Efficient Verification of Shortest Path Search via Authenticated Hints. Presented by: Nuttiiya Seekhao

Size: px
Start display at page:

Download "Efficient Verification of Shortest Path Search via Authenticated Hints. Presented by: Nuttiiya Seekhao"

Transcription

1 Efficient Verification of Shortest Path Search via Authenticated Hints Presented by: Nuttiiya Seekhao

2 Overview Motivation Architectural Framework Goals Solutions: Proof Integrity Shortest Path Performance Summary

3 Motivation for Shortest Path No one like to take the long route!

4 Motivation for Shortest Path

5 Motivation for Shortest Path

6 Motivation for Shortest Path Verification Model: Data Owner: trusted road network data owner,, etc. Service Provider (SP): Third Party..,, etc. Clients Malicious purposely returning you sub-optimal paths Save computational resources Profit purposes Good getting infiltrated by

7 Architectural Framework

8 Goals The proof size should be as small as possible The offline construction cost and storage overhead of authenticated hints should be low

9 Integrity Proofs Γ T Assuming shortest path proof, Γ S, is given Case 1: Γ S is a subgraph proof Γ S SG Γ S G, a subgraph which contains enough information to proof path optimality Need to prove: G contains only existing nodes Full adjacency information for each of the node is accurately reported Case 2: Γ S is a distance proof Γ S DT Need to prove: Integrity of nodes in P rslt (shortest path returned)

10 Integrity Proofs Γ T Merkel Hash Tree on Graph Nodes Extended tuple, Attributes of v, contains Adjacency list (with weight info) of Φ v Let Digest of a node Φ( v) ( ) = v. id, v. x, v.y, " H ( ) { v,w ( v, v ") ( v, v ") E} be a secure hash function v V is H ( Φ( v) ) v

11 Integrity Proofs Γ T ( ) Data Owner,, builds a Merkle tree on Φ v with respect to some graph-node ordering

12 Integrity Proofs Γ T Service Provider,, generates Γ T from Γ S A hash entry h i is inserted into the integrity proof Γ T if i. The sub tree of h i contains no tuple Φ(v) in Γ S and ii. The parent hash entry of h i doesn t satisfy condition (i) Example: wants to send subgraph G! contains nodes v 32, v 33, v 42 to client. It builds a set Γ S = { Φ( v 32 ), Φ( v 33 ), Φ( v 42 )} Then examine the Merkel tree to generate integrity proof Γ T = H ( Φ( v 31 )), H ( Φ( v 41 )), H ( Φ( v 43 )), h 1, h 2, h 5, h 6, h 18 { }

13 Shortest Path Proofs Γ S Basic Solutions Dijkstra Subgraph Verification (DIJ) Fully Materialized Distances (FULL) More Practical Authenticated Hints Landmark-based Verification Method (LDM) Hyper-graph Verification Method (HYP)

14 Basic: DIJ Γ S SG Γ S contains the Φ v of each vertex that is within distance dist v s, v t from Shortest path verification, client performs: Dijkstra s algorithm on the subgraph defined by proof Γ S and compute If Γ S contains all nodes required by Dijkstra s algorithm then it is said to be valid Path is deemed correct if i. Γ S is valid ii. ( ) v ( ) v s ( ) dist v s, v t The shortest path distance on Γ S is the same as distance report by the service provider

15 Basic: FULL Γ S DT Data Owner,, applies the Floyd-Warshall algorithm to compute the shortest path distance for each pair of nodes, v j V v i dist ( v i, v j ) Use MHT to store and check integrity of shortest distances Client checks integrity of: Shortest distance returned from Shortest path returned from Pre-computation complexity is O V 3! Total number of distances to store is Not scalable! ( ) ( ) O V 2

16 What s wrong with DIJ and FULL? DIJ: Very big proof! -> High communication overhead FULL: High pre-computation cost and storage overhead O( V 3 ) and O( V 2 ) respectively Let s move towards more practical approach!

17 LDM Γ S SG Landmark Distance Vector Ψ ( v) = dist s 1,v Lower bound distance between v and v dist LB v, v! Extended Tuple ( ),dist ( s 2,v),...,dist ( s c,v) ( ) = max i! " 1,c # $ dist s i,v Φ ( v) = v.id,v.x,v.y,ψ ( v),! ( ) dist ( s i, v& ) { v,w ( v, v!) ( v, v!) E}

18 LDM Γ S SG The service provider generates proof { Γ S SG = Φ v ( ),Φ ( v! ) ( v, v! ) E,v V,dist ( v s,v) + dist LB ( v,v t ) dist ( v s,v t )} The client performs A* search using the landmarkbased lower bound distance dist LB (.) How is this better than DIJ? Smaller search space (touches less # of vertices)

19 HYP Γ S SG, Γ S DT HiTi Graph Partitioned into cells Shortest paths of every pair or border cells are precomputed and stored as hyper edges

20 HYP Γ S SG, Γ S DT Build graph-node MHT, just like earlier except: Φ( v) = v. id, v. x, v.y, { v ",W ( v, v ") ( v, v ") E}, v. c, v. is _ border Build distance MHT similar to FULL method

21 HYP Γ S SG Subgraph Proof on Concise Coarse Graph Γ SG S contains i. Φ( v i ) for all v i in C s and C t ii. Hyper-edge E * ( v, v bsi bt where is j ) v bsi any border node in C s and vbt j is any border node in C t Server generates integrity proof for i. Using graph-node MHT ii. Using distance MHT

22 HYP Γ S DT Distance Proof on the Original Fine Graph Γ S DT is essentially integrity proof of all nodes in the shortest path The client checks whether the path distance of the fine proof (Γ S DT ) is the same as the shortest distance from the coarse proof (Γ S SG )

23 Experimental Results DIJ: No pre-computation, high communication overhead FULL: lowest comm. overhead, highest pre-computation LDM, HYP: Decent tradeoffs between the two

24 References Goldberg, Andrew V., and Chris Harrelson. "Computing the shortest path: A search meets graph theory." Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, Yiu, Man Lung, Yimin Lin, and Kyriakos Mouratidis. "Efficient verification of shortest path search via authenticated hints." Data Engineering (ICDE), 2010 IEEE 26th International Conference on. IEEE, 2010.

25 Questions?

Parallel Hierarchies for Solving Single Source Shortest Path Problem

Parallel Hierarchies for Solving Single Source Shortest Path Problem JOURNAL OF APPLIED COMPUTER SCIENCE Vol. 21 No. 1 (2013), pp. 25-38 Parallel Hierarchies for Solving Single Source Shortest Path Problem Łukasz Chomatek 1 1 Lodz University of Technology Institute of Information

More information

Point-to-Point Shortest Path Algorithms with Preprocessing

Point-to-Point Shortest Path Algorithms with Preprocessing Point-to-Point Shortest Path Algorithms with Preprocessing Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint work with Chris Harrelson, Haim Kaplan, and Retato

More information

16.1 Maximum Flow Definitions

16.1 Maximum Flow Definitions 5-499: Parallel Algorithms Lecturer: Guy Blelloch Topic: Graphs IV Date: March 5, 009 Scribe: Bobby Prochnow This lecture describes both sequential and parallel versions of a maximum flow algorithm based

More information

Highway Dimension and Provably Efficient Shortest Paths Algorithms

Highway Dimension and Provably Efficient Shortest Paths Algorithms Highway Dimension and Provably Efficient Shortest Paths Algorithms Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Ittai Abraham, Amos Fiat, and Renato

More information

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3?

Problem 1. Which of the following is true of functions =100 +log and = + log? Problem 2. Which of the following is true of functions = 2 and =3? Multiple-choice Problems: Problem 1. Which of the following is true of functions =100+log and =+log? a) = b) =Ω c) =Θ d) All of the above e) None of the above Problem 2. Which of the following is true

More information

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path: The Bellman-Ford Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path Problem Shortest path network. Directed graph G = (V, E, w). Weight

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n 2 polylog n) Time

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n 2 polylog n) Time All-Pairs Nearly 2-Approximate Shortest-Paths in O(n 2 polylog n) Time Surender Baswana 1, Vishrut Goyal 2, and Sandeep Sen 3 1 Max-Planck-Institut für Informatik, Saarbrücken, Germany. sbaswana@mpi-sb.mpg.de

More information

Efficient Algorithms for Solving Shortest Paths on Nearly Acyclic Directed Graphs

Efficient Algorithms for Solving Shortest Paths on Nearly Acyclic Directed Graphs Efficient Algorithms for Solving Shortest Paths on Nearly Acyclic Directed Graphs Shane Saunders Tadao Takaoka Department of Computer Science and Software Engineering, University of Canterbury, Christchurch,

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Graph Theory Mini-course

Graph Theory Mini-course Graph Theory Mini-course Anthony Varilly PROMYS, Boston University, Boston, MA 02215 Abstract Intuitively speaking, a graph is a collection of dots and lines joining some of these dots. Many problems in

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 4: Basic Concepts in Graph Theory Section 3: Trees 1 Review : Decision Tree (DT-Section 1) Root of the decision tree on the left: 1 Leaves of the

More information

Spanning Trees and Optimization Problems (Excerpt)

Spanning Trees and Optimization Problems (Excerpt) Bang Ye Wu and Kun-Mao Chao Spanning Trees and Optimization Problems (Excerpt) CRC PRESS Boca Raton London New York Washington, D.C. Chapter 3 Shortest-Paths Trees Consider a connected, undirected network

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

All Shortest Paths. Questions from exercises and exams

All Shortest Paths. Questions from exercises and exams All Shortest Paths Questions from exercises and exams The Problem: G = (V, E, w) is a weighted directed graph. We want to find the shortest path between any pair of vertices in G. Example: find the distance

More information

CSCI 5454 Ramdomized Min Cut

CSCI 5454 Ramdomized Min Cut CSCI 5454 Ramdomized Min Cut Sean Wiese, Ramya Nair April 8, 013 1 Randomized Minimum Cut A classic problem in computer science is finding the minimum cut of an undirected graph. If we are presented with

More information

arxiv: v1 [cs.ds] 3 Mar 2016

arxiv: v1 [cs.ds] 3 Mar 2016 Using Quadrilaterals to Compute the Shortest Path ExtendedAbstract arxiv:1603.00963v1 [cs.ds] 3 Mar 2016 Newton Campbell Jr. Nova Southeastern University nc607@nova.edu March 4, 2016 Abstract We introduce

More information

Bidirectional search and Goal-directed Dijkstra

Bidirectional search and Goal-directed Dijkstra Computing the shortest path Bidirectional search and Goal-directed Dijkstra Alexander Kozyntsev October 18, 2010 Abstract We study the problem of finding a shortest path between two vertices in a directed

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

The Shortest Path Problem

The Shortest Path Problem The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

Towards more efficient infection and fire fighting

Towards more efficient infection and fire fighting Towards more efficient infection and fire fighting Peter Floderus Andrzej Lingas Mia Persson The Centre for Mathematical Sciences, Lund University, 00 Lund, Sweden. Email: pflo@maths.lth.se Department

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Heap-on-Top Priority Queues. March Abstract. We introduce the heap-on-top (hot) priority queue data structure that combines the

Heap-on-Top Priority Queues. March Abstract. We introduce the heap-on-top (hot) priority queue data structure that combines the Heap-on-Top Priority Queues Boris V. Cherkassky Central Economics and Mathematics Institute Krasikova St. 32 117418, Moscow, Russia cher@cemi.msk.su Andrew V. Goldberg NEC Research Institute 4 Independence

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecturer: Mgr. Tereza Kovářová, Ph.D. tereza.kovarova@vsb.cz Guarantor: doc. Mgr. Petr Kovář, Ph.D. Department of Applied Mathematics, VŠB Technical University of Ostrava About this

More information

Exploring Graph Partitioning for Shortest Path Queries on Road Networks

Exploring Graph Partitioning for Shortest Path Queries on Road Networks Erschienen in: Proceedings of the 6th GI-Workshop Grundlagen von Datenbanken / Klan, Friederike et al. (Hrsg.). - (CEUR Workshop Proceedings ; 33). - S. 7-76 Exploring Graph Partitioning for Shortest Path

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

CS350: Data Structures Dijkstra s Shortest Path Alg.

CS350: Data Structures Dijkstra s Shortest Path Alg. Dijkstra s Shortest Path Alg. James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Shortest Path Algorithms Several different shortest path algorithms exist

More information

Reach for A : Efficient Point-to-Point Shortest Path Algorithms

Reach for A : Efficient Point-to-Point Shortest Path Algorithms Reach for A : Efficient Point-to-Point Shortest Path Algorithms Andrew V. Goldberg 1 Haim Kaplan 2 Renato F. Werneck 3 October 2005 Technical Report MSR-TR-2005-132 We study the point-to-point shortest

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks

Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks Jianping Li Email: jianping@ynu.edu.cn Department of Mathematics Yunnan University, P.R. China 11 / 31 8 ¹ 1 3

More information

arxiv: v2 [cs.cc] 29 Mar 2010

arxiv: v2 [cs.cc] 29 Mar 2010 On a variant of Monotone NAE-3SAT and the Triangle-Free Cut problem. arxiv:1003.3704v2 [cs.cc] 29 Mar 2010 Peiyush Jain, Microsoft Corporation. June 28, 2018 Abstract In this paper we define a restricted

More information

Model Answer. Section A Q.1 - (20 1=10) B.Tech. (Fifth Semester) Examination Analysis and Design of Algorithm (IT3105N) (Information Technology)

Model Answer. Section A Q.1 - (20 1=10) B.Tech. (Fifth Semester) Examination Analysis and Design of Algorithm (IT3105N) (Information Technology) B.Tech. (Fifth Semester) Examination 2013 Analysis and Design of Algorithm (IT3105N) (Information Technology) Model Answer. Section A Q.1 - (20 1=10) 1. Merge Sort uses approach to algorithm design. Ans:

More information

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Theory and Applications of Graphs Volume 4 Issue 2 Article 2 November 2017 Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Peter Johnson johnspd@auburn.edu Andrew Owens Auburn

More information

Hardness of Subgraph and Supergraph Problems in c-tournaments

Hardness of Subgraph and Supergraph Problems in c-tournaments Hardness of Subgraph and Supergraph Problems in c-tournaments Kanthi K Sarpatwar 1 and N.S. Narayanaswamy 1 Department of Computer Science and Engineering, IIT madras, Chennai 600036, India kanthik@gmail.com,swamy@cse.iitm.ac.in

More information

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm

Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Reach for A : an Efficient Point-to-Point Shortest Path Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Haim Kaplan and Renato Werneck Einstein

More information

CIS 121 Data Structures and Algorithms Minimum Spanning Trees

CIS 121 Data Structures and Algorithms Minimum Spanning Trees CIS 121 Data Structures and Algorithms Minimum Spanning Trees March 19, 2019 Introduction and Background Consider a very natural problem: we are given a set of locations V = {v 1, v 2,..., v n }. We want

More information

Chapter-0: Introduction. Chapter 0 INTRODUCTION

Chapter-0: Introduction. Chapter 0 INTRODUCTION Chapter 0 INTRODUCTION 1 Graph Theory is a branch of Mathematics which has become quite rich and interesting for several reasons. In last three decades hundreds of research article have been published

More information

Self Centered and Almost self centered graphs

Self Centered and Almost self centered graphs Chapter Five Self Centered and Almost self centered graphs 1. INTRODUCTOIN: In this chapter we are going to study about Self Centered and Almost self centered graphs. We have developed a simple algorithm

More information

Algorithms and Data Structures 2014 Exercises and Solutions Week 9

Algorithms and Data Structures 2014 Exercises and Solutions Week 9 Algorithms and Data Structures 2014 Exercises and Solutions Week 9 November 26, 2014 1 Directed acyclic graphs We are given a sequence (array) of numbers, and we would like to find the longest increasing

More information

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX MEHRNOUSH MALEKESMAEILI, CEDRIC CHAUVE, AND TAMON STEPHEN Abstract. A binary matrix has the consecutive ones property

More information

Review of Graph Theory. Gregory Provan

Review of Graph Theory. Gregory Provan Review of Graph Theory Gregory Provan Overview Need for graphical models of computation Cloud computing Data centres Telecommunications networks Graph theory Graph Models for Cloud Computing Integration

More information

On vertex types of graphs

On vertex types of graphs On vertex types of graphs arxiv:1705.09540v1 [math.co] 26 May 2017 Pu Qiao, Xingzhi Zhan Department of Mathematics, East China Normal University, Shanghai 200241, China Abstract The vertices of a graph

More information

Experimental Study on Speed-Up Techniques for Timetable Information Systems

Experimental Study on Speed-Up Techniques for Timetable Information Systems Experimental Study on Speed-Up Techniques for Timetable Information Systems Reinhard Bauer (rbauer@ira.uka.de) Daniel Delling (delling@ira.uka.de) Dorothea Wagner (wagner@ira.uka.de) ITI Wagner, Universität

More information

Indexable and Strongly Indexable Graphs

Indexable and Strongly Indexable Graphs Proceedings of the Pakistan Academy of Sciences 49 (2): 139-144 (2012) Copyright Pakistan Academy of Sciences ISSN: 0377-2969 Pakistan Academy of Sciences Original Article Indexable and Strongly Indexable

More information

Solutions for the Exam 6 January 2014

Solutions for the Exam 6 January 2014 Mastermath and LNMB Course: Discrete Optimization Solutions for the Exam 6 January 2014 Utrecht University, Educatorium, 13:30 16:30 The examination lasts 3 hours. Grading will be done before January 20,

More information

Review for Midterm Exam

Review for Midterm Exam Review for Midterm Exam 1 Policies and Overview midterm exam policies overview of problems, algorithms, data structures overview of discrete mathematics 2 Sample Questions on the cost functions of algorithms

More information

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph MATHEMATICAL COMMUNICATIONS 391 Math. Commun., Vol. 14, No. 2, pp. 391-398 (2009) Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph Petra Šparl1 and Janez Žerovnik2, 1 Faculty

More information

Multi-color graph pebbling

Multi-color graph pebbling Multi-color graph pebbling DIMACS REU Final Presentation CJ Verbeck DIMACS REU, Rutgers July 17th, 2009 CJ Verbeck (DIMACS REU, Rutgers) Multi-color graph pebbling July 17th, 2009 1 / 22 An introduction

More information

Problem Pts Score Grader Problem Pts Score Grader

Problem Pts Score Grader Problem Pts Score Grader CSE 502 Fundamentals of Computer Science Spring Semester 2015 Homework 5 Assigned: 4/10/2015 Due Date: 4/21/2015 You must read and sign the following statement to get credit for this assignment: I have

More information

Location Authentication using Voronoi Diagram

Location Authentication using Voronoi Diagram Location Authentication using Voronoi Diagram Mr. Santosh B M.Tech Student, Department of CSE AMC Engineering College, Bangalore, India Mrs. Srividhya V R Asst Prof. Department of CSE AMC Engineering College,

More information

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms

Elementary Graph Algorithms: Summary. Algorithms. CmSc250 Intro to Algorithms Elementary Graph Algorithms: Summary CmSc250 Intro to Algorithms Definition: A graph is a collection (nonempty set) of vertices and edges A path from vertex x to vertex y : a list of vertices in which

More information

Course Introduction / Review of Fundamentals of Graph Theory

Course Introduction / Review of Fundamentals of Graph Theory Course Introduction / Review of Fundamentals of Graph Theory Hiroki Sayama sayama@binghamton.edu Rise of Network Science (From Barabasi 2010) 2 Network models Many discrete parts involved Classic mean-field

More information

Labeling Schemes for Vertex Connectivity

Labeling Schemes for Vertex Connectivity Labeling Schemes for Vertex Connectivity AMOS KORMAN CNRS and Université Paris Diderot - Paris 7, France. This paper studies labeling schemes for the vertex connectivity function on general graphs. We

More information

A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic Errors 1

A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic Errors 1 Algorithmica (1997) 18: 544 559 Algorithmica 1997 Springer-Verlag New York Inc. A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic

More information

AN IMPLEMENTATION OF PATH PLANNING ALGORITHMS FOR MOBILE ROBOTS ON A GRID BASED MAP

AN IMPLEMENTATION OF PATH PLANNING ALGORITHMS FOR MOBILE ROBOTS ON A GRID BASED MAP AN IMPLEMENTATION OF PATH PLANNING ALGORITHMS FOR MOBILE ROBOTS ON A GRID BASED MAP Tolga YÜKSEL Abdullah SEZGİN e-mail : tyuksel@omu.edu.tr e-mail : asezgin@omu.edu.tr Ondokuz Mayıs University, Electrical

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

R. Kalpana #1 P. Thambidurai *2. Puducherry, India. Karaikal, Puducherry, India

R. Kalpana #1 P. Thambidurai *2. Puducherry, India. Karaikal, Puducherry, India Re-optimizing the Performance of Shortest Path Queries Using ized Combining Speedup Technique based on Arc flags and Approach R. Kalpana # P. Thambidurai * # Department of Computer Science & Engineering,

More information

The Transformation of Optimal Independent Spanning Trees in Hypercubes

The Transformation of Optimal Independent Spanning Trees in Hypercubes The Transformation of Optimal Independent Spanning Trees in Hypercubes Shyue-Ming Tang, Yu-Ting Li, and Yue-Li Wang Fu Hsing Kang School, National Defense University, Taipei, Taiwan, R.O.C. Department

More information

G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks

G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks ./TKDE.5., IEEE Transactions on Knowledge and Data Engineering G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Distributed algorithms for weighted problems in minor-closed families

Distributed algorithms for weighted problems in minor-closed families Distributed algorithms for weighted problems in minor-closed families A. Czygrinow Department of Math and Stat Arizona State University Email:andrzej@math.la.asu.edu. M. Hańćkowiak Faculty of Math and

More information

1 Single Source Shortest Path Algorithms

1 Single Source Shortest Path Algorithms 15-850: Advanced Algorithms CMU, Spring 2017 Lecture #4: Shortest Paths and Seidel s Algorithm 2/1/17 Lecturer: Anupam Gupta Scribe: Nicholas Sieger, Adam Kavka In this lecture, we did a review of single

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

Simon Peyton Jones (giving the talk) Andrew Goldberg (who did all the work) Microsoft Research

Simon Peyton Jones (giving the talk) Andrew Goldberg (who did all the work) Microsoft Research Simon Peyton Jones (giving the talk) Andrew Goldberg (who did all the work) Microsoft Research Well-known algorithms are fast enough on a reasonable computer but A handheld is not a reasonable computer

More information

Spanning tree congestion critical graphs

Spanning tree congestion critical graphs Spanning tree congestion critical graphs Daniel Tanner August 24, 2007 Abstract The linear or cyclic cutwidth of a graph G is the minimum congestion when G is embedded into either a path or a cycle respectively.

More information

New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree

New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree Alexander Golovnev St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia alex.golovnev@gmail.com

More information

Layer-Based Scheduling Algorithms for Multiprocessor-Tasks with Precedence Constraints

Layer-Based Scheduling Algorithms for Multiprocessor-Tasks with Precedence Constraints Layer-Based Scheduling Algorithms for Multiprocessor-Tasks with Precedence Constraints Jörg Dümmler, Raphael Kunis, and Gudula Rünger Chemnitz University of Technology, Department of Computer Science,

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the

Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Dijkstra s Algorithm Last time we saw two methods to solve the all-pairs shortest path problem: Min-plus matrix powering in O(n 3 log n) time and the Floyd-Warshall algorithm in O(n 3 ) time. Neither of

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously, but you may

More information

An O(n 2.75 ) algorithm for online topological ordering 1

An O(n 2.75 ) algorithm for online topological ordering 1 Electronic Notes in Discrete Mathematics 25 (2006) 7 12 www.elsevier.com/locate/endm An O(n 2.75 ) algorithm for online topological ordering 1 Deepak Ajwani a,2, Tobias Friedrich a and Ulrich Meyer a a

More information

Optimal Implementation of IP based Router with Shortest Path Algorithm Using VLSI Technology

Optimal Implementation of IP based Router with Shortest Path Algorithm Using VLSI Technology International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 10, Number 2 (2017), pp. 63-70 International Research Publication House http://www.irphouse.com Optimal Implementation

More information

Optimization and Evaluation of Shortest Path Queries

Optimization and Evaluation of Shortest Path Queries Optimization and Evaluation of Shortest Path Queries Edward P.F. Chan & Heechul Lim School of Computer Science University of Waterloo Waterloo, Ontario, Canada N2L 3G1 epfchan@uwaterloo.ca jupithc@yahoo.com

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

Planarity Algorithms via PQ-Trees (Extended Abstract)

Planarity Algorithms via PQ-Trees (Extended Abstract) Electronic Notes in Discrete Mathematics 31 (2008) 143 149 www.elsevier.com/locate/endm Planarity Algorithms via PQ-Trees (Extended Abstract) Bernhard Haeupler 1 Department of Computer Science, Princeton

More information

REDUCING GRAPH COLORING TO CLIQUE SEARCH

REDUCING GRAPH COLORING TO CLIQUE SEARCH Asia Pacific Journal of Mathematics, Vol. 3, No. 1 (2016), 64-85 ISSN 2357-2205 REDUCING GRAPH COLORING TO CLIQUE SEARCH SÁNDOR SZABÓ AND BOGDÁN ZAVÁLNIJ Institute of Mathematics and Informatics, University

More information

CSE 326: Data Structures Dijkstra s Algorithm. James Fogarty Autumn 2007

CSE 326: Data Structures Dijkstra s Algorithm. James Fogarty Autumn 2007 SE 6: Data Structures Dijkstra s lgorithm James Fogarty utumn 007 Dijkstra, Edsger Wybe Legendary figure in computer science; was a professor at University of Texas. Supported teaching introductory computer

More information

Math 381 Discrete Mathematical Modeling

Math 381 Discrete Mathematical Modeling Math 381 Discrete Mathematical Modeling Sean Griffin Today: -Equipment Replacement Problem -Min Spanning Tree Problem -Clustering Friday s Plan Intro to LPSolve software Download before class (link on

More information

Distance oracles for unweighted graphs : breaking the quadratic barrier with constant additive error

Distance oracles for unweighted graphs : breaking the quadratic barrier with constant additive error Distance oracles for unweighted graphs : breaking the quadratic barrier with constant additive error Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay Abstract. Thorup and Zwick, in the seminal

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

Minimum congestion spanning trees of grids and discrete toruses

Minimum congestion spanning trees of grids and discrete toruses Minimum congestion spanning trees of grids and discrete toruses A. Castejón Department of Applied Mathematics I Higher Technical School of Telecommunications Engineering (ETSIT) Universidad de Vigo Lagoas-Marcosende

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Partitioning of Public Transit Networks

Partitioning of Public Transit Networks Partitioning of Public Transit Networks [Bachelor s thesis] Matthias Hertel Albert-Ludwigs-Universität Freiburg.09.205 Contents Introduction Motivation Goal 2 Data model 3 Algorithms K-means Merging algorithm

More information

arxiv: v1 [math.co] 5 Nov 2010

arxiv: v1 [math.co] 5 Nov 2010 Segment representation of a subclass of co-planar graphs Mathew C. Francis, Jan Kratochvíl, and Tomáš Vyskočil arxiv:1011.1332v1 [math.co] 5 Nov 2010 Department of Applied Mathematics, Charles University,

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Discrete Mathematics August 20, 2014 Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Instructor: Sushmita Ruj Scribe: Ishan Sahu & Arnab Biswas 1 Paths, Cycles and Connectedness 1.1 Paths and Cycles 1. Paths

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Shortest Paths: Algorithms for standard variants. Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender

Shortest Paths: Algorithms for standard variants. Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender Shortest Paths: Algorithms for standard variants Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender 1 Shortest path problem(s) Undirected single-pair shortest path problem Given

More information

AHybridShortestPathAlgorithmfor Intra-Regional Queries on Hierarchical Networks

AHybridShortestPathAlgorithmfor Intra-Regional Queries on Hierarchical Networks AHybridShortestPathAlgorithmfor Intra-Regional Queries on Hierarchical Networks Gutemberg Guerra-Filho 1 and Hanan Samet 2 1 Department of Computer Science and Engineering, University of Texas at Arlington,

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously,

More information

Answering Pattern Match Queries in Large Graph Databases Via Graph Embedding

Answering Pattern Match Queries in Large Graph Databases Via Graph Embedding Noname manuscript No. (will be inserted by the editor) Answering Pattern Match Queries in Large Graph Databases Via Graph Embedding Lei Zou Lei Chen M. Tamer Özsu Dongyan Zhao the date of receipt and acceptance

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Fast and Compact Oracles for Approximate Distances in Planar Graphs

Fast and Compact Oracles for Approximate Distances in Planar Graphs Fast and Compact Oracles for Approximate Distances in Planar Graphs Laurent Flindt Muller 1 and Martin Zachariasen 2 1 Transvision, Vermundsgade 0D, DK-20 Copenhagen, Denmark laurent.flindt.muller@gmail.com

More information

arxiv: v1 [math.co] 28 Nov 2016

arxiv: v1 [math.co] 28 Nov 2016 Trees with distinguishing number two arxiv:1611.09291v1 [math.co] 28 Nov 2016 Saeid Alikhani May 15, 2018 Samaneh Soltani Department of Mathematics, Yazd University, 89195-741, Yazd, Iran alikhani@yazd.ac.ir,

More information

Algorithms for Shortest Paths. course web page: piazza: Learn - for marks. Lecture 1. CS 860 Fall Anna Lubiw, U. Waterloo.

Algorithms for Shortest Paths. course web page: piazza: Learn - for marks. Lecture 1. CS 860 Fall Anna Lubiw, U. Waterloo. CS 860 Fall 2014 Algorithms for Shortest Paths course web page: https://cs.uwaterloo.ca/~alubiw/cs860.html piazza: https://piazza.com/uwaterloo.ca/fall2014/cs860/home Learn - for marks desire path Historical

More information

Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft)

Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft) Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft) Lecturer: Uri Zwick June 5, 2013 1 The maximum matching problem Let G = (V, E) be an undirected graph. A set M E is a matching

More information