The Dominating Set Problem in Intersection Graphs

Size: px
Start display at page:

Download "The Dominating Set Problem in Intersection Graphs"

Transcription

1 The Dominating Set Problem in Intersection Graphs Mark de Berg Sándor Kisfaludi-Bak Gerhard Woeginger IPEC, 6 September / 17

2 Dominating Set in intersection graphs Problem (Dominating Set) Given a graph and an integer k, is there a vertex subset D of size k such that all vertices are in D or have a neighbor in D? 2 / 17

3 Dominating Set in intersection graphs Problem (Dominating Set) Given a graph and an integer k, is there a vertex subset D of size k such that all vertices are in D or have a neighbor in D? Intersection graph: vertices are shapes in R d, edges connect intersecting shape pairs. 2 / 17

4 Dominating Set in intersection graphs Problem (Dominating Set) Given a graph and an integer k, is there a vertex subset D of size k such that all vertices are in D or have a neighbor in D? Intersection graph: vertices are shapes in R d, edges connect intersecting shape pairs. 2 / 17

5 Parameterized complexity classes Two parameterized problems are equivalent if they are FPT-reducible to each other. W -hierarchy: complexity classes based on FPT reductions. W[3] W[2] W[1] FPT P Dominating Set Independent Set Steiner Tree on k terminals Vertex cover 3 / 17

6 What is known so far? What is new? Graph class Complexity Reference Interval P Chang 1998 (unit) 2-interval W[1]-complete Fellows et al Planar NP-complete, FPT Downey and Fellows 1995 Unit disk W[1]-hard Marx 2006 General W[2]-complete Downey and Fellows / 17

7 What is known so far? What is new? Graph class Complexity Reference Interval P Chang 1998 (unit) 2-interval W[1]-complete Fellows et al Planar NP-complete, FPT Downey and Fellows 1995 Unit disk W[1]-hard Marx 2006 General W[2]-complete Downey and Fellows dim. patterns it depends... this talk 4 / 17

8 What is known so far? What is new? Graph class Complexity Reference Interval P Chang 1998 (unit) 2-interval W[1]-complete Fellows et al Planar NP-complete, FPT Downey and Fellows 1995 Unit disk W[1]-hard Marx 2006 General W[2]-complete Downey and Fellows dim. patterns it depends... this talk translates of a polygon W[1]-hard see paper 4 / 17

9 What is known so far? What is new? Graph class Complexity Reference Interval P Chang 1998 (unit) 2-interval W[1]-complete Fellows et al Planar NP-complete, FPT Downey and Fellows 1995 Unit disk W[1]-hard Marx 2006 General W[2]-complete Downey and Fellows dim. patterns it depends... this talk translates of a polygon W[1]-hard see paper const. compl. shapes contained in W[1] this talk 4 / 17

10 One-dimensional patterns 5 / 17

11 Dominating Set in 1-dim. intersection graph classes Take a finite point/interval pattern Q on the line Q 6 / 17

12 Dominating Set in 1-dim. intersection graph classes Take a finite point/interval pattern Q on the line Take some translates of Q on the line. Q 6 / 17

13 Dominating Set in 1-dim. intersection graph classes Take a finite point/interval pattern Q on the line Take some translates of Q on the line. Q This defines an intersection graph (where vertices = translates of Q). 6 / 17

14 Dominating Set in 1-dim. intersection graph classes Take a finite point/interval pattern Q on the line Take some translates of Q on the line. Q This defines an intersection graph (where vertices = translates of Q). Problem (Q-intersection dominating set) Input: x 1, x 2,..., x n R, k Z, parameter: k Output: Is there a Dominating Set of size k in the intersection graph induced by x 1 + Q, x 2 + Q,..., x n + Q? 6 / 17

15 The classification Theorem Q-intersection dominating set has the following complexity: Polynomially solvable if there is an interval in Q. Polynomially solvable if Q is a rational point pattern. It is NP-complete and FPT in all remaining cases. 7 / 17

16 The classification Theorem Q-intersection dominating set has the following complexity: Polynomially solvable if there is an interval in Q. Polynomially solvable if Q is a rational point pattern. It is NP-complete and FPT in all remaining cases. The problem becomes W[2]-complete if Q is part of the input: Theorem Every graph can be obtained as an intersection graph of the translates of a suitable one-dimensional pattern. 7 / 17

17 Patterns that contain an interval Suppose the longest interval in Q has length 1. Left endpoints of a minimum dominating set D: D left endpoints x 2 + Q x 1 + Q 1 w : length of the pattern 8 / 17

18 Patterns that contain an interval Suppose the longest interval in Q has length 1. Left endpoints of a minimum dominating set D: D left endpoints x 2 + Q x 1 + Q 1 w : length of the pattern Lemma A minimum dominating set D has at most 3w left endpoints in any window of length w. Dynamic programming by shifting a window gives O(n 6w+4 ) running time. 8 / 17

19 Non-rational point patterns 1 5 Example: Q Consider the translates a(1 + 5) + b 5 + Q (a, b Z). Observe: (a, b) intersects (a, b ) (a a, b b ) { (1, 0), (0, 1), ( 1, 0), (0, 1), (1, 1), ( 1, 1), (0, 0) } 9 / 17

20 The translates a(1 + 5) + b 5 + Q (a, b Z) define a graph isomorphic to the triangular grid. b (-1,1) (0,1) (1,1) (-1,0) (0,0) (1,0) a (-1,-1) (0,-1) (1,-1) Any induced triangular grid graph is a Q-intersection graph.... and DS is NP-complete on induced triangular grid graphs. 10 / 17

21 Constant-complexity shapes and W[1] 11 / 17

22 Containment in W[1] special RAMs Theorem (Chen, Flum, Grohe 2003) A parameterized language is in W[1] iff it has nondeterministic RAM that runs in f (k)poly(n) time, uses f (k)poly(n) registers, storing integers f (k)poly(n), it has nondeterministic steps only among the last g(k) instructions. 12 / 17

23 Containment in W[1] special RAMs Theorem (Chen, Flum, Grohe 2003) A parameterized language is in W[1] iff it has nondeterministic RAM that runs in f (k)poly(n) time, uses f (k)poly(n) registers, storing integers f (k)poly(n), it has nondeterministic steps only among the last g(k) instructions. In practice: deterministic preprocessing in FPT time 12 / 17

24 Containment in W[1] special RAMs Theorem (Chen, Flum, Grohe 2003) A parameterized language is in W[1] iff it has nondeterministic RAM that runs in f (k)poly(n) time, uses f (k)poly(n) registers, storing integers f (k)poly(n), it has nondeterministic steps only among the last g(k) instructions. In practice: deterministic preprocessing in FPT time guess the solution (typically O(k) time) 12 / 17

25 Containment in W[1] special RAMs Theorem (Chen, Flum, Grohe 2003) A parameterized language is in W[1] iff it has nondeterministic RAM that runs in f (k)poly(n) time, uses f (k)poly(n) registers, storing integers f (k)poly(n), it has nondeterministic steps only among the last g(k) instructions. In practice: deterministic preprocessing in FPT time guess the solution (typically O(k) time) check the solution in g(k) time 12 / 17

26 Example: unit disks and the vertical decomposition Claim: Dominating set on unit disk graphs is in W[1]. S: input set of unit disks For D S define: D + : radius 2 disks with same centers A(D + ) : arrangement induced by D + D is a dominating set D + contains all disk centers from S. Take a vertical decomposition of the arrangement A(D + ). D is dominating Sum of # of centers in cells covered by D + is n. 13 / 17

27 Example: unit disks and the vertical decomposition, cont. associate cells with 4-tuples of disks O(n 4 ) possible cells 14 / 17

28 Example: unit disks and the vertical decomposition, cont. The NRAM program: Preprocessing: count the # of points in each possible cell, put it in a lookup table. (O(n 4 n) time) associate cells with 4-tuples of disks O(n 4 ) possible cells 14 / 17

29 Example: unit disks and the vertical decomposition, cont. The NRAM program: Preprocessing: count the # of points in each possible cell, put it in a lookup table. (O(n 4 n) time) Using nondeterminism, guess D S, the k solution disks. associate cells with 4-tuples of disks O(n 4 ) possible cells 14 / 17

30 Example: unit disks and the vertical decomposition, cont. associate cells with 4-tuples of disks O(n 4 ) possible cells The NRAM program: Preprocessing: count the # of points in each possible cell, put it in a lookup table. (O(n 4 n) time) Using nondeterminism, guess D S, the k solution disks. Compute vertical decomposition of A(D + ). 14 / 17

31 Example: unit disks and the vertical decomposition, cont. associate cells with 4-tuples of disks O(n 4 ) possible cells The NRAM program: Preprocessing: count the # of points in each possible cell, put it in a lookup table. (O(n 4 n) time) Using nondeterminism, guess D S, the k solution disks. Compute vertical decomposition of A(D + ). Accept if the sum of points covered by the cells inside D + is n. 14 / 17

32 Example: unit disks and the vertical decomposition, cont. associate cells with 4-tuples of disks O(n 4 ) possible cells The NRAM program: Preprocessing: count the # of points in each possible cell, put it in a lookup table. (O(n 4 n) time) Using nondeterminism, guess D S, the k solution disks. Compute vertical decomposition of A(D + ). Accept if the sum of points covered by the cells inside D + is n. Steps 2,3 and 4 run in poly(k) time. 14 / 17

33 Constant complexity shapes Semi-algebraic set: a subset of R d characterized by a boolean expression of polynomial inequalites over R. Semi-algebraic family: semi-algebraic sets characterized by a single expression that contains a constant number of parameters. 15 / 17

34 Constant complexity shapes Semi-algebraic set: a subset of R d characterized by a boolean expression of polynomial inequalites over R. Semi-algebraic family: semi-algebraic sets characterized by a single expression that contains a constant number of parameters. Examples: (hollow) spheres in R 3 : (a, b, c, r) { (x, y, z) R 3 (a x) 2 + (b y) 2 + (c z) 2 = r 2} diagrams of polynomials of degree 5 triangles in R 4 15 / 17

35 Constant complexity shapes Semi-algebraic set: a subset of R d characterized by a boolean expression of polynomial inequalites over R. Semi-algebraic family: semi-algebraic sets characterized by a single expression that contains a constant number of parameters. Examples: (hollow) spheres in R 3 : (a, b, c, r) { (x, y, z) R 3 (a x) 2 + (b y) 2 + (c z) 2 = r 2} diagrams of polynomials of degree 5 triangles in R 4 Theorem Let F be a semi-algebraic family, and let C be the class of intersection graphs gained from finite subsets of F. Then Dominating Set on C is contained in W[1]. 15 / 17

36 Conclusion In R 1 : Characterized the complexity of Dominating Set for patterns 16 / 17

37 Conclusion In R 1 : Characterized the complexity of Dominating Set for patterns If the pattern is part of the input: W[2]-complete 16 / 17

38 Conclusion In R 1 : Characterized the complexity of Dominating Set for patterns If the pattern is part of the input: W[2]-complete In R 2 and higher dimensions: W[1]-hard for translates of a simple polygon 16 / 17

39 Conclusion In R 1 : Characterized the complexity of Dominating Set for patterns If the pattern is part of the input: W[2]-complete In R 2 and higher dimensions: W[1]-hard for translates of a simple polygon In W[1] if there is a single parameterized first order formula 16 / 17

40 Conclusion In R 1 : Characterized the complexity of Dominating Set for patterns If the pattern is part of the input: W[2]-complete In R 2 and higher dimensions: W[1]-hard for translates of a simple polygon In W[1] if there is a single parameterized first order formula W[2]-complete for separately defined convex polygons in R 2 16 / 17

41 Q&A Q is a pattern with two unit intervals at distance l (part of input). Is Dominating Set in FPT with parameter k or k + l? l 1 1 Q Take n translates of a regular n-gon in R 2. Is Dominating Set in W[1] here? 17 / 17

42 Q&A Q is a pattern with two unit intervals at distance l (part of input). Is Dominating Set in FPT with parameter k or k + l? l 1 1 Q Take n translates of a regular n-gon in R 2. Is Dominating Set in W[1] here? Thank you. Any questions? 17 / 17

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 1 W[1]-hardness Dániel Marx Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 2 Lower bounds So far we have seen positive results: basic algorithmic techniques for fixed-parameter

More information

The Square Root Phenomenon in Planar Graphs

The Square Root Phenomenon in Planar Graphs 1 The Square Root Phenomenon in Planar Graphs Survey and New Results Dániel Marx Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary Satisfiability

More information

Common Induced Subgraph Isomorphism Structural Parameterizations and Exact Algorithms

Common Induced Subgraph Isomorphism Structural Parameterizations and Exact Algorithms Common Induced Subgraph Isomorphism Structural Parameterizations and Exact Algorithms Faisal N. Abu-Khzam Department of Computer Science and Mathematics Lebanese American University Beirut, Lebanon Overview

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Parameterized Complexity - an Overview

Parameterized Complexity - an Overview Parameterized Complexity - an Overview 1 / 30 Parameterized Complexity - an Overview Ue Flarup 1 flarup@imada.sdu.dk 1 Department of Mathematics and Computer Science University of Southern Denmark, Odense,

More information

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems 1 Fine-Grained Complexity and Algorithm Design Boot Camp Recent Advances in FPT and Exact Algorithms for NP-Complete Problems Dániel Marx Institute for Computer Science and Control, Hungarian Academy of

More information

The Parameterized Complexity of Finding Point Sets with Hereditary Properties

The Parameterized Complexity of Finding Point Sets with Hereditary Properties The Parameterized Complexity of Finding Point Sets with Hereditary Properties David Eppstein University of California, Irvine Daniel Lokshtanov University of Bergen University of California, Santa Barbara

More information

Parameterized Reductions

Parameterized Reductions 1 Fine-Grained Complexity and Algorithm Design Boot Camp Parameterized Reductions Dániel Marx Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary Simons

More information

CONTRACTIONS OF PLANAR GRAPHS

CONTRACTIONS OF PLANAR GRAPHS Marcin Kamiński Brussels Daniël Paulusma Durham Dimitrios Thilikos Athens ESA 2010 CONTAINMENT RELATIONS \v \e /e 2 CONTAINMENT RELATIONS \v \e /e induced subgraph subgraph minor contraction induced minor

More information

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary W[1]-hardness Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary School on Parameterized Algorithms and Complexity Będlewo, Poland

More information

Fixed Parameter Algorithms

Fixed Parameter Algorithms Fixed Parameter Algorithms Dániel Marx Tel Aviv University, Israel Open lectures for PhD students in computer science January 9, 2010, Warsaw, Poland Fixed Parameter Algorithms p.1/41 Parameterized complexity

More information

Partial vs. Complete Domination:

Partial vs. Complete Domination: Partial vs. Complete Domination: t-dominating SET Joachim Kneis Daniel Mölle Peter Rossmanith Theory Group, RWTH Aachen University January 22, 2007 Complete vs. Partial Solutions VERTEX COVER (VC): DOMINATING

More information

Hardness of r-dominating set on graphs of diameter (r + 1)

Hardness of r-dominating set on graphs of diameter (r + 1) Hardness of r-dominating set on graphs of diameter (r + 1) Daniel Lokshtanov 1, Neeldhara Misra 2, Geevarghese Philip 3, M S Ramanujan 4, Saket Saurabh 1,4 University of Bergen, Norway Indian Institute

More information

6.006 Introduction to Algorithms. Lecture 25: Complexity Prof. Erik Demaine

6.006 Introduction to Algorithms. Lecture 25: Complexity Prof. Erik Demaine 6.006 Introduction to Algorithms Lecture 25: Complexity Prof. Erik Demaine Today Reductions between problems Decision vs. optimization problems Complexity classes P, NP, co NP, PSPACE, EXPTIME, NP completeness

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition Wenjun Li a, Binhai Zhu b, a Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha

More information

Decomposing Coverings and the Planar Sensor Cover Problem

Decomposing Coverings and the Planar Sensor Cover Problem Intro. previous work. Restricted Strip Cover Decomposing Multiple Coverings Decomposing Coverings and the Planar Sensor Cover Problem Matt Gibson Kasturi Varadarajan presented by Niv Gafni 2012-12-12 Intro.

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Department of Computer Science and Information Theory Budapest University of Technology and Economics Budapest H-1521 Hungary dmarx@cs.bme.hu Abstract.

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Faces in the Crowd: On the Algorithmic Utility of Disks and Covers

Faces in the Crowd: On the Algorithmic Utility of Disks and Covers Faces in the Crowd: On the Algorithmic Utility of Disks and Covers Faisal N. Abu-Khzam and Michael A. Langston University of Tennessee, Knoxville, TN 3793, USA Abstract. We study a pair of N P-hard problems

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman M. S. Ramanujan Saket Saurabh Abstract It is well known that in a bipartite (and more generally in a König) graph, the size of the minimum vertex cover is

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

Important separators and parameterized algorithms

Important separators and parameterized algorithms Important separators and parameterized algorithms Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary PCSS 2017 Vienna, Austria September

More information

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria FEDOR V. FOMIN Lectures on treewidth The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria Why treewidth? Very general idea in science: large structures can be understood by breaking

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

REU Problems of the Czech Group

REU Problems of the Czech Group REU Problems of the Czech Group Adam Juraszek, Tomáš Masařík, Jitka Novotná, Martin Töpfer, Tomáš Toufar, Jan Voborník, Peter Zeman Mentor: Dr. James Abello DIMACS REU 2015, Piscataway Dominating Sets

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. Those with polynomial-time algorithms.

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

Forbidden Configurations in Discrete Geometry

Forbidden Configurations in Discrete Geometry Forbidden Configurations in Discrete Geometry David Eppstein 29th Canadian Conference on Computational Geometry Ottawa, ON, July 2017 I: A happy ending Quadrilaterals in five-point sets Esther Klein, early

More information

Fixed-Parameter Algorithms

Fixed-Parameter Algorithms Fixed-Parameter Algorithms Rolf Niedermeier and Jiong Guo Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Institut für Informatik Friedrich-Schiller-Universität Jena niedermr@minet.uni-jena.de

More information

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Royal Holloway, University of London Joint work with Mark Jones and Anders Yeo WorKer 2011, Vienna

More information

Computational Geometry

Computational Geometry Planar point location Point location Introduction Planar point location Strip-based structure Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision

More information

arxiv: v1 [cs.cc] 30 Jun 2017

arxiv: v1 [cs.cc] 30 Jun 2017 Hamiltonicity is Hard in Thin or Polygonal Grid Graphs, but Easy in Thin Polygonal Grid Graphs Erik D. Demaine Mikhail Rudoy arxiv:1706.10046v1 [cs.cc] 30 Jun 2017 Abstract In 2007, Arkin et al. [3] initiated

More information

Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth Micha l Pilipczuk Institute of Informatics, University of Warsaw, Poland Workshop on Exact Algorithms and Lower

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Other NP-Complete Problems Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Sections 7.4 and 7.5. The 3SAT

More information

Solving Hard Problems Incrementally

Solving Hard Problems Incrementally Rod Downey, Judith Egan, Michael Fellows, Frances Rosamond, Peter Shaw May 20, 2013 Introduction Dening the Right Problem Incremental Local Search Finding the right FPT subroutine INC-DS is in FPT INC

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

Logic in Algorithmic Graph Structure Theory

Logic in Algorithmic Graph Structure Theory Logic in Algorithmic Graph Structure Theory Stephan Kreutzer Technical University Berlin Bruno s workshop June 18-20, 2012, LaBRI, Bordeaux STEPHAN KREUTZER LOGIC IN ALGORITHMIC GRAPH STRUCTURE THEORY

More information

Polygon decomposition. Motivation: Art gallery problem

Polygon decomposition. Motivation: Art gallery problem CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Convex decomposition

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Hardness of Subgraph and Supergraph Problems in c-tournaments

Hardness of Subgraph and Supergraph Problems in c-tournaments Hardness of Subgraph and Supergraph Problems in c-tournaments Kanthi K Sarpatwar 1 and N.S. Narayanaswamy 1 Department of Computer Science and Engineering, IIT madras, Chennai 600036, India kanthik@gmail.com,swamy@cse.iitm.ac.in

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns Chapter 8 NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Ray shooting from convex ranges

Ray shooting from convex ranges Discrete Applied Mathematics 108 (2001) 259 267 Ray shooting from convex ranges Evangelos Kranakis a, Danny Krizanc b, Anil Maheshwari a;, Jorg-Rudiger Sack a, Jorge Urrutia c a School of Computer Science,

More information

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar The Institute of Mathematical Sciences, Chennai, India.

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

Parameterized Algorithm for Eternal Vertex Cover

Parameterized Algorithm for Eternal Vertex Cover Parameterized Algorithm for Eternal Vertex Cover Fedor V. Fomin a,1, Serge Gaspers b, Petr A. Golovach c, Dieter Kratsch d, Saket Saurabh e, a Department of Informatics, University of Bergen, N-5020 Bergen,

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

P = NP; P NP. Intuition of the reduction idea:

P = NP; P NP. Intuition of the reduction idea: 1 Polynomial Time Reducibility The question of whether P = NP is one of the greatest unsolved problems in the theoretical computer science. Two possibilities of relationship between P and N P P = NP; P

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M. S. Ramanujan and Saket Saurabh The Institute of Mathematical Sciences, Chennai, India. {vraman msramanujan saket}@imsc.res.in Abstract. It is well known

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.

More information

P and NP (Millenium problem)

P and NP (Millenium problem) CMPS 2200 Fall 2017 P and NP (Millenium problem) Carola Wenk Slides courtesy of Piotr Indyk with additions by Carola Wenk CMPS 2200 Introduction to Algorithms 1 We have seen so far Algorithms for various

More information

9. Parameter Treewidth

9. Parameter Treewidth 9. Parameter Treewidth COMP6741: Parameterized and Exact Computation Serge Gaspers Semester 2, 2017 Contents 1 Algorithms for trees 1 2 Tree decompositions 2 3 Monadic Second Order Logic 4 4 Dynamic Programming

More information

Contracting planar graphs to contractions of triangulations

Contracting planar graphs to contractions of triangulations Contracting planar graphs to contractions of triangulations Marcin Kamiński Daniël Paulusma Dimitrios M. Thilikos Abstract For every graph H, there exists a polynomial-time algorithm deciding if a planar

More information

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Master Thesis Patrick Schnider July 25, 2015 Advisors: Prof. Dr. Emo Welzl, Manuel Wettstein Department of

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams

Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams Dániel Marx 1 and Micha l Pilipczuk 2 1 Institute for Computer Science and Control, Hungarian Academy of Sciences

More information

Lecture 4: September 11, 2003

Lecture 4: September 11, 2003 Algorithmic Modeling and Complexity Fall 2003 Lecturer: J. van Leeuwen Lecture 4: September 11, 2003 Scribe: B. de Boer 4.1 Overview This lecture introduced Fixed Parameter Tractable (FPT) problems. An

More information

Linear Problem Kernels for NP-Hard Problems on Planar Graphs

Linear Problem Kernels for NP-Hard Problems on Planar Graphs Linear Problem Kernels for NP-Hard Problems on Planar Graphs Jiong Guo and Rolf Niedermeier Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany. {guo,niedermr}@minet.uni-jena.de

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns 8. NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic programming.

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Parameterized Complexity of Independence and Domination on Geometric Graphs

Parameterized Complexity of Independence and Domination on Geometric Graphs Parameterized Complexity of Independence and Domination on Geometric Graphs Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

The k-center problem Approximation Algorithms 2009 Petros Potikas

The k-center problem Approximation Algorithms 2009 Petros Potikas Approximation Algorithms 2009 Petros Potikas 1 Definition: Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality and k be an integer, 0 < k V. For any S V and vertex

More information

Genus Characterizes the Complexity of Certain Graph Problems: Some Tight Results

Genus Characterizes the Complexity of Certain Graph Problems: Some Tight Results Genus Characterizes the Complexity of Certain Graph Problems: Some Tight Results Jianer Chen Iyad A. Kanj Ljubomir Perković Eric Sedgwick Ge Xia Abstract We study the fixed-parameter tractability, subexponential

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

CMPSCI611: The SUBSET-SUM Problem Lecture 18

CMPSCI611: The SUBSET-SUM Problem Lecture 18 CMPSCI611: The SUBSET-SUM Problem Lecture 18 We begin today with the problem we didn t get to at the end of last lecture the SUBSET-SUM problem, which we also saw back in Lecture 8. The input to SUBSET-

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

Preventing Unraveling in Social Networks: The Anchored k-core Problem

Preventing Unraveling in Social Networks: The Anchored k-core Problem Preventing Unraveling in Social Networks: Kshipra Bhawalkar 1 Jon Kleinberg 2 1 Tim Roughgarden 1 Aneesh Sharma 3 1 Stanford University 2 Cornell University 3 Twitter, Inc. ICALP 2012 Outline 1 The Problem

More information

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 18, no. 4, pp. 603 631 (2014) DOI: 10.7155/jgaa.00339 Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Jiong

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Parameterized Complexity of Geometric Problems

Parameterized Complexity of Geometric Problems The Computer Journal Advance Access published July 27, 2007 # The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please

More information

CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS

CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS Analyzing find in B-trees Since the B-tree is perfectly height-balanced, the worst case time cost for find is O(logN) Best case: If every internal node is completely

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

Necessary edges in k-chordalizations of graphs

Necessary edges in k-chordalizations of graphs Necessary edges in k-chordalizations of graphs Hans L. Bodlaender Abstract In this note, we look at which edges must always be added to a given graph G = (V, E), when we want to make it a chordal graph

More information

Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract)

Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract) Equivalence of Local Treewidth and Linear Local Treewidth and its Algorithmic Applications (extended abstract) Erik D. Demaine and MohammadTaghi Hajiaghayi Laboratory for Computer Science, Massachusetts

More information

Exact Algorithms Lecture 7: FPT Hardness and the ETH

Exact Algorithms Lecture 7: FPT Hardness and the ETH Exact Algorithms Lecture 7: FPT Hardness and the ETH February 12, 2016 Lecturer: Michael Lampis 1 Reminder: FPT algorithms Definition 1. A parameterized problem is a function from (χ, k) {0, 1} N to {0,

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Introduction to Parameterized Complexity

Introduction to Parameterized Complexity Introduction to Parameterized Complexity M. Pouly Department of Informatics University of Fribourg, Switzerland Internal Seminar June 2006 Outline Introduction & Motivation The Misery of Dr. O The Perspective

More information

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Sebastian Wernicke* Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Fed. Rep. of Germany

More information

(p 300) Theorem 7.27 SAT is in P iff P=NP

(p 300) Theorem 7.27 SAT is in P iff P=NP pp. 292-311. The Class NP-Complete (Sec. 7.4) P = {L L decidable in poly time} NP = {L L verifiable in poly time} Certainly all P is in NP Unknown if NP is bigger than P (p. 299) NP-Complete = subset of

More information

Treewidth: Preprocessing and Kernelization

Treewidth: Preprocessing and Kernelization Treewidth: Preprocessing and Kernelization Hans L. Bodlaender Joint work with Arie Koster, Frank van den Eijkhof, Bart Jansen, Stefan Kratsch, Vincent Kreuzen 1 This talk Survey of work on preprocessing

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

Subexponential Algorithms for Partial Cover Problems

Subexponential Algorithms for Partial Cover Problems Subexponential Algorithms for Partial Cover Problems Fedor V. Fomin Daniel Lokshtanov Venkatesh Raman Saket Saurabh July 4, 2009 Abstract Partial Cover problems are optimization versions of fundamental

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

Parameterized Complexity of Finding Regular Induced Subgraphs

Parameterized Complexity of Finding Regular Induced Subgraphs Parameterized Complexity of Finding Regular Induced Subgraphs Hannes Moser 1 and Dimitrios M. Thilikos 2 abstract. The r-regular Induced Subgraph problem asks, given a graph G and a non-negative integer

More information

Polynomial Kernels for Hard Problems on Disk Graphs

Polynomial Kernels for Hard Problems on Disk Graphs Polynomial Kernels for Hard Problems on Disk Graphs Bart Jansen Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands bart@cs.uu.nl Abstract. Kernelization is a powerful tool to obtain fixed-parameter

More information

Multicut is FPT. Lyon Cedex 07, France

Multicut is FPT. Lyon Cedex 07, France Multicut is FPT Nicolas Bousquet 1, Jean Daligault 1, and Stéphan Thomassé 2 1 LIRMM (Université Montpellier 2, CNRS), 161 Rue Ada, 34392 Montpellier, France 2 LIP (ENS Lyon, Université Lyon, CNRS, INRIA,

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information