Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Size: px
Start display at page:

Download "Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics"

Transcription

1 Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

2 eading! equired:! Watt, sections , 14.7! Further reading:! A. Glassner. An Introduction to ay Tracing. Academic Press, [In the lab.] University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

3 Aliasing in rendering! One of the most common rendering artifacts is the jaggies. Consider rendering a white polygon against a black background:! We would instead like to get a smoother transition: University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

4 Anti-aliasing! Q: How do we avoid aliasing artifacts? 1. Sampling: 2. Pre-filtering: 3. Combination:! Example - polygon: University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

5 Polygon anti-aliasing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

6 Antialiasing in a ray tracer! We would like to compute the average intensity in the neighborhood of each pixel.! When casting one ray per pixel, we are likely to have aliasing artifacts.! To improve matters, we can cast more than one ray per pixel and average the result.! A.k.a., super-sampling and averaging down. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

7 Speeding it up! Vanilla ray tracing is really slow!! Consider: m x m pixels, k x k supersampling, and n primitives, average ray path length of d, with 2 rays cast recursively per intersection.! Complexity =! For m=1,000,000, k = 5, n = 100,000, d=8 very expensive!!! In practice, some acceleration technique is almost always used.! We ve already looked at reducing d with adaptive ray termination.! Now we look at reducing the effect of the k and n terms. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

8 Antialiasing by adaptive sampling! Casting many rays per pixel can be unnecessarily costly.! For example, if there are no rapid changes in intensity at the pixel, maybe only a few samples are needed.! Solution: adaptive sampling.! Q: When do we decide to cast more rays in a particular area? University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

9 Faster ray-polyhedron intersection! Let s say you were intersecting a ray with a polyhedron:! Straightforward method! intersect the ray with each triangle! return the intersection with the smallest t-value.! Q: How might you speed this up? University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

10 ay Tracing Acceleration Techniques Approaches Faster Intersection Fewer ays Generalized ays N 1 Uniform grids Spatial hierarchies k-d, oct-tree, bsp hierarchical grids Hierarchical bounding volumes (HBV) Tighter bounds Faster intersector Early ray termination Adaptive sampling Beam tracing Cone tracing Pencil tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

11 Uniform spatial subdivision! Another approach is uniform spatial subdivision.! Idea:! Partition space into cells (voxels)! Associate each primitive with the cells it overlaps! Trace ray through voxel array using fast incremental arithmetic to step from cell to cell University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

12 Uniform Grids! Preprocess scene! Find bounding box University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

13 Uniform Grids! Preprocess scene! Find bounding box! Determine resolution n = n n n n v x y z o max( n, n, n ) = d n 3 x y z o University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

14 Uniform Grids! Preprocess scene! Find bounding box! Determine resolution! Place object in cell, if object overlaps cell max( n, n, n ) = d n 3 x y z o University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

15 Uniform Grids! Preprocess scene! Find bounding box! Determine resolution! Place object in cell, if object overlaps cell! Check that object intersects cell max( n, n, n ) = d n 3 x y z o University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

16 Uniform Grids! Preprocess scene! Traverse grid 3D line 3D-DDA 6-connected line University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

17 Caveat: Overlap! Optimize for objects that overlap multiple cells! Traverse until tmin(cell) > tmax(ray)! Problem: edundant intersection tests:! Solution: Mailboxes! Assign each ray an increasing number! Primitive intersection cache (mailbox)! Store last ray number tested in mailbox! Only intersect if ray number is greater University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

18 Non-uniform spatial subdivision! Still another approach is non-uniform spatial subdivision.! Other variants include k-d trees and BSP trees.! Various combinations of these ray intersections techniques are also possible. See Glassner and pointers at bottom of project web page for more. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

19 Non-uniform spatial subdivision! Best partitioning approach - k-d trees or perhaps BSP trees! More adaptive to actual scene structure! BSP vs. k-d tradeoff between speed from simplicity and better adaptability! Non-partitioning approach! Hierarchical bounding volumes! Build similar to k-d tree build University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

20 Kd-tree - Build The University of Texas at Austin Department of Computer Science Don Fussell 20

21 Kd-tree L The University of Texas at Austin Department of Computer Science Don Fussell 21

22 Kd-tree L L The University of Texas at Austin Department of Computer Science Don Fussell 22

23 Kd-tree L L L The University of Texas at Austin Department of Computer Science Don Fussell 23

24 Kd-tree L LL L L L The University of Texas at Austin Department of Computer Science Don Fussell 24

25 Kd-tree L LL L L LLL LL L The University of Texas at Austin Department of Computer Science Don Fussell 25

26 Kd-tree L LL L L LLL LL L LLLL LLL The University of Texas at Austin Department of Computer Science Don Fussell 26

27 Kd-tree L LL L L LLL LL LL L L LLLL LLL The University of Texas at Austin Department of Computer Science Don Fussell 27

28 Kd-tree L LL L L LLL LL LL LL L L LLLL LLL LLL The University of Texas at Austin Department of Computer Science Don Fussell 28

29 Kd-tree L LL L L LLL LL LL LL L L LLLL LLL LLL LLL LL The University of Texas at Austin Department of Computer Science Don Fussell 29

30 Surface Area and ays! Number of rays in a given direction that hit an! object is proportional to its projected area A! The total number of rays hitting an object is! Crofton s Theorem: S! For a convex body A =! For example: sphere 4 4π A S = 4π r 2 A = A = πr 2 University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

31 Surface Area and ays! The probability of a ray hitting a convex shape! that is completely inside a convex cell equals S c S o S Pr[ r S r S ] = o o c S c University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 31

32 Surface Area Heuristic Intersection time t i Traversal time t t a b t i = 80t t C = t + p N t + p N t t a a i b b i University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 32

33 Surface Area Heuristic 2n splits a b p a S = a p = b b S S S University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 33

34 ay Traversal Kernel Depth first traversal t max t * t * t min t max < t * t < t* < t min max t* < t * t min Intersect(L,tmin,tmax) Intersect(L,tmin,t*) Intersect(,t*,tmax) Intersect(,tmin,tmax) The University of Texas at Austin Department of Computer Science Don Fussell 34

35 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: oot LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 35

36 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: L LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 36

37 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: LL LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 37

38 Kd-tree - Traversal L Stack: LL, LLL LL LL LL L L Current: LLL LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 38

39 Kd-tree - Traversal L Stack: LL, LLL LL LL LL L L Current: LLL LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 39

40 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: LLL LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 40

41 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 41

42 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: L LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 42

43 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 43

44 Kd-tree - Traversal L Stack: LLL LL LL LL L L Current: LLLL LLL LLL LLL LL L LL L The University of Texas at Austin Department of Computer Science Don Fussell 44

45 Kd-tree - Traversal L LL L L LLL LL LL LL L L LLLL LLL LLL LLL LL The University of Texas at Austin Department of Computer Science Don Fussell 45

46 Variations kd-tree oct-tree bsp-tree University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 46

47 Hierarchical bounding volumes! We can generalize the idea of bounding volume acceleration with hierarchical bounding volumes.! Key: build balanced trees with tight bounding volumes. Many different kinds of bounding volumes. Note that bounding volumes can overlap. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 47

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 457 Autumn 2017

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 457 Autumn 2017 Anti-aliasing and Monte Carlo Path Tracing Brian Curless CSE 457 Autumn 2017 1 Reading Required: Marschner and Shirley, Section 13.4 (online handout) Further reading: Pharr, Jakob, and Humphreys, Physically

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 557 Autumn 2017

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 557 Autumn 2017 Anti-aliasing and Monte Carlo Path Tracing Brian Curless CSE 557 Autumn 2017 1 Reading Required: Marschner and Shirley, Section 13.4 (online handout) Pharr, Jakob, and Humphreys, Physically Based Ray Tracing:

More information

Anti-aliasing and Monte Carlo Path Tracing

Anti-aliasing and Monte Carlo Path Tracing Reading Required: Anti-aliasing and Monte Carlo Path Tracing Brian Curless CSE 557 Autumn 2017 Marschner and Shirley, Section 13.4 (online handout) Pharr, Jakob, and Humphreys, Physically Based Ray Tracing:

More information

Accelerating Ray Tracing

Accelerating Ray Tracing Accelerating Ray Tracing Ray Tracing Acceleration Techniques Faster Intersections Fewer Rays Generalized Rays Faster Ray-Object Intersections Object bounding volumes Efficient intersection routines Fewer

More information

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects Topics Ray Tracing II CS 4620 Lecture 16 Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Ray Tracing Acceleration. CS 4620 Lecture 20

Ray Tracing Acceleration. CS 4620 Lecture 20 Ray Tracing Acceleration CS 4620 Lecture 20 2013 Steve Marschner 1 Will this be on the exam? or, Prelim 2 syllabus You can expect emphasis on topics related to the assignment (Shaders 1&2) and homework

More information

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11. Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

More information

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects Topics Ray Tracing II CS 4620 ations in ray tracing ing objects ation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies Uniform spatial subdivision Adaptive spatial

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 2, 3, 4 of Physically Based Rendering by Pharr&Humphreys An Introduction to Ray tracing by Glassner Topics today

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline Computer Graphics (Fall 2008) COMS 4160, Lecture 15: Ray Tracing http://www.cs.columbia.edu/~cs4160 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water, Glass)

More information

Last Time: Acceleration Data Structures for Ray Tracing. Schedule. Today. Shadows & Light Sources. Shadows

Last Time: Acceleration Data Structures for Ray Tracing. Schedule. Today. Shadows & Light Sources. Shadows Last Time: Acceleration Data Structures for Ray Tracing Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Ray Tracing Acceleration. CS 4620 Lecture 22

Ray Tracing Acceleration. CS 4620 Lecture 22 Ray Tracing Acceleration CS 4620 Lecture 22 2014 Steve Marschner 1 Topics Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand overall algorithm of recursive ray tracing Ray generations Intersection

More information

Ray Tracing: Intersection

Ray Tracing: Intersection Computer Graphics as Virtual Photography Ray Tracing: Intersection Photography: real scene camera (captures light) photo processing Photographic print processing Computer Graphics: 3D models camera tone

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration Image Synthesis Torsten Möller Reading Physically Based Rendering by Pharr&Humphreys Chapter 2 - rays and transformations Chapter 3 - shapes Chapter 4 - intersections and

More information

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 37 Ray Tracing 1 Announcements Review session Tuesday 7-9, Phillips 101 Posted notes on slerp and perspective-correct texturing Prelim on Thu in B17 at 7:30pm 2 Basic ray tracing Basic

More information

Reading Ray Intersection Chapter 2: Geometry and Transformations Acceleration Covers basic math and PBRT implementation: read on your own

Reading Ray Intersection Chapter 2: Geometry and Transformations Acceleration Covers basic math and PBRT implementation: read on your own eading ay Intersection Acceleration eadings Chapter 2 Geometry & Transformations Chapter 3 Shapes Chapter 4 rimitives & Intersection Acceleration Covers basic math and BT implementation: read on your own

More information

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information

CS 431/636 Advanced Rendering Techniques

CS 431/636 Advanced Rendering Techniques CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012)

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012) Foundations of omputer Graphics (Spring 202) S 84, Lecture 5: Ray Tracing http://inst.eecs.berkeley.edu/~cs84 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits CS 586/480 Computer Graphics II Dr. David Breen Matheson 408 Thursday 6PM Æ 8:50PM Presentation 4 10/28/04 Logistics Read research paper and prepare summary and question P. Hanrahan, "Ray Tracing Algebraic

More information

Ray Genealogy. Raytracing: Performance. Bounding Volumes. Bounding Volume. Acceleration Classification. Acceleration Classification

Ray Genealogy. Raytracing: Performance. Bounding Volumes. Bounding Volume. Acceleration Classification. Acceleration Classification Raytracing: Performance OS 4328/5327 Scott. King Ray Genealogy 1 Ray/pixel at 1k 1k image = 1M? rays rays. Say on avg. 6 secondary rays = 7M?rays rays 100k objects with 10 ops for intersection =? Operations

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Advanced Ray Tracing

Advanced Ray Tracing Advanced Ray Tracing Thanks to Fredo Durand and Barb Cutler The Ray Tree Ni surface normal Ri reflected ray Li shadow ray Ti transmitted (refracted) ray 51 MIT EECS 6.837, Cutler and Durand 1 Ray Tree

More information

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing with Spatial Hierarchies Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing Flexible, accurate, high-quality rendering Slow Simplest ray tracer: Test every ray against every object in the scene

More information

Ray-tracing Acceleration. Acceleration Data Structures for Ray Tracing. Shadows. Shadows & Light Sources. Antialiasing Supersampling.

Ray-tracing Acceleration. Acceleration Data Structures for Ray Tracing. Shadows. Shadows & Light Sources. Antialiasing Supersampling. Ray-tracing Acceleration Acceleration Data Structures for Ray Tracing Thanks to Fredo Durand and Barb Cutler Soft shadows Antialiasing (getting rid of jaggies) Glossy reflection Motion blur Depth of field

More information

CS559: Computer Graphics. Lecture 12: Antialiasing & Visibility Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: Antialiasing & Visibility Li Zhang Spring 2008 CS559: Computer Graphics Lecture 12: Antialiasing & Visibility Li Zhang Spring 2008 Antialising Today Hidden Surface Removal Reading: Shirley ch 3.7 8 OpenGL ch 1 Last time A 2 (x 0 y 0 ) (x 1 y 1 ) P

More information

Acceleration Structures. CS 6965 Fall 2011

Acceleration Structures. CS 6965 Fall 2011 Acceleration Structures Run Program 1 in simhwrt Lab time? Program 2 Also run Program 2 and include that output Inheritance probably doesn t work 2 Boxes Axis aligned boxes Parallelepiped 12 triangles?

More information

VIII. Visibility algorithms (II)

VIII. Visibility algorithms (II) VIII. Visibility algorithms (II) Hybrid algorithsms: priority list algorithms Find the object visibility Combine the operations in object space (examples: comparisons and object partitioning) with operations

More information

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL: CS580: Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Recursive Ray Casting Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could

More information

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II Computer Graphics - Ray-Tracing II - Hendrik Lensch Overview Last lecture Ray tracing I Basic ray tracing What is possible? Recursive ray tracing algorithm Intersection computations Today Advanced acceleration

More information

improving raytracing speed

improving raytracing speed ray tracing II computer graphics ray tracing II 2006 fabio pellacini 1 improving raytracing speed computer graphics ray tracing II 2006 fabio pellacini 2 raytracing computational complexity ray-scene intersection

More information

Computer Graphics. - Spatial Index Structures - Philipp Slusallek

Computer Graphics. - Spatial Index Structures - Philipp Slusallek Computer Graphics - Spatial Index Structures - Philipp Slusallek Overview Last lecture Overview of ray tracing Ray-primitive intersections Today Acceleration structures Bounding Volume Hierarchies (BVH)

More information

Today. Acceleration Data Structures for Ray Tracing. Cool results from Assignment 2. Last Week: Questions? Schedule

Today. Acceleration Data Structures for Ray Tracing. Cool results from Assignment 2. Last Week: Questions? Schedule Today Acceleration Data Structures for Ray Tracing Cool results from Assignment 2 Last Week: koi seantek Ray Tracing Shadows Reflection Refraction Local Illumination Bidirectional Reflectance Distribution

More information

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration Speeding Up Ray Tracing nthony Steed 1999, eline Loscos 2005, Jan Kautz 2007-2009 Optimisations Limit the number of rays Make the ray test faster for shadow rays the main drain on resources if there are

More information

Ray Tracing. Outline. Ray Tracing: History

Ray Tracing. Outline. Ray Tracing: History Foundations of omputer Graphics Online Lecture 9: Ray Tracing 1 History and asic Ray asting Ravi Ramamoorthi Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Motivation. Sampling and Reconstruction of Visual Appearance. Effects needed for Realism. Ray Tracing. Outline

Motivation. Sampling and Reconstruction of Visual Appearance. Effects needed for Realism. Ray Tracing. Outline Sampling and Reconstruction of Visual Appearance CSE 274 [Fall 2018], Special Lecture Ray Tracing Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation Ray Tracing is a core aspect of both offline

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li Parallel Physically Based Path-tracing and Shading Part 3 of 2 CIS565 Fall 202 University of Pennsylvania by Yining Karl Li Jim Scott 2009 Spatial cceleration Structures: KD-Trees *Some portions of these

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

A Model to Evaluate Ray Tracing Hierarchies

A Model to Evaluate Ray Tracing Hierarchies A Model to Evaluate Ray Tracing Hierarchies K. R. Subramanian Donald Fussell Department of Computer Sciences The University of Texas at Austin 1 Introduction In this article we develop a model to evaluate

More information

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project To do Continue to work on ray programming assignment Start thinking about final project Lighting Course Outline 3D Graphics Pipeline Modeling (Creating 3D Geometry) Mesh; modeling; sampling; Interaction

More information

Ray Casting. Outline in Code. Outline. Finding Ray Direction. Heckbert s Business Card Ray Tracer. Foundations of Computer Graphics (Fall 2012)

Ray Casting. Outline in Code. Outline. Finding Ray Direction. Heckbert s Business Card Ray Tracer. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 17, 18: Nuts and bolts of Ray Tracing Heckbert s Business Card Ray Tracer http://inst.eecs.berkeley.edu/~cs184 Acknowledgements: Thomas Funkhouser

More information

Lecture 2 - Acceleration Structures

Lecture 2 - Acceleration Structures INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 2 - Acceleration Structures Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Problem Analysis

More information

Lecture 11: Ray tracing (cont.)

Lecture 11: Ray tracing (cont.) Interactive Computer Graphics Ray tracing - Summary Lecture 11: Ray tracing (cont.) Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Ray tracing -

More information

Distribution Ray Tracing

Distribution Ray Tracing Reading Required: Distribution Ray Tracing Brian Curless CSE 557 Fall 2015 Shirley, 13.11, 14.1-14.3 Further reading: A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.] Robert

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

Bounding Volume Hierarchies. CS 6965 Fall 2011

Bounding Volume Hierarchies. CS 6965 Fall 2011 Bounding Volume Hierarchies 2 Heightfield 3 C++ Operator? #include int main() { int x = 10; while( x --> 0 ) // x goes to 0 { printf("%d ", x); } } stackoverflow.com/questions/1642028/what-is-the-name-of-this-operator

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Distribution Ray Tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Distribution Ray Tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Distribution Ray Tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 10.6,14.8. Further reading: A. Glassner. An Introduction to Ray

More information

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Topic 11: Photographs Texture Mapping Motivation Sources of texture Texture coordinates

More information

Advanced 3D-Data Structures

Advanced 3D-Data Structures Advanced 3D-Data Structures Eduard Gröller, Martin Haidacher Institute of Computer Graphics and Algorithms Vienna University of Technology Motivation For different data sources and applications different

More information

Ray Casting. To Do. Outline. Outline in Code. Foundations of Computer Graphics (Spring 2012) Heckbert s Business Card Ray Tracer

Ray Casting. To Do. Outline. Outline in Code. Foundations of Computer Graphics (Spring 2012) Heckbert s Business Card Ray Tracer Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 16, 18: Nuts and bolts of Ray Tracing To Do Finish homework 3 Prepare for Midterm (Monday) Everything before this week (no raytracing) Closed

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

CPSC GLOBAL ILLUMINATION

CPSC GLOBAL ILLUMINATION CPSC 314 21 GLOBAL ILLUMINATION Textbook: 20 UGRAD.CS.UBC.CA/~CS314 Mikhail Bessmeltsev ILLUMINATION MODELS/ALGORITHMS Local illumination - Fast Ignore real physics, approximate the look Interaction of

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Row Tracing with Hierarchical Occlusion Maps

Row Tracing with Hierarchical Occlusion Maps Row Tracing with Hierarchical Occlusion Maps Ravi P. Kammaje, Benjamin Mora August 9, 2008 Page 2 Row Tracing with Hierarchical Occlusion Maps Outline August 9, 2008 Introduction Related Work Row Tracing

More information

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Raytracing Global illumination-based rendering method Simulates

More information

Ray Casting. 3D Rendering. Ray Casting. Ray Casting. Ray Casting. Ray Casting

Ray Casting. 3D Rendering. Ray Casting. Ray Casting. Ray Casting. Ray Casting Rendering Ray asting The color of each pixel on the view plane depends on the radiance emanating from visible surfaces dam inkelstein rinceton University OS 6, Spring 00 Simplest method is ray casting

More information

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Visible Surface Detection Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Two approaches: 1. Object space methods 2. Image

More information

Ray Tracing. Foley & Van Dam, Chapters 15 and 16

Ray Tracing. Foley & Van Dam, Chapters 15 and 16 Ray Tracing Foley & Van Dam, Chapters 15 and 16 Ray Tracing Visible Surface Ray Tracing (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Ray Tracing Determine visibility

More information

Ray Tracing Foley & Van Dam, Chapters 15 and 16

Ray Tracing Foley & Van Dam, Chapters 15 and 16 Foley & Van Dam, Chapters 15 and 16 (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Determine visibility of a surface by tracing rays of light from the viewer s eye

More information

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity Today Anti-aliasing Surface Parametrization Soft Shadows Global Illumination Path Tracing Radiosity Exercise 2 Sampling Ray Casting is a form of discrete sampling. Rendered Image: Sampling of the ground

More information

CS 4620 Program 4: Ray II

CS 4620 Program 4: Ray II CS 4620 Program 4: Ray II out: Tuesday 11 November 2008 due: Tuesday 25 November 2008 1 Introduction In the first ray tracing assignment you built a simple ray tracer that handled just the basics. In this

More information

Graphics 2009/2010, period 1. Lecture 8: ray tracing

Graphics 2009/2010, period 1. Lecture 8: ray tracing Graphics 2009/2010, period 1 Lecture 8 Ray tracing Original plan Finish the basic stuff (book ch 1-9) today: We will not look into signal processing (chapter 4) We will look at triangle rasterization (cf.

More information

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1 Ray tracing Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 3/19/07 1 From last time Hidden surface removal Painter s algorithm Clipping algorithms Area subdivision BSP trees Z-Buffer

More information

11 - Spatial Data Structures

11 - Spatial Data Structures 11 - Spatial Data Structures cknowledgement: Marco Tarini Types of Queries Graphic applications often require spatial queries Find the k points closer to a specific point p (k-nearest Neighbours, knn)

More information

Distribution Ray-Tracing. Programação 3D Simulação e Jogos

Distribution Ray-Tracing. Programação 3D Simulação e Jogos Distribution Ray-Tracing Programação 3D Simulação e Jogos Bibliography K. Suffern; Ray Tracing from the Ground Up, http://www.raytracegroundup.com Chapter 4, 5 for Anti-Aliasing Chapter 6 for Disc Sampling

More information

Ray Casting of Trimmed NURBS Surfaces on the GPU

Ray Casting of Trimmed NURBS Surfaces on the GPU Ray Casting of Trimmed NURBS Surfaces on the GPU Hans-Friedrich Pabst Jan P. Springer André Schollmeyer Robert Lenhardt Christian Lessig Bernd Fröhlich Bauhaus University Weimar Faculty of Media Virtual

More information

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin Visible-Surface Detection Methods Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin The Visibility Problem [Problem Statement] GIVEN: a set of 3-D surfaces, a projection from 3-D to 2-D screen,

More information

CS 465 Program 5: Ray II

CS 465 Program 5: Ray II CS 465 Program 5: Ray II out: Friday 2 November 2007 due: Saturday 1 December 2007 Sunday 2 December 2007 midnight 1 Introduction In the first ray tracing assignment you built a simple ray tracer that

More information

Ray Casting. COS 426, Spring 2015 Princeton University

Ray Casting. COS 426, Spring 2015 Princeton University Ray Casting COS 426, Spring 2015 Princeton University Ray Casting The color of each pixel on the view plane depends on the radiance emanating along rays from visible surfaces in scene Light Surfaces Camera

More information

Lecture 11. More Ray Casting/Tracing

Lecture 11. More Ray Casting/Tracing Lecture 11 More Ray Casting/Tracing Basic Algorithm For each pixel { } Shoot a ray from camera to pixel for all objects in scene Compute intersection with ray Find object with closest intersection Display

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz Computing Visibility BSP Trees Ray Casting Depth Buffering Quiz Power of Plane Equations We ve gotten a lot of mileage out of one simple equation. Basis for D outcode-clipping Basis for plane-at-a-time

More information

Point based Rendering

Point based Rendering Point based Rendering CS535 Daniel Aliaga Current Standards Traditionally, graphics has worked with triangles as the rendering primitive Triangles are really just the lowest common denominator for surfaces

More information