Introduction to Triangulated Graphs. Tandy Warnow

Size: px
Start display at page:

Download "Introduction to Triangulated Graphs. Tandy Warnow"

Transcription

1 Introduction to Triangulated Graphs Tandy Warnow

2 Topics for today Triangulated graphs: theorems and algorithms (Chapters 11.3 and 11.9) Examples of triangulated graphs in phylogeny estimation (Chapters 4.8, )

3 Triangulated (i.e., Chordal) Graphs Definition: A graph is triangulated if it has no simple cycles of size four or more.

4 DCMs are Divide-and-Conquer strategies!

5 DCMs for phylogeny reconstruction Define a triangulated graph so that its vertices correspond to the input taxa (or sequences) Decompose the graph into overlapping subgraphs, thus decomposing the taxa into overlapping subsets. Apply the base method to each subset of taxa, to construct a subset tree Apply a supertree method to the subset trees to obtain a single tree on the full set of taxa.

6 DCMs (Disk-Covering Methods) DCMs for polynomial time methods improve topological accuracy (empirical observation) and have provable theoretical guarantees under Markov models of evolution. DCMs for hard optimization problems reduce running time needed to achieve good levels of accuracy (empirical observation)

7 Decomposing Triangulated Graphs Given: Triangulated graph G = (V,E) Output: Decomposition of the vertices into overlapping subsets Require: Polynomial time! Technique: Use special properties about triangulated graphs Max Clique Decomposition Separator-component Decomposition

8 Simplicial Vertices Definition: Let G=(V,E) be a graph, and let v be a vertex in V. Then v is simplicial if its set of neighbors (i.e., Γ(v)) is a clique. To do: Give example of a graph that has no simplicial vertices. Give example of a graph where every vertex is simplicial.

9 Perfect Elimination Ordering Definition: Let G=(V,E) be a graph on n vertices. A perfect elimination ordering is an ordering of the vertices v 1,v 2,, v n of G so that each vertex v i is simplicial in the graph induced on {v i+1,v i+2,, v n }. Theorems: Every triangulated graph has a simplicial vertex. In fact, every triangulated graph that is not a clique has two non-adjacent simplicial vertices.

10 Perfect Elimination Ordering Definition: Let G=(V,E) be a graph on n vertices. A perfect elimination ordering is an ordering of the vertices v 1,v 2,, v n of G so that each vertex v i is simplicial in the graph induced on {v i+1,v i+2,, v n }. Theorems (Rose 1970): A graph G is triangulated if and only if it has a perfect elimination ordering. Furthermore, given a triangulated graph, a perfect elimination ordering can be found in polynomial time.

11 Some properties of chordal graphs Theorem: Every chordal graph G=(V,E) has at most V maximal cliques, and these can be found in polynomial time: Maxclique decomposition. Prove this using the existence of a perfect elimination ordering.

12 Some properties of chordal graphs Theorem: Every chordal graph G=(V,E) has at most V maximal cliques, and these can be found in polynomial time: Maxclique decomposition. Prove this using the existence of a perfect elimination ordering.

13 Some properties of chordal graphs Every chordal graph that is not a clique has a vertex separator that is a maximal clique, and it can be found in polynomial time: Separator-component decomposition.

14 Some properties of chordal graphs Every chordal graph has at most n maximal cliques, and these can be found in polynomial time: Maxclique decomposition. Every chordal graph that is not a clique has a vertex separator that is a maximal clique, and it can be found in polynomial time: Separator-component decomposition.

15 Decomposing Triangulated Graphs Given: Triangulated graph G = (V,E) Output: Decomposition of the vertices into overlapping subsets Require: Polynomial time! Technique: Use special properties about triangulated graphs Max Clique Decomposition Separator-component Decomposition

16 DCMs are Divide-and-Conquer strategies!

17 How to combine subset trees? Every triangulated graph has a perfect elimination ordering: enables us to merge correct subtrees and get a correct supertree back, if subtrees are big enough (so that they contain all the short quartet trees).

18 Triangulated Graphs and Trees Theorem (Gravil 1974, Buneman 1974): A graph G is triangulated if and only if G is the intersection graph of a set of subtrees of a tree. Proof: One direction is easy, and the other is not

19 Examples of Triangulated Graphs Threshold graphs TG(D,q): D is additive and q is any real number, and (x,y) is an edge if and only if D[x,y] <= q. Short Subtree Graphs SSG(T,w): T is a tree with edge-weighting w, and every short quartet contributes a 4-clique. Character-state intersection graphs from perfect phylogenies.

20 Examples of Triangulated Graphs Threshold graphs TG(D,q): D is additive and q is any real number, and (x,y) is an edge if and only if D[x,y] <= q. Theorem: For all additive matrices D and thresholds q, TG(D,q) is triangulated. Proof: Use the fact that all subtree intersection graphs are triangulated.

21 DCM1-boosting distance-based methods [Nakhleh et al. ISMB 2001] Error Rate NJ DCM1-NJ Theorem (Warnow et al., SODA 2001): DCM1-NJ converges to the true tree from polynomial length sequences No. Taxa

22 Examples of Triangulated Graphs Short Subtree Graphs SSG(T,w): T is a tree with edge-weighting w, and every short quartet contributes a 4-clique. Theorem: For all trees T with edge weighting w, SSG(T,w) is additive. Proof: Use the fact that all subtree intersection graphs are triangulated.

23 Rec-I-DCM3 significantly improves performance 0.2 Average MP score above optimal, shown as a percentage of the optimal Current best techniques (TNT) Rec-I-DCM3(TNT) Hours Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset

24 Examples of Triangulated Graphs Character-state intersection graphs from perfect phylogenies. Theorem: For all perfect phylogenies, the character state intersection graph (where nodes correspond to character states and edges correspond to any two states at any node in the tree internal and leaf) is triangulated. Proof: Use the fact that all subtree intersection graphs are triangulated.

25 Homoplasy-Free Evolution (perfect phylogenies) YES NO

26 Perfect Phylogeny A phylogeny T for a set S of taxa is a perfect phylogeny if each state of each character occupies a subtree (no character has backmutations or parallel evolution) 30

27 Perfect phylogenies, cont. A=(0,0), B=(0,1), C=(1,3), D=(1,2) has a perfect phylogeny! A=(0,0), B=(0,1), C=(1,0), D=(1,1) does not have a perfect phylogeny!

28 A perfect phylogeny A = 0 0 B = 0 1 C = 1 3 D = 1 2 E = 0 3 F = 1 3 B A C D

29 A perfect phylogeny A = 0 0 B = 0 1 C = 1 3 D = 1 2 E = 0 3 F = 1 3 B A E F C D

30 The Perfect Phylogeny Problem Given a set S of taxa (species, languages, etc.) determine if a perfect phylogeny T exists for S. The problem of determining whether a perfect phylogeny exists is NP-hard (McMorris et al. 1994, Steel 1991).

31 Triangulated Graphs A graph is triangulated if it has no simple cycles of size four or more.

32 Triangulated Graphs Theorem (Gravil 1974, Buneman 1974): A graph G is triangulated if and only if G is the intersection graph of a set of subtrees of a tree. Proof: One direction is easy, and the other is not

33 Perfect Phylogenies and Triangulated Colored Graphs Suppose M is a character matrix and T is a perfect phylogeny for M. Then let M be the extension of M to include the additional species added at the internal nodes. Character State Intersection Graph G based on M : For each character alpha and state i in M, give a vertex v (alpha,i) and color the vertex with the color for alpha. Put edges between two vertices if they share any species. G is triangulated and properly colored.

34 Perfect Phylogenies and Triangulated Colored Graphs Suppose M is a character matrix and T is a perfect phylogeny for M. Then let M be the extension of M to include the additional species added at the internal nodes. The character state intersection graph G based on M is triangulated and properly colored. (Why?) But if we had based it on M it might not have been triangulated. (Why?)

35 A perfect phylogeny A = 0 0 B = 0 1 C = 1 3 D = 1 2 E = 0 3 F = 1 3 A C E F B D Draw the character state intersection graph.

36 Matrix with a perfect phylogeny c1 c2 c3 s s s s Draw the perfect phylogeny and compute the sequences at the internal nodes.

37 Matrix with a perfect phylogeny c1 c2 c3 s s s s Draw the character state intersection graph for the extended matrix (including the sequences at the internal nodes).

38 The partition intersection graph Yes Instance of PP: c1 c2 c3 s s s s

39 Triangulating colored graphs Let G=(V,E) be a graph and c be a vertex coloring of G. Then G can be c-triangulated if a supergraph G =(V,E ) exists that is triangulated and where the coloring c is proper. In other words, G can be c-triangulated if and only if we can add edges to G to make it triangulated without adding edges between vertices of the same color.

40 A graph that can be c-triangulated

41 A graph that can be c-triangulated

42 A graph that cannot be c-triangulated

43 Triangulating Colored Graphs (TCG) Triangulating Colored Graphs: given a vertexcolored graph G, determine if G can be c-triangulated.

44 The PP and TCG Problems Buneman s Theorem: A perfect phylogeny exists for a set S if and only if the associated character state intersection graph can be c- triangulated. The PP and TCG problems are polynomially equivalent and NP-hard.

45 A no-instance of Perfect Phylogeny A = 0 0 B = 0 1 C = 1 0 D = An input to perfect phylogeny (left) of four sequences described by two characters, and its character state intersection graph. Note that the character state intersection graph is 2-colored.

46 Solving the PP Problem Using Buneman s Theorem Yes Instance of PP: c1 c2 c3 s s s s

47 Solving the PP Problem Using Buneman s Theorem Yes Instance of PP: c1 c2 c3 s s s s

48 Some special cases are easy Binary character perfect phylogeny solvable in linear time r-state characters solvable in polynomial time for each r (combinatorial algorithm) Two character perfect phylogeny solvable in polynomial time (produces 2-colored graph) k-character perfect phylogeny solvable in polynomial time for each k (produces k-colored graphs -- connections to Robertson-Seymour graph minor theory)

49 Early History LeQuesne (1969,1972,1974,1977): initial formulation of perfect phylogenies Estabrook (1972), Estabrook et al. (1975): mathematical foundations of perfect phylogenies McMorris (1997): binary character compatibility Felsenstein (1984): review paper Estabrook & Landrum, Fitch 1975: compatibility of two characters Steel (1992) and Bodlaender et al. (1992): NP-hardness Buneman (1974): reduced perfect phylogeny to triangulating colored graphs Kannan and Warnow (1992): established equivalence of TCG and PP See T. Warnow, Constructing phylogenetic trees efficiently using compatibility criteria. New Zealand Journal of Botany, 31:3, pp (linked off my homepage) for a survey of the early literature and the full citations.

50 Literature sample R. Agarwala and D. Fernandez-Baca, A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing, 23, R. Agarwala and D. Fernandez-Baca, Simple algorithms for perfect phylogeny and triangulating colored graphs. International Journal of Foundations of Computer Science, 7, H.L. Bodlaender, M.R. Fellows, Michael T. Hallett, H. Todd Wareham, and T. Warnow The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs, Theoretical Computer Science 244 (2000) H.L. Bodlaender and T. KIoks, 1993: A simple linear time algorithm for triangulating three-colored graphs. Journal of algorithms J 5: D. Fernandez-Baca, The perfect phylogeny problem. Pages of: Du, D.-Z., and Cheng, X. (eds), Steiner Trees in Industries. Kluwer Academic Publishers. D. Gusfield, Efficient algorithms for inferring evolutionary trees. Networks 21, R. Idury and A. Schaffer. 1993: Triangulating three-colored graphs in linear time and linear space. SIAM journal on discrete mathematics 6: S. Kannan and T. Warnow, Triangulating 3-colored graphs. SIAM J. on Discrete Mathematics, Vol. 5 No. 2, pp (also SODA 1991) S. Kannan and T. Warnow, A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. SIAM J. Computing, Vol. 26, No. 6, pp (also SODA 1995) F.R. McMorris, T. Warnow, and T. Wimer, Triangulating Vertex Colored Graphs. SIAM J. on Discrete Mathematics, Vol. 7, No. 2, pp (also SODA 1993).

51 Applications of Perfect Phylogeny Tumor Phylogenetics (Mohammed El-Kebir will talk this on April 10-17, 2018) Historical Linguistics (I will talk about this on March 15, 2018) Population genetics and Haplotype inference

Chordal Graphs and Evolutionary Trees. Tandy Warnow

Chordal Graphs and Evolutionary Trees. Tandy Warnow Chordal Graphs and Evolutionary Trees Tandy Warnow Possible Indo-European tree (Ringe, Warnow and Taylor 2000) Anatolian Vedic Iranian Greek Italic Celtic Tocharian Armenian Germanic Baltic Slavic Albanian

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

Sequence length requirements. Tandy Warnow Department of Computer Science The University of Texas at Austin

Sequence length requirements. Tandy Warnow Department of Computer Science The University of Texas at Austin Sequence length requirements Tandy Warnow Department of Computer Science The University of Texas at Austin Part 1: Absolute Fast Convergence DNA Sequence Evolution AAGGCCT AAGACTT TGGACTT -3 mil yrs -2

More information

Necessary edges in k-chordalizations of graphs

Necessary edges in k-chordalizations of graphs Necessary edges in k-chordalizations of graphs Hans L. Bodlaender Abstract In this note, we look at which edges must always be added to a given graph G = (V, E), when we want to make it a chordal graph

More information

Fixed parameter algorithms for compatible and agreement supertree problems

Fixed parameter algorithms for compatible and agreement supertree problems Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 Fixed parameter algorithms for compatible and agreement supertree problems Sudheer Reddy Vakati Iowa State

More information

Scaling species tree estimation methods to large datasets using NJMerge

Scaling species tree estimation methods to large datasets using NJMerge Scaling species tree estimation methods to large datasets using NJMerge Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana Champaign 2018 Phylogenomics Software

More information

Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Reconstruction

Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Reconstruction Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Reconstruction Guy E. Blelloch, Kedar Dhamdhere, Eran Halperin, R. Ravi, Russell Schwartz and Srinath Sridhar Abstract. We consider

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees Kedar Dhamdhere, Srinath Sridhar, Guy E. Blelloch, Eran Halperin R. Ravi and Russell Schwartz March 17, 2005 CMU-CS-05-119

More information

Tree Decompositions, Treewidth, and NP-Hard Problems. A Survey Paper on Recent Findings in the Field. Gerrod Voigt

Tree Decompositions, Treewidth, and NP-Hard Problems. A Survey Paper on Recent Findings in the Field. Gerrod Voigt Tree Decompositions, Treewidth, and NP-Hard Problems A Survey Paper on Recent Findings in the Field Gerrod Voigt Mathematics Massachusetts Institute of Technology Abstract This survey paper provides an

More information

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Erin Molloy University of Illinois at Urbana Champaign General Allocation (PI: Tandy Warnow) Exploratory Allocation

More information

c 1999 Society for Industrial and Applied Mathematics

c 1999 Society for Industrial and Applied Mathematics SIAM J. COMPUT. Vol. 29, No. 1, pp. 103 131 c 1999 Society for Industrial and Applied Mathematics CONSTRUCTING EVOLUTIONARY TREES IN THE PRESENCE OF POLYMORPHIC CHARACTERS MARIA BONET, CYNTHIA PHILLIPS,

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 11 -

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such)

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such) Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences joe@gs Phylogeny methods, part 1 (Parsimony and such) Methods of reconstructing phylogenies (evolutionary trees) Parsimony

More information

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators An Effective Upperbound on Treewidth Using Partial Fill-in of Separators Boi Faltings Martin Charles Golumbic June 28, 2009 Abstract Partitioning a graph using graph separators, and particularly clique

More information

Dynamic Programming for Phylogenetic Estimation

Dynamic Programming for Phylogenetic Estimation 1 / 45 Dynamic Programming for Phylogenetic Estimation CS598AGB Pranjal Vachaspati University of Illinois at Urbana-Champaign 2 / 45 Coalescent-based Species Tree Estimation Find evolutionary tree for

More information

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv Bayesian Networks, Winter 2009-2010 Yoav Haimovitch & Ariel Raviv 1 Chordal Graph Warm up Theorem 7 Perfect Vertex Elimination Scheme Maximal cliques Tree Bibliography M.C.Golumbic Algorithmic Graph Theory

More information

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees Kedar Dhamdhere ½ ¾, Srinath Sridhar ½ ¾, Guy E. Blelloch ¾, Eran Halperin R. Ravi and Russell Schwartz March 17, 2005 CMU-CS-05-119

More information

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Ramin Zabih Computer Science Department Stanford University Stanford, California 94305 Abstract Bandwidth is a fundamental concept

More information

CS 581. Tandy Warnow

CS 581. Tandy Warnow CS 581 Tandy Warnow This week Maximum parsimony: solving it on small datasets Maximum Likelihood optimization problem Felsenstein s pruning algorithm Bayesian MCMC methods Research opportunities Maximum

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

Distance-based Phylogenetic Methods Near a Polytomy

Distance-based Phylogenetic Methods Near a Polytomy Distance-based Phylogenetic Methods Near a Polytomy Ruth Davidson and Seth Sullivant NCSU UIUC May 21, 2014 2 Phylogenetic trees model the common evolutionary history of a group of species Leaves = extant

More information

Throughout the chapter, we will assume that the reader is familiar with the basics of phylogenetic trees.

Throughout the chapter, we will assume that the reader is familiar with the basics of phylogenetic trees. Chapter 7 SUPERTREE ALGORITHMS FOR NESTED TAXA Philip Daniel and Charles Semple Abstract: Keywords: Most supertree algorithms combine collections of rooted phylogenetic trees with overlapping leaf sets

More information

Treewidth: Preprocessing and Kernelization

Treewidth: Preprocessing and Kernelization Treewidth: Preprocessing and Kernelization Hans L. Bodlaender Joint work with Arie Koster, Frank van den Eijkhof, Bart Jansen, Stefan Kratsch, Vincent Kreuzen 1 This talk Survey of work on preprocessing

More information

Parameterized coloring problems on chordal graphs

Parameterized coloring problems on chordal graphs Parameterized coloring problems on chordal graphs Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary dmarx@cs.bme.hu

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

P = NP; P NP. Intuition of the reduction idea:

P = NP; P NP. Intuition of the reduction idea: 1 Polynomial Time Reducibility The question of whether P = NP is one of the greatest unsolved problems in the theoretical computer science. Two possibilities of relationship between P and N P P = NP; P

More information

Parallel Implementation of a Quartet-Based Algorithm for Phylogenetic Analysis

Parallel Implementation of a Quartet-Based Algorithm for Phylogenetic Analysis Parallel Implementation of a Quartet-Based Algorithm for Phylogenetic Analysis B. B. Zhou 1, D. Chu 1, M. Tarawneh 1, P. Wang 1, C. Wang 1, A. Y. Zomaya 1, and R. P. Brent 2 1 School of Information Technologies

More information

List Partitions of Chordal Graphs

List Partitions of Chordal Graphs List Partitions of Chordal Graphs Tomás Feder 268 Waverley St., Palo Alto, CA 94301, USA tomas@theory.stanford.edu, Pavol Hell School of Computing Science Simon Fraser University Burnaby, B.C., Canada

More information

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees What is a phylogenetic tree? Algorithms for Computational Biology Zsuzsanna Lipták speciation events Masters in Molecular and Medical Biotechnology a.a. 25/6, fall term Phylogenetics Summary wolf cat lion

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency?

Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency? Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency? Fathiyeh Faghih and Daniel G. Brown David R. Cheriton School of Computer Science, University of

More information

Rec-I-DCM3: A Fast Algorithmic Technique for Reconstructing Large Phylogenetic Trees

Rec-I-DCM3: A Fast Algorithmic Technique for Reconstructing Large Phylogenetic Trees Rec-I-: A Fast Algorithmic Technique for Reconstructing Large Phylogenetic Trees Usman Roshan Bernard M.E. Moret Tiffani L. Williams Tandy Warnow Abstract Estimations of phylogenetic trees are most commonly

More information

On Low Treewidth Graphs and Supertrees

On Low Treewidth Graphs and Supertrees Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 19, no. 1, pp. 325 343 (2015) DOI: 10.7155/jgaa.00361 On Low Treewidth Graphs and Supertrees Alexander Grigoriev 1 Steven Kelk 2 Nela

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

Contracting a chordal graph to a split graph or a tree

Contracting a chordal graph to a split graph or a tree Contracting a chordal graph to a split graph or a tree Petr A. Golovach 1, Marcin Kamiński 2, and Daniël Paulusma 1 1 School of Engineering and Computing Sciences, Durham University, Science Laboratories,

More information

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst Phylogenetics Introduction to Bioinformatics Dortmund, 16.-20.07.2007 Lectures: Sven Rahmann Exercises: Udo Feldkamp, Michael Wurst 1 Phylogenetics phylum = tree phylogenetics: reconstruction of evolutionary

More information

Faster Dynamic Algorithms for Chordal Graphs, and an Application to Phylogeny

Faster Dynamic Algorithms for Chordal Graphs, and an Application to Phylogeny Faster Dynamic lgorithms for Chordal Graphs, and an pplication to Phylogeny nne Berry 1, lain Sigayret 1, and Jeremy Spinrad 2 1 LIMOS UMR, bat. ISIM, 63173 ubière cedex, France. berry@isima.fr, sigayret@isima.fr

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras What is it to be Perfect? Introduced by Claude Berge in early 1960s Coloring number and clique number are one and the same for all induced

More information

Learning decomposable models with a bounded clique size

Learning decomposable models with a bounded clique size Learning decomposable models with a bounded clique size Achievements 2014-2016 Aritz Pérez Basque Center for Applied Mathematics Bilbao, March, 2016 Outline 1 Motivation and background 2 The problem 3

More information

Evolution of Tandemly Repeated Sequences

Evolution of Tandemly Repeated Sequences University of Canterbury Department of Mathematics and Statistics Evolution of Tandemly Repeated Sequences A thesis submitted in partial fulfilment of the requirements of the Degree for Master of Science

More information

A Decomposition for Chordal graphs and Applications

A Decomposition for Chordal graphs and Applications A Decomposition for Chordal graphs and Applications Michel Habib Joint work with Vincent Limouzy and Juraj Stacho Pretty Structure, Existencial Polytime Jack Edmonds Birthday, 7-9 april 2009 Schedule Chordal

More information

On the Optimality of the Neighbor Joining Algorithm

On the Optimality of the Neighbor Joining Algorithm On the Optimality of the Neighbor Joining Algorithm Ruriko Yoshida Dept. of Statistics University of Kentucky Joint work with K. Eickmeyer, P. Huggins, and L. Pachter www.ms.uky.edu/ ruriko Louisville

More information

Alignment of Trees and Directed Acyclic Graphs

Alignment of Trees and Directed Acyclic Graphs Alignment of Trees and Directed Acyclic Graphs Gabriel Valiente Algorithms, Bioinformatics, Complexity and Formal Methods Research Group Technical University of Catalonia Computational Biology and Bioinformatics

More information

Graphs Representable by Caterpillars. Nancy Eaton

Graphs Representable by Caterpillars. Nancy Eaton Graphs Representable by Caterpillars Nancy Eaton Definition 1. A caterpillar is a tree in which a single path (the spine) is incident to (or contains) every edge. 1 2 Graphs Representable by Caterpillars

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

Some results on Interval probe graphs

Some results on Interval probe graphs Some results on Interval probe graphs In-Jen Lin and C H Wu Department of Computer science Science National Taiwan Ocean University, Keelung, Taiwan ijlin@mail.ntou.edu.tw Abstract Interval Probe Graphs

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges UITS Journal Volume: Issue: 2 ISSN: 2226-32 ISSN: 2226-328 Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges Muhammad Golam Kibria Muhammad Oarisul Hasan Rifat 2 Md. Shakil Ahamed

More information

The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs

The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs Theoretical Computer Science 244 (2000) 167 188 www.elsevier.com/locate/tcs The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs Hans L. Bodlaender

More information

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1 DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens Katherine St. John City University of New York 1 Thanks to the DIMACS Staff Linda Casals Walter Morris Nicole Clark Katherine St. John

More information

A note on Baker s algorithm

A note on Baker s algorithm A note on Baker s algorithm Iyad A. Kanj, Ljubomir Perković School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301. Abstract We present a corrected version of Baker s algorithm

More information

Vertical decomposition of a lattice using clique separators

Vertical decomposition of a lattice using clique separators Vertical decomposition of a lattice using clique separators Anne Berry, Romain Pogorelcnik, Alain Sigayret LIMOS UMR CNRS 6158 Ensemble Scientifique des Cézeaux Université Blaise Pascal, F-63 173 Aubière,

More information

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau Phylogenetic Trees Lecture 12 Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau. Maximum Parsimony. Last week we presented Fitch algorithm for (unweighted) Maximum Parsimony:

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Enumeration of Perfect Sequences in Chordal Graphs

Enumeration of Perfect Sequences in Chordal Graphs Enumeration of Perfect Sequences in Chordal Graphs Yasuko Matsui, Ryuhei Uehara, Takeaki Uno Center for Computational Epidemiology and Response Analysis University of North Texas May 4, 20 (CeCERA) GSCM

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

Introduction to Computational Phylogenetics

Introduction to Computational Phylogenetics Introduction to Computational Phylogenetics Tandy Warnow The University of Texas at Austin No Institute Given This textbook is a draft, and should not be distributed. Much of what is in this textbook appeared

More information

The Performance of Phylogenetic Methods on Trees of Bounded Diameter

The Performance of Phylogenetic Methods on Trees of Bounded Diameter The Performance of Phylogenetic Methods on Trees of Bounded Diameter Luay Nakhleh 1, Usman Roshan 1, Katherine St. John 1 2, Jerry Sun 1, and Tandy Warnow 1 3 1 Department of Computer Sciences, University

More information

On Structural Parameterizations of the Matching Cut Problem

On Structural Parameterizations of the Matching Cut Problem On Structural Parameterizations of the Matching Cut Problem N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad,

More information

Deciding k-colorability of P 5 -free graphs in polynomial time

Deciding k-colorability of P 5 -free graphs in polynomial time Deciding k-colorability of P 5 -free graphs in polynomial time Chính T. Hoàng Marcin Kamiński Vadim Lozin Joe Sawada Xiao Shu April 16, 2008 Abstract The problem of computing the chromatic number of a

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Preprocessing for treewidth

Preprocessing for treewidth Preprocessing for treewidth Bodlaender, H.L.; Jansen, B.M.P.; Kratsch, S. Published in: arxiv Published: 21/04/2011 Please check the document version of this publication: A submitted manuscript is the

More information

On Exploring Temporal Graphs of Small Pathwidth

On Exploring Temporal Graphs of Small Pathwidth On Exploring Temporal Graphs of Small Pathwidth Hans L. Bodlaender Tom C. van der Zanden arxiv:1807.11869v1 [cs.ds] 31 Jul 2018 Abstract We show that the Temporal Graph Exploration Problem is NP-complete,

More information

arxiv: v1 [math.co] 20 Nov 2018

arxiv: v1 [math.co] 20 Nov 2018 A remark on the characterization of triangulated graphs arxiv:1811.08411v1 [math.co] 20 Nov 2018 R. GARGOURI a H. NAJAR b a Taibah University, College of Sciences, Department of Mathematics Madinah, Saudi

More information

Chordal graphs and the characteristic polynomial

Chordal graphs and the characteristic polynomial Discrete Mathematics 262 (2003) 211 219 www.elsevier.com/locate/disc Chordal graphs and the characteristic polynomial Elizabeth W. McMahon ;1, Beth A. Shimkus 2, Jessica A. Wolfson 3 Department of Mathematics,

More information

Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics

Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics Interval Graphs Joyce C. Yang Nicholas Pippenger, Advisor Arthur T. Benjamin, Reader Department of Mathematics May, 2016 Copyright c 2016 Joyce C. Yang. The author grants Harvey Mudd College and the Claremont

More information

The History Bound and ILP

The History Bound and ILP The History Bound and ILP Julia Matsieva and Dan Gusfield UC Davis March 15, 2017 Bad News for Tree Huggers More Bad News Far more convincingly even than the (also highly convincing) fossil evidence, the

More information

Exponential time algorithms for the minimum dominating set problem on some graph classes

Exponential time algorithms for the minimum dominating set problem on some graph classes Exponential time algorithms for the minimum dominating set problem on some graph classes Serge Gaspers University of Bergen Department of Informatics N-500 Bergen, Norway. gaspers@ii.uib.no Dieter Kratsch

More information

Recent Research Results. Evolutionary Trees Distance Methods

Recent Research Results. Evolutionary Trees Distance Methods Recent Research Results Evolutionary Trees Distance Methods Indo-European Languages After Tandy Warnow What is the purpose? Understand evolutionary history (relationship between species). Uderstand how

More information

Conflict Graphs for Combinatorial Optimization Problems

Conflict Graphs for Combinatorial Optimization Problems Conflict Graphs for Combinatorial Optimization Problems Ulrich Pferschy joint work with Andreas Darmann and Joachim Schauer University of Graz, Austria Introduction Combinatorial Optimization Problem CO

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

The worst case complexity of Maximum Parsimony

The worst case complexity of Maximum Parsimony he worst case complexity of Maximum Parsimony mir armel Noa Musa-Lempel Dekel sur Michal Ziv-Ukelson Ben-urion University June 2, 20 / 2 What s a phylogeny Phylogenies: raph-like structures whose topology

More information

Chordal graphs MPRI

Chordal graphs MPRI Chordal graphs MPRI 2017 2018 Michel Habib habib@irif.fr http://www.irif.fr/~habib Sophie Germain, septembre 2017 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

Lecture 11: May 1, 2000

Lecture 11: May 1, 2000 / EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2000 Lecturer: Jeff Bilmes Lecture 11: May 1, 2000 University of Washington Dept. of Electrical Engineering Scribe: David Palmer 11.1 Graph

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

A Lookahead Branch-and-Bound Algorithm for the Maximum Quartet Consistency Problem

A Lookahead Branch-and-Bound Algorithm for the Maximum Quartet Consistency Problem A Lookahead Branch-and-Bound Algorithm for the Maximum Quartet Consistency Problem Gang Wu Jia-Huai You Guohui Lin January 17, 2005 Abstract A lookahead branch-and-bound algorithm is proposed for solving

More information

INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS

INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS M. S. BAYZID, S. MIRARAB and T. WARNOW Department of Computer Science, The University of Texas at Austin, Austin, Texas 78712, USA E-mail:

More information

University of Alberta

University of Alberta University of Alberta STRICTLY CHORDAL GRAPHS AND PHYLOGENETIC ROOTS by William Kennedy A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for

More information

SEEING THE TREES AND THEIR BRANCHES IN THE NETWORK IS HARD

SEEING THE TREES AND THEIR BRANCHES IN THE NETWORK IS HARD 1 SEEING THE TREES AND THEIR BRANCHES IN THE NETWORK IS HARD I A KANJ School of Computer Science, Telecommunications, and Information Systems, DePaul University, Chicago, IL 60604-2301, USA E-mail: ikanj@csdepauledu

More information

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes J.-F. Couturier 1 P. Heggernes 2 D. Kratsch 1 P. van t Hof 2 1 LITA Université de Lorraine F-57045 Metz France 2 University

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs

Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Graph Isomorphism Completeness for Chordal bipartite graphs and Strongly Chordal Graphs Ryuhei Uehara a Seinosuke Toda b Takayuki Nagoya c a Natural Science Faculty, Komazawa University. 1 b Department

More information

Fast, Effective Vertex Cover Kernelization: A Tale of Two Algorithms

Fast, Effective Vertex Cover Kernelization: A Tale of Two Algorithms Fast, Effective Vertex Cover Kernelization: A Tale of Two Algorithms Faisal N. Abu-Khzam Division of Computer Science and Mathematics Lebanese American University Beirut, Lebanon faisal.abukhzam@lau.edu.lb

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information

Kirchhoff's theorem. Contents. An example using the matrix-tree theorem

Kirchhoff's theorem. Contents. An example using the matrix-tree theorem Kirchhoff's theorem From Wikipedia, the free encyclopedia In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about

More information

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300)

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300) Evolution Module 6.1 Phylogenetic Trees Bob Gardner and Lev Yampolski Integrated Biology and Discrete Math (IBMS 1300) Fall 2008 1 INDUCTION Note. The natural numbers N is the familiar set N = {1, 2, 3,...}.

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

Approximation Schemes for Planar Graph Problems (1983, 1994; Baker)

Approximation Schemes for Planar Graph Problems (1983, 1994; Baker) Approximation Schemes for Planar Graph Problems (1983, 1994; Baker) Erik D. Demaine, MIT, theory.csail.mit.edu/ edemaine MohammadTaghi Hajiaghayi, MIT, www.mit.edu/ hajiagha INDEX TERMS: approximation

More information

Fast Skew Partition Recognition

Fast Skew Partition Recognition Fast Skew Partition Recognition William S. Kennedy 1, and Bruce Reed 2, 1 Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A2K6 kennedy@math.mcgill.ca 2 School of Computer

More information

A taste of perfect graphs (continued)

A taste of perfect graphs (continued) A taste of perfect graphs (continued) Recall two theorems from last class characterizing perfect graphs (and that we observed that the α ω theorem implied the Perfect Graph Theorem). Perfect Graph Theorem.

More information

Dynamic Distance Hereditary Graphs Using Split Decomposition

Dynamic Distance Hereditary Graphs Using Split Decomposition Dynamic Distance Hereditary Graphs Using Split Decomposition Emeric Gioan Christophe Paul LIRMM Research Report 07007 March 19, 2007 Abstract The problem of maintaining a representation of a dynamic graph

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

Computational Complexity of Inferring Phylogenies from Chromosome Inversion Datat

Computational Complexity of Inferring Phylogenies from Chromosome Inversion Datat J. theor. Biol. (1987) 124, 213-218 Computational Complexity of Inferring Phylogenies from Chromosome Inversion Datat WILLIAM H. E. DAY:~ AND DAVID SANKOFF Centre de recherches mathdmatiques, Universitd

More information