emergent from simpler ones

Complex behavior emergent from simpler ones Reactive Paradigm: Basics Based on ethology Vertical decomposition, as opposed to horizontal decomposition of hierarchical model Primitive behaviors at bottom Higher behaviors at top Each layer has independent

More information

2. Introduction to Software for Embedded Systems

2. Introduction to Software for Embedded Systems 2. Introduction to Software for Embedded Systems Lothar Thiele ETH Zurich, Switzerland 2-1 Contents of Lectures (Lothar Thiele) 1. Introduction to Embedded System Design 2. Software for Embedded Systems

More information

7 The proposed domain specific language: operational level

7 The proposed domain specific language: operational level 7 The proposed domain specific language: operational level In our methodology, a scenario corresponds to the specification of concrete activities in the pervasive mobile game, including interactions among

More information

Combining the Power of DAVE and SIMULINK

Combining the Power of DAVE and SIMULINK Combining the Power of DAVE and SIMULINK From a High Level Model to Embedded Implementation Pedro Costa Infineon Munich, Germany pedro.costa@infineon.com Abstract In a modern real-time control system,

More information

Model-based segmentation and recognition from range data

Model-based segmentation and recognition from range data Model-based segmentation and recognition from range data Jan Boehm Institute for Photogrammetry Universität Stuttgart Germany Keywords: range image, segmentation, object recognition, CAD ABSTRACT This

More information

Building Reliable 2D Maps from 3D Features

Building Reliable 2D Maps from 3D Features Building Reliable 2D Maps from 3D Features Dipl. Technoinform. Jens Wettach, Prof. Dr. rer. nat. Karsten Berns TU Kaiserslautern; Robotics Research Lab 1, Geb. 48; Gottlieb-Daimler- Str.1; 67663 Kaiserslautern;

More information

Principles of E-network modelling of heterogeneous systems

Principles of E-network modelling of heterogeneous systems IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Principles of E-network modelling of heterogeneous systems Related content - ON A CLASS OF OPERATORS IN VON NEUMANN ALGEBRAS WITH

More information

Autonomous Navigation in Unknown Environments via Language Grounding

Autonomous Navigation in Unknown Environments via Language Grounding Autonomous Navigation in Unknown Environments via Language Grounding Koushik (kbhavani) Aditya (avmandal) Sanjay (svnaraya) Mentor Jean Oh Introduction As robots become an integral part of various domains

More information

AUTOMATED GENERATION OF VIRTUAL DRIVING SCENARIOS FROM TEST DRIVE DATA

AUTOMATED GENERATION OF VIRTUAL DRIVING SCENARIOS FROM TEST DRIVE DATA F2014-ACD-014 AUTOMATED GENERATION OF VIRTUAL DRIVING SCENARIOS FROM TEST DRIVE DATA 1 Roy Bours (*), 1 Martijn Tideman, 2 Ulrich Lages, 2 Roman Katz, 2 Martin Spencer 1 TASS International, Rijswijk, The

More information

Location in railway traffic: generation of a digital map for secure applications

Location in railway traffic: generation of a digital map for secure applications Computers in Railways X 459 Location in railway traffic: generation of a digital map for secure applications F. Böhringer & A. Geistler Institut für Mess- und Regelungstechnik, University of Karlsruhe,

More information

A programming framework for a group of multiple mobile robots moving in a real world.

A programming framework for a group of multiple mobile robots moving in a real world. A programming framework for a group of multiple mobile robots moving in a real world. Tomoaki Yoshida 1, Akihisa Ohya 2, Shin ichi Yuta 1 1 University of Tsukuba {yos,yuta}@roboken.esys.tsukuba.ac.jp 2

More information

Realtime Object Recognition Using Decision Tree Learning

Realtime Object Recognition Using Decision Tree Learning Realtime Object Recognition Using Decision Tree Learning Dirk Wilking 1 and Thomas Röfer 2 1 Chair for Computer Science XI, Embedded Software Group, RWTH Aachen wilking@informatik.rwth-aachen.de 2 Center

More information

AGENT-BASED SOFTWARE ARCHITECTURE FOR MULTI-ROBOT TEAMS. João Frazão, Pedro Lima

AGENT-BASED SOFTWARE ARCHITECTURE FOR MULTI-ROBOT TEAMS. João Frazão, Pedro Lima AGENT-BASED SOFTWARE ARCHITECTURE FOR MULTI-ROBOT TEAMS João Frazão, Pedro Lima Institute for Systems and Robotics Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal {jfrazao,pal}@isr.ist.utl.pt

More information

Discrete-event simulation of railway systems with hybrid models

Discrete-event simulation of railway systems with hybrid models Discrete-event simulation of railway systems with hybrid models G. Decknatel & E. Schnieder Imtitutfur Regelungs- undautomatisierungstechnik, Technische Universitat Braunschweig, Braunschweig, Germany.

More information

ICT-SHOK Project Proposal: PROFI

ICT-SHOK Project Proposal: PROFI ICT-SHOK Project Proposal: PROFI Full Title: Proactive Future Internet: Smart Semantic Middleware Overlay Architecture for Declarative Networking ICT-SHOK Programme: Future Internet Project duration: 2+2

More information

Overview of a new Robot Controller Development Methodology

Overview of a new Robot Controller Development Methodology Overview of a new Robot Controller Development Methodology R. Passama 1,2, D. Andreu 1, C. Dony 2, T. Libourel 2 1 Robotics Department 2 Computer sciences Department LIRMM, 161 rue Ada 34392 Montpellier,

More information

TITUS A Graphical Design Methodology for Embedded Automotive Software

TITUS A Graphical Design Methodology for Embedded Automotive Software TITUS A Graphical Design Methodology for Embedded Automotive Software Ulrich Freund, Alexander Burst, ETAS GmbH Stuttgart Abstract Vehicle body electronic software has reached a level of complexity and

More information

Formal Modeling of Testing Software for Cyber-Physical Automation Systems

Formal Modeling of Testing Software for Cyber-Physical Automation Systems Formal Modeling of Testing Software for Cyber-Physical Automation Systems Igor Buzhinsky, Cheng Pang, Valeriy Vyatkin Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia Department

More information

Robot Controller. Sensor Processing Module. Locomotion Module. Sensors. Environment

Robot Controller. Sensor Processing Module. Locomotion Module. Sensors. Environment Evolution of Controllers from a High-Level Simulator to a High DOF Robot G. S. Hornby 1, S. Takamura 2, O. Hanagata 3, M. Fujita 3, and J. Pollack 1 1 Computer Science Dept., Brandeis University, Waltham,

More information

A Modular, Hybrid System Architecture for Autonomous, Urban Driving

A Modular, Hybrid System Architecture for Autonomous, Urban Driving A Modular, Hybrid System Architecture for Autonomous, Urban Driving Dave Wooden, Matt Powers, Magnus Egerstedt, Henrik Christensen, and Tucker Balch Robotics and Intelligent Machines Georgia Institute

More information

Łabiak G., Miczulski P. (IIE, UZ, Zielona Góra, Poland)

Łabiak G., Miczulski P. (IIE, UZ, Zielona Góra, Poland) UML STATECHARTS AND PETRI NETS MODEL COMPARIS FOR SYSTEM LEVEL MODELLING Łabiak G., Miczulski P. (IIE, UZ, Zielona Góra, Poland) The system level modelling can be carried out with using some miscellaneous

More information

By: Chaitanya Settaluri Devendra Kalia

By: Chaitanya Settaluri Devendra Kalia By: Chaitanya Settaluri Devendra Kalia What is an embedded system? An embedded system Uses a controller to perform some function Is not perceived as a computer Software is used for features and flexibility

More information

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems 13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems Florian Hölzl and Martin Feilkas Institut für Informatik Technische Universität

More information

High-level Modeling with THORNs. Oldenburger Forschungs- und Entwicklungsinstitut fur. Informatik-Werkzeuge- und Systeme (Offis)

High-level Modeling with THORNs. Oldenburger Forschungs- und Entwicklungsinstitut fur. Informatik-Werkzeuge- und Systeme (Offis) High-level Modeling with THORNs Stefan Schof, Michael Sonnenschein, Ralf Wieting Oldenburger Forschungs- und Entwicklungsinstitut fur Informatik-Werkzeuge- und Systeme (Offis) Escherweg 2 D{26121 Oldenburg

More information

Vision Document for Multi-Agent Research Tool (MART)

Vision Document for Multi-Agent Research Tool (MART) Vision Document for Multi-Agent Research Tool (MART) Version 2.0 Submitted in partial fulfillment of the requirements for the degree MSE Madhukar Kumar CIS 895 MSE Project Kansas State University 1 1.

More information

Exploration of an Indoor-Environment by an Autonomous Mobile Robot

Exploration of an Indoor-Environment by an Autonomous Mobile Robot IROS '94 September 12-16, 1994 Munich, Germany page 1 of 7 Exploration of an Indoor-Environment by an Autonomous Mobile Robot Thomas Edlinger edlinger@informatik.uni-kl.de Ewald von Puttkamer puttkam@informatik.uni-kl.de

More information

Formal Verification for safety critical requirements From Unit-Test to HIL

Formal Verification for safety critical requirements From Unit-Test to HIL Formal Verification for safety critical requirements From Unit-Test to HIL Markus Gros Director Product Sales Europe & North America BTC Embedded Systems AG Berlin, Germany markus.gros@btc-es.de Hans Jürgen

More information

Robotics Navigation I: Bug Algorithms

Robotics Navigation I: Bug Algorithms Robotics Navigation I: Bug Algorithms Admin Any? Lab? Bug Algorithms Bug Algorithms Behavioral roboticists love(d) insects Simple behaviors easy to implement Complex emergent behaviors So first navigation

More information

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica Environment 1

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica Environment 1 A new Approach for Modeling and Verification of Discrete Control Components within a Modelica Environment 1 Ulrich Donath Jürgen Haufe Fraunhofer-Institute for Integrated Circuits, Design Automation Division

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Embedded Systems 7 BF - ES - 1 -

Embedded Systems 7 BF - ES - 1 - Embedded Systems 7-1 - Production system A modelbased realtime faultdiagnosis system for technical processes Ch. Steger, R. Weiss - 2 - Sprout Counter Flow Pipeline-Processor Based on a stream of data

More information

CONCLUSION ACKNOWLEDGMENTS REFERENCES

CONCLUSION ACKNOWLEDGMENTS REFERENCES tion method produces commands that are suggested by at least one behavior. The disadvantage of the chosen arbitration approach is that it is computationally expensive. We are currently investigating methods

More information

A Hierarchical Approach to Workload. M. Calzarossa 1, G. Haring 2, G. Kotsis 2,A.Merlo 1,D.Tessera 1

A Hierarchical Approach to Workload. M. Calzarossa 1, G. Haring 2, G. Kotsis 2,A.Merlo 1,D.Tessera 1 A Hierarchical Approach to Workload Characterization for Parallel Systems? M. Calzarossa 1, G. Haring 2, G. Kotsis 2,A.Merlo 1,D.Tessera 1 1 Dipartimento di Informatica e Sistemistica, Universita dipavia,

More information

Automation Systems Discrete Event Control Systems and Networked Automation Systems

Automation Systems Discrete Event Control Systems and Networked Automation Systems Automation Systems Discrete Event Control Systems and Networked Automation Systems 2 nd Lecture Control Design Process System theory or Software-Engineering? System Theory Starting point: mathematical

More information

The design methodology for hybrid system verification

The design methodology for hybrid system verification The design methodology for hybrid system verification Michal Pluska Lero at DCU, School of Computing, Dublin City University, Dublin 9, Ireland michal.pluska2@mail.dcu.ie Abstract: Hybrid systems are gaining

More information

Using Petri Nets for Animation Modeling and Analysis

Using Petri Nets for Animation Modeling and Analysis DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO INDUSTRIAL FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE CAMPINAS Relatório Técnico Technical Report DCA-005/97 Alberto

More information

Synthesis of Complicated Asynchronous Control Circuits Using Template Based Technique

Synthesis of Complicated Asynchronous Control Circuits Using Template Based Technique Synthesis of Complicated Asynchronous Control Circuits Using Template Based Technique Sufian Sudeng and Arthit Thongtak Abstract this paper proposes an approach for complicated asynchronous controller

More information

FSMs & message passing: SDL

FSMs & message passing: SDL 12 FSMs & message passing: SDL Peter Marwedel TU Dortmund, Informatik 12 Springer, 2010 2012 年 10 月 30 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply. Models of computation

More information

WoPeD Workflow Petri Net Designer

WoPeD Workflow Petri Net Designer WoPeD Workflow Petri Net Designer Thomas Freytag University of Cooperative Education (Berufsakademie) Department of Computer Science D-76052 Karlsruhe freytag@ba-karlsruhe.de Abstract. WoPeD (WoPeD Petrinet

More information

Porting the Internet Protocol to the Controller Area Network

Porting the Internet Protocol to the Controller Area Network Porting the Internet Protocol to the Controller Area Network Michael Ditze 1, Reinhard Bernhardi 2, Guido Kämper 1, Peter Altenbernd 2 1 University of Paderborn / C-LAB, Fürstenallee 11, 33094 Paderborn

More information

SOLVING DEADLOCK STATES IN MODEL OF RAILWAY STATION OPERATION USING COLOURED PETRI NETS

SOLVING DEADLOCK STATES IN MODEL OF RAILWAY STATION OPERATION USING COLOURED PETRI NETS SOLVING DEADLOCK STATES IN MODEL OF RAILWAY STATION OPERATION USING COLOURED PETRI NETS Michal Žarnay University of Žilina, Faculty of Management Science and Informatics, Address: Univerzitná 8215/1, Žilina,

More information

Structure of Abstract Syntax trees for Colored Nets in PNML

Structure of Abstract Syntax trees for Colored Nets in PNML Structure of Abstract Syntax trees for Colored Nets in PNML F. Kordon & L. Petrucci Fabrice.Kordon@lip6.fr Laure.Petrucci@lipn.univ-paris13.fr version 0.2 (draft) June 26, 2004 Abstract Formalising the

More information

An Object Oriented Petri Net Language for Embedded System Design

An Object Oriented Petri Net Language for Embedded System Design An Object Oriented Petri Net Language for Embedded System Design Robert Esser Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) CH-8092 Zurich, Switzerland esser@tik.ee.ethz.ch

More information

A Context Inference Framework based on Fuzzy Colored Timed Petri Nets

A Context Inference Framework based on Fuzzy Colored Timed Petri Nets Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 458 A Context Inference Framework based on Fuzzy Colored Timed Petri Nets

More information

Story Driven Testing - SDT

Story Driven Testing - SDT Story Driven Testing - SDT Leif Geiger Software Engineering, University of Kassel Wilhelmshöher Allee 73 34121 Kassel, Germany leif.geiger@uni-kassel.de Albert Zündorf Software Engineering, University

More information

REAL-TIME OBJECT-ORIENTED DESIGN AND FORMAL METHODS

REAL-TIME OBJECT-ORIENTED DESIGN AND FORMAL METHODS REAL-TIME OBJECT-ORIENTED DESIGN AND FORMAL METHODS Juan Antonio de la Puente Dept. of Telematics Engineering School of Telecommunication, Technical University of Madrid E-mail: jpuente@dit.upm.es 1. Introduction

More information

Composability Test of BOM based models using Petri Nets

Composability Test of BOM based models using Petri Nets I. Mahmood, R. Ayani, V. Vlassov and F. Moradi 7 Composability Test of BOM based models using Petri Nets Imran Mahmood 1, Rassul Ayani 1, Vladimir Vlassov 1, and Farshad Moradi 2 1 Royal Institute of Technology

More information

3D-Visualization of Petri Net Models: Concept and Realization

3D-Visualization of Petri Net Models: Concept and Realization 3D-Visualization of Petri Net Models: Concept and Realization Ekkart Kindler and Csaba Páles Department of Computer Science, University of Paderborn {kindler,cpales}@upb.de Abstract. We present a simple

More information

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, 1 postdoc, 1 project manager, 2 software engineers

More information

Photogrammetry and 3D Car Navigation

Photogrammetry and 3D Car Navigation Photogrammetric Week '07 Dieter Fritsch (Ed.) Wichmann Verlag, Heidelberg, 2007 Strassenburg-Kleciak 309 Photogrammetry and 3D Car Navigation MAREK STRASSENBURG-KLECIAK, Hamburg ABSTRACT The technological

More information

Combining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving

Combining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving Combining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving Xi Xiong Jianqiang Wang Fang Zhang Keqiang Li State Key Laboratory of Automotive Safety and Energy, Tsinghua University

More information