Accelerating Ray Tracing

Size: px
Start display at page:

Download "Accelerating Ray Tracing"

Transcription

1 Accelerating Ray Tracing Ray Tracing Acceleration Techniques Faster Intersections Fewer Rays Generalized Rays Faster Ray-Object Intersections Object bounding volumes Efficient intersection routines Fewer Ray-Object Intersections Bounding volume hierarchies Frustum culling Space subdivision Directional techniques Adaptive tree depth Statistical optimizations Beam tracing Cone tracing Pencil tracing from Arvo and Kirk, A Survey of Raytracing Acceleration Techniques. In Glassner, ed., An Introduction to Ray Tracing 1

2 Bounding Volumes Simple volume description guaranteed to contain a more complex volume description Test ray against more complex primitive only if it intersects bounding volume Increases time for hits, but reduces time when ray misses bounding volume Provide bounds on interval of intersection Bounding Volume Examples Sphere Axis-Aligned Bounding Box Oriented Bounding Box General Slab Intersection 2

3 Bounding Volume Hierarchies Cluster bounding volumes hierarchically Only intersect ray with child volume if it intersects parent Reduces number of ray-volume and rayobject intersection tests Bounding Volume Hierarchy Example 3

4 Bounding Volume Tree Computing Hierarchies Top-down Bottom-up Minimize volume/surface area Computing good hierarchies is difficult 4

5 Space Partitioning Break model space into chunks Pre-compute which objects overlap each chunk Trace rays through chunks Only intersect rays with objects stored in current chunk Typically only allow each ray-object intersection once (not in multiple chunks) Types of Space Partitions Uniform Octree K-d tree BSP Tree 5

6 Tracing through a Space Partition Incrementally trace along ray, walk from partition to partition difficult except for uniform partition other partitions may require augmented data structures Top-down intersect ray with each of node s children traverse children it intersects Frustum Culling Cull all bounding volume nodes that lies outside current viewing frustum Probably not necessary if using space partition 6

7 Frameless Rendering Double buffering - wait for all pixels to display image Slowly displays old images Frameless rendering - display all pixels immediately Quickly displays partially-updated images Applicable to interactive applications requiring low latency and high performance Frameless Rendering Example All pixels updated at 5 Hz 33% pixels updated at 15 Hz From Bishop et al., Frameless Rendering: Double Buffering Considered Harmful, Proceedings of SIGGRAPH 94, page

8 Interactive Ray Tracing Experiments run on high-end parallel machine Scales to hundreds of processors on SGI Origin 2000 Scalability limited only by load balancing and synchronization Can employ frameless rendering Interactive Ray Tracing Video From Parker et al., Interactive Ray Tracing, Proceedings of the 1999 Symposium on Interactive 3D Graphics. 8

9 Questions about Assignment? Input colors [ ] Output colors [0-255] Eye space Looking down -Z axis Viewing plane Distance is irrelevant File format Assume lines not broken up 9

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 37 Ray Tracing 1 Announcements Review session Tuesday 7-9, Phillips 101 Posted notes on slerp and perspective-correct texturing Prelim on Thu in B17 at 7:30pm 2 Basic ray tracing Basic

More information

improving raytracing speed

improving raytracing speed ray tracing II computer graphics ray tracing II 2006 fabio pellacini 1 improving raytracing speed computer graphics ray tracing II 2006 fabio pellacini 2 raytracing computational complexity ray-scene intersection

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

Two Optimization Methods for Raytracing. W. Sturzlinger and R. F. Tobler

Two Optimization Methods for Raytracing. W. Sturzlinger and R. F. Tobler Two Optimization Methods for Raytracing by W. Sturzlinger and R. F. Tobler Johannes Kepler University of Linz Institute for Computer Science Department for graphical and parallel Processing Altenbergerstrae

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell eading! equired:! Watt, sections 12.5.3 12.5.4, 14.7! Further reading:! A. Glassner.

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects Topics Ray Tracing II CS 4620 Lecture 16 Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 2, 3, 4 of Physically Based Rendering by Pharr&Humphreys An Introduction to Ray tracing by Glassner Topics today

More information

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects Topics Ray Tracing II CS 4620 ations in ray tracing ing objects ation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies Uniform spatial subdivision Adaptive spatial

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

A Model to Evaluate Ray Tracing Hierarchies

A Model to Evaluate Ray Tracing Hierarchies A Model to Evaluate Ray Tracing Hierarchies K. R. Subramanian Donald Fussell Department of Computer Sciences The University of Texas at Austin 1 Introduction In this article we develop a model to evaluate

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella

CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella CS 563 Advanced Topics in Computer Graphics Culling and Acceleration Techniques Part 1 by Mark Vessella Introduction Acceleration Techniques Spatial Data Structures Culling Outline for the Night Bounding

More information

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II Computer Graphics - Ray-Tracing II - Hendrik Lensch Overview Last lecture Ray tracing I Basic ray tracing What is possible? Recursive ray tracing algorithm Intersection computations Today Advanced acceleration

More information

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Raytracing Global illumination-based rendering method Simulates

More information

Ray Tracing Acceleration. CS 4620 Lecture 20

Ray Tracing Acceleration. CS 4620 Lecture 20 Ray Tracing Acceleration CS 4620 Lecture 20 2013 Steve Marschner 1 Will this be on the exam? or, Prelim 2 syllabus You can expect emphasis on topics related to the assignment (Shaders 1&2) and homework

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Computer Graphics. - Spatial Index Structures - Philipp Slusallek

Computer Graphics. - Spatial Index Structures - Philipp Slusallek Computer Graphics - Spatial Index Structures - Philipp Slusallek Overview Last lecture Overview of ray tracing Ray-primitive intersections Today Acceleration structures Bounding Volume Hierarchies (BVH)

More information

Ray Tracing Acceleration. CS 4620 Lecture 22

Ray Tracing Acceleration. CS 4620 Lecture 22 Ray Tracing Acceleration CS 4620 Lecture 22 2014 Steve Marschner 1 Topics Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes

More information

Ray Tracing: Intersection

Ray Tracing: Intersection Computer Graphics as Virtual Photography Ray Tracing: Intersection Photography: real scene camera (captures light) photo processing Photographic print processing Computer Graphics: 3D models camera tone

More information

Ray Casting. Outline in Code. Outline. Finding Ray Direction. Heckbert s Business Card Ray Tracer. Foundations of Computer Graphics (Fall 2012)

Ray Casting. Outline in Code. Outline. Finding Ray Direction. Heckbert s Business Card Ray Tracer. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 17, 18: Nuts and bolts of Ray Tracing Heckbert s Business Card Ray Tracer http://inst.eecs.berkeley.edu/~cs184 Acknowledgements: Thomas Funkhouser

More information

VIII. Visibility algorithms (II)

VIII. Visibility algorithms (II) VIII. Visibility algorithms (II) Hybrid algorithsms: priority list algorithms Find the object visibility Combine the operations in object space (examples: comparisons and object partitioning) with operations

More information

Ray Genealogy. Raytracing: Performance. Bounding Volumes. Bounding Volume. Acceleration Classification. Acceleration Classification

Ray Genealogy. Raytracing: Performance. Bounding Volumes. Bounding Volume. Acceleration Classification. Acceleration Classification Raytracing: Performance OS 4328/5327 Scott. King Ray Genealogy 1 Ray/pixel at 1k 1k image = 1M? rays rays. Say on avg. 6 secondary rays = 7M?rays rays 100k objects with 10 ops for intersection =? Operations

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11. Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline

Effects needed for Realism. Computer Graphics (Fall 2008) Ray Tracing. Ray Tracing: History. Outline Computer Graphics (Fall 2008) COMS 4160, Lecture 15: Ray Tracing http://www.cs.columbia.edu/~cs4160 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water, Glass)

More information

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012)

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012) Foundations of omputer Graphics (Spring 202) S 84, Lecture 5: Ray Tracing http://inst.eecs.berkeley.edu/~cs84 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration Image Synthesis Torsten Möller Reading Physically Based Rendering by Pharr&Humphreys Chapter 2 - rays and transformations Chapter 3 - shapes Chapter 4 - intersections and

More information

Ray Casting. To Do. Outline. Outline in Code. Foundations of Computer Graphics (Spring 2012) Heckbert s Business Card Ray Tracer

Ray Casting. To Do. Outline. Outline in Code. Foundations of Computer Graphics (Spring 2012) Heckbert s Business Card Ray Tracer Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 16, 18: Nuts and bolts of Ray Tracing To Do Finish homework 3 Prepare for Midterm (Monday) Everything before this week (no raytracing) Closed

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

Speeding up your game

Speeding up your game Speeding up your game The scene graph Culling techniques Level-of-detail rendering (LODs) Collision detection Resources and pointers (adapted by Marc Levoy from a lecture by Tomas Möller, using material

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial Data Structures and Speed-Up Techniques Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial data structures What is it? Data structure that organizes

More information

Row Tracing with Hierarchical Occlusion Maps

Row Tracing with Hierarchical Occlusion Maps Row Tracing with Hierarchical Occlusion Maps Ravi P. Kammaje, Benjamin Mora August 9, 2008 Page 2 Row Tracing with Hierarchical Occlusion Maps Outline August 9, 2008 Introduction Related Work Row Tracing

More information

CPSC GLOBAL ILLUMINATION

CPSC GLOBAL ILLUMINATION CPSC 314 21 GLOBAL ILLUMINATION Textbook: 20 UGRAD.CS.UBC.CA/~CS314 Mikhail Bessmeltsev ILLUMINATION MODELS/ALGORITHMS Local illumination - Fast Ignore real physics, approximate the look Interaction of

More information

Graphics 2009/2010, period 1. Lecture 8: ray tracing

Graphics 2009/2010, period 1. Lecture 8: ray tracing Graphics 2009/2010, period 1 Lecture 8 Ray tracing Original plan Finish the basic stuff (book ch 1-9) today: We will not look into signal processing (chapter 4) We will look at triangle rasterization (cf.

More information

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits CS 586/480 Computer Graphics II Dr. David Breen Matheson 408 Thursday 6PM Æ 8:50PM Presentation 4 10/28/04 Logistics Read research paper and prepare summary and question P. Hanrahan, "Ray Tracing Algebraic

More information

Point based Rendering

Point based Rendering Point based Rendering CS535 Daniel Aliaga Current Standards Traditionally, graphics has worked with triangles as the rendering primitive Triangles are really just the lowest common denominator for surfaces

More information

Space Time Ray Tracing using Ray Classification

Space Time Ray Tracing using Ray Classification Space Time Ray Tracing using Ray Classification Matthew Quail Submitted for the partial fulfilment of the requirements of the Bachelor of Science with Honours November 996 Department of Computing School

More information

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL: CS580: Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Recursive Ray Casting Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand overall algorithm of recursive ray tracing Ray generations Intersection

More information

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information

CS 431/636 Advanced Rendering Techniques

CS 431/636 Advanced Rendering Techniques CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students)

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) Saturday, January 13 th, 2018, 08:30-12:30 Examiner Ulf Assarsson, tel. 031-772 1775 Permitted Technical Aids None, except

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

CS535 Fall Department of Computer Science Purdue University

CS535 Fall Department of Computer Science Purdue University Spatial Data Structures and Hierarchies CS535 Fall 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Spatial Data Structures Store geometric information Organize geometric

More information

Ray Tracing. Outline. Ray Tracing: History

Ray Tracing. Outline. Ray Tracing: History Foundations of omputer Graphics Online Lecture 9: Ray Tracing 1 History and asic Ray asting Ravi Ramamoorthi Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Universiteit Leiden Computer Science

Universiteit Leiden Computer Science Universiteit Leiden Computer Science Optimizing octree updates for visibility determination on dynamic scenes Name: Hans Wortel Student-no: 0607940 Date: 28/07/2011 1st supervisor: Dr. Michael Lew 2nd

More information

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing with Spatial Hierarchies Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing Flexible, accurate, high-quality rendering Slow Simplest ray tracer: Test every ray against every object in the scene

More information

Lecture 2 - Acceleration Structures

Lecture 2 - Acceleration Structures INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 2 - Acceleration Structures Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Problem Analysis

More information

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker)

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) Visible Surface Detection (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) 1 Given a set of 3D objects and a viewing specifications, determine which lines or surfaces of the objects should be visible. A

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Visibility and Occlusion Culling

Visibility and Occlusion Culling Visibility and Occlusion Culling CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on those of Benjamin Mora] Why? To avoid processing geometry that does

More information

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer wimmer@cg.tuwien.ac.at Visibility Overview Basics about visibility Basics about occlusion culling View-frustum culling / backface culling Occlusion

More information

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

More information

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz Computing Visibility BSP Trees Ray Casting Depth Buffering Quiz Power of Plane Equations We ve gotten a lot of mileage out of one simple equation. Basis for D outcode-clipping Basis for plane-at-a-time

More information

Motivation. Sampling and Reconstruction of Visual Appearance. Effects needed for Realism. Ray Tracing. Outline

Motivation. Sampling and Reconstruction of Visual Appearance. Effects needed for Realism. Ray Tracing. Outline Sampling and Reconstruction of Visual Appearance CSE 274 [Fall 2018], Special Lecture Ray Tracing Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation Ray Tracing is a core aspect of both offline

More information

CSL 859: Advanced Computer Graphics. Dept of Computer Sc. & Engg. IIT Delhi

CSL 859: Advanced Computer Graphics. Dept of Computer Sc. & Engg. IIT Delhi CSL 859: Advanced Computer Graphics Dept of Computer Sc. & Engg. IIT Delhi Point Based Representation Point sampling of Surface Mesh construction, or Mesh-less Often come from laser scanning Or even natural

More information

Spatial Data Structures. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Spatial Data Structures. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Spatial Data Structures Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Ray Intersections We can roughly estimate the time to render an image as being proportional to the number of ray-triangle

More information

Space-based Partitioning Data Structures and their Algorithms. Jon Leonard

Space-based Partitioning Data Structures and their Algorithms. Jon Leonard Space-based Partitioning Data Structures and their Algorithms Jon Leonard Purpose Space-based Partitioning Data Structures are an efficient way of organizing data that lies in an n-dimensional space 2D,

More information

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz CS 563 Advanced Topics in Computer Graphics QSplat by Matt Maziarz Outline Previous work in area Background Overview In-depth look File structure Performance Future Point Rendering To save on setup and

More information

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology Point Cloud Filtering using Ray Casting by Eric Jensen 01 The Basic Methodology Ray tracing in standard graphics study is a method of following the path of a photon from the light source to the camera,

More information

Bounding Volume Hierarchies. CS 6965 Fall 2011

Bounding Volume Hierarchies. CS 6965 Fall 2011 Bounding Volume Hierarchies 2 Heightfield 3 C++ Operator? #include int main() { int x = 10; while( x --> 0 ) // x goes to 0 { printf("%d ", x); } } stackoverflow.com/questions/1642028/what-is-the-name-of-this-operator

More information

Advanced 3D-Data Structures

Advanced 3D-Data Structures Advanced 3D-Data Structures Eduard Gröller, Martin Haidacher Institute of Computer Graphics and Algorithms Vienna University of Technology Motivation For different data sources and applications different

More information

קורס גרפיקה ממוחשבת 2010/2009 סמסטר א' Rendering 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2010/2009 סמסטר א' Rendering 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2010/2009 סמסטר א' Rendering 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור What is 3D rendering? Construct an image from a 3D model מצלמה תאורה View Plane

More information

Dynamic Spatial Partitioning for Real-Time Visibility Determination. Joshua Shagam Computer Science

Dynamic Spatial Partitioning for Real-Time Visibility Determination. Joshua Shagam Computer Science Dynamic Spatial Partitioning for Real-Time Visibility Determination Joshua Shagam Computer Science Master s Defense May 2, 2003 Problem Complex 3D environments have large numbers of objects Computer hardware

More information

Spatial Data Structures and Acceleration Algorithms

Spatial Data Structures and Acceleration Algorithms Spatial Data Structures and Acceleration Algorithms Real-time Rendering Performance Goals Spatial Structures Bounding Volume Hierarchies (BVH) Binary Space Partioning(BSP) Trees, Octrees Scene Graphs Culling

More information

Ray Casting. COS 426, Spring 2015 Princeton University

Ray Casting. COS 426, Spring 2015 Princeton University Ray Casting COS 426, Spring 2015 Princeton University Ray Casting The color of each pixel on the view plane depends on the radiance emanating along rays from visible surfaces in scene Light Surfaces Camera

More information

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university Acceleration Data Structures Michael Doggett Department of Computer Science Lund university Ray tracing So far ray tracing sampling object intersections Today How do we make it faster? Performance = rays

More information

Reading Ray Intersection Chapter 2: Geometry and Transformations Acceleration Covers basic math and PBRT implementation: read on your own

Reading Ray Intersection Chapter 2: Geometry and Transformations Acceleration Covers basic math and PBRT implementation: read on your own eading ay Intersection Acceleration eadings Chapter 2 Geometry & Transformations Chapter 3 Shapes Chapter 4 rimitives & Intersection Acceleration Covers basic math and BT implementation: read on your own

More information

Acceleration Structures. CS 6965 Fall 2011

Acceleration Structures. CS 6965 Fall 2011 Acceleration Structures Run Program 1 in simhwrt Lab time? Program 2 Also run Program 2 and include that output Inheritance probably doesn t work 2 Boxes Axis aligned boxes Parallelepiped 12 triangles?

More information

Ray Casting. 3D Rendering. Ray Casting. Ray Casting. Ray Casting. Ray Casting

Ray Casting. 3D Rendering. Ray Casting. Ray Casting. Ray Casting. Ray Casting Rendering Ray asting The color of each pixel on the view plane depends on the radiance emanating from visible surfaces dam inkelstein rinceton University OS 6, Spring 00 Simplest method is ray casting

More information

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13 Lecture 17: Solid Modeling... a cubit on the one side, and a cubit on the other side Exodus 26:13 Who is on the LORD's side? Exodus 32:26 1. Solid Representations A solid is a 3-dimensional shape with

More information

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens Ray Tracing with Multi-Core/Shared Memory Systems Abe Stephens Real-time Interactive Massive Model Visualization Tutorial EuroGraphics 2006. Vienna Austria. Monday September 4, 2006 http://www.sci.utah.edu/~abe/massive06/

More information

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin Visible-Surface Detection Methods Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin The Visibility Problem [Problem Statement] GIVEN: a set of 3-D surfaces, a projection from 3-D to 2-D screen,

More information

Ray-tracing Acceleration. Acceleration Data Structures for Ray Tracing. Shadows. Shadows & Light Sources. Antialiasing Supersampling.

Ray-tracing Acceleration. Acceleration Data Structures for Ray Tracing. Shadows. Shadows & Light Sources. Antialiasing Supersampling. Ray-tracing Acceleration Acceleration Data Structures for Ray Tracing Thanks to Fredo Durand and Barb Cutler Soft shadows Antialiasing (getting rid of jaggies) Glossy reflection Motion blur Depth of field

More information

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project To do Continue to work on ray programming assignment Start thinking about final project Lighting Course Outline 3D Graphics Pipeline Modeling (Creating 3D Geometry) Mesh; modeling; sampling; Interaction

More information

Efficiency Issues for Ray Tracing

Efficiency Issues for Ray Tracing Efficiency Issues for Ray Tracing Brian Smits University of Utah February 19, 1999 Abstract Ray casting is the bottleneck of many rendering algorithms. Although much work has been done on making ray casting

More information

Comparison of hierarchies for occlusion culling based on occlusion queries

Comparison of hierarchies for occlusion culling based on occlusion queries Comparison of hierarchies for occlusion culling based on occlusion queries V.I. Gonakhchyan pusheax@ispras.ru Ivannikov Institute for System Programming of the RAS, Moscow, Russia Efficient interactive

More information

Dynamic Acceleration Structures for Interactive Ray Tracing

Dynamic Acceleration Structures for Interactive Ray Tracing Dynamic Acceleration Structures for Interactive Ray Tracing Erik Reinhard, Brian Smits and Charles Hansen University of Utah reinhard bes hansen@cs.utah.edu Abstract. Acceleration structures used for ray

More information

Ray tracing. EECS 487 March 19,

Ray tracing. EECS 487 March 19, Ray tracing EECS 487 March 19, 2007 http://radsite.lbl.gov/radiance/book/ 1 Conventional pipeline (rasterization) For each triangle Compute lighting at vertices For each pixel within triangle Compute interpolated

More information

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Visible Surface Detection Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Two approaches: 1. Object space methods 2. Image

More information

COMP 175: Computer Graphics April 11, 2018

COMP 175: Computer Graphics April 11, 2018 Lecture n+1: Recursive Ray Tracer2: Advanced Techniques and Data Structures COMP 175: Computer Graphics April 11, 2018 1/49 Review } Ray Intersect (Assignment 4): questions / comments? } Review of Recursive

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

Acceleration Data Structures for Ray Tracing

Acceleration Data Structures for Ray Tracing Acceleration Data Structures for Ray Tracing Travis Fischer and Nong Li (2007) Andries van Dam November 10, 2009 Acceleration Data Structures 1/35 Outline Introduction/Motivation Bounding Volume Hierarchy

More information

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Single Scattering in Refractive Media with Triangle Mesh Boundaries Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Cornell Univ. Grenoble Univ. Cornell Univ. Presented at SIGGRAPH

More information