Solving Hard Problems Incrementally

Size: px
Start display at page:

Download "Solving Hard Problems Incrementally"

Transcription

1 Rod Downey, Judith Egan, Michael Fellows, Frances Rosamond, Peter Shaw May 20, 2013

2 Introduction Dening the Right Problem Incremental Local Search Finding the right FPT subroutine INC-DS is in FPT INC DS has no Poly(k) kernel Conclusion

3 Joint work with Rod Downey Judith Egan Michael Fellows Frances Rosamond Peter Shaw

4 History of Inc FPT Asking the right Problem is Not Always Obvious! Initially Michael Fellows and Rod Downey posed the k-neighborhood questions for problem X Given: Instance I and current solution S Parameter: k Question: Is there a better solution S within k steps of the usual local search algorithm for Problem X Jiong Guo at APCAC 2012 showed this approach resulted in W [1] hardness proof based on a really bad current solutions S

5 History of Incremental FPT rst attempt Simultaneously Rolf Niedermeier and Sepp Hartung and Rod Downey and Michael Fellows came up with similar ideas. The latter resulted by a suggestion by Anil-Nerode for cross-fertilization between parameterized complexity and incremental computing. First Attempt: Given: Instance I and defective solution S Parameter: k Question: Is there a solution S with d H (S, S ) k But this turns out to be W [2] hard for Dominating Set

6 An Example Some Examples Inertia Data currently unknown Speedup - Heuristic Subroutine

7 An Example An FPT Turbo-charged heuristic for Graph Coloring Hartung and Niedermeirer show how to improve the Graph Coloring heuristic via an incremental FPT subroutine Shows an FPT subroutine for the graph coloring problem. When Applied it the heuristic algorithm obtains on average an 11% reduction in the number of colors to the Iterated Greedy algorithm (A current best approach) Average 170 times seed improvement k 117 and c 8.

8 An Example The Incremental List Coloring Subroutine Incremental Conservativek-List Coloring (INC k-list Coloring) Given: A graph G = (V, E ), a k-list coloring f for G [V \ x] and c N Parameter: (c, k) Question: Is there a k-list coloring f for G such that {v V \ {x} : f (v) = f (v)} c NP-Hard for k 3 W [1]-hard for parameter c Incremental version parameterized by (k, c) is FPT O (k(k 1) c ) Exponential kernel

9 An Example A meta approach for local search subroutines Read back to front Hartun and Niedermeier's paper reveals a meta approach for Turbo-Charging local search algorithms with an FPT subroutines. the greedy heuristic can be viewed as a inductive route that leads eventually to the input you were assumed to deal with. From one step to the next, carry along a solution to be, hopefully modied Think of as iterative compression but abstractly only In the case of iterative compression: compressed, exactly

10 The inductive route A Greedy heuristic - Version A Observations: 1. Start with a complete graph G k with n vertices 2. Order the vertices of the input graph G from small degree to large degree 3. At each step (add the next vertex) on our way to G (the inductive route) 4. If the new vertex is not already dominated, then add the highest degree vertex in N[v] 5. Apply the FPT Incremental subroutine to nd the best vertices to add to the solution.

11 An Alternative Greedy heuristic An Alternative Greedy Heuristic for Dominating Set Plan - B Observations: 1. Start with a complete graph G k with n vertices 2. Order the vertices of the input graph G from small degree to large degree 3. gradually delete edges, eventually to obtain G (the inductive route) 4. Initially the solution has size 1 5. When the size of S becomes too large call the incremental FPT subroutine 6. Apply the FPT Incremental subroutine to nd the best vertices to add to the solution.

12 An Alternative Greedy heuristic Inc Dominating Set (INC-DS) Version B INC-DS-II Given: G, e, S where e is an edge and S is a dominating set of G but not G e = G Parameter: k Question: Can we nd S such that d v (S, S ) k, S = S and S is a dominating set of G

13 An Alternative Greedy heuristic Incremental Dominating Set (INC-DS) INCREMENTAL DOMINATING SET (INC-DS) Given: A graph G and a dominating set S for G, a graph G obtained from G with hamming distance d e (G, G ) k, positive integers k, r. Parameter: (k, r) Question: Does there exist S such that the hamming distance d v (S, S ) r and S is a dominating set for G?

14 INC-DS is in FPT Inc Dominating Set (INC-DS) is in FPT Observations: 1. Edge deletions (u, v) are irrelevant if both u and v are in S. 2. A vertex v is still dominated if v itself, or a neighbour u, is in S. 3. Adding edges does not harm S. 4. Only trouble is when we delete edges such that v no longer has a neighbour in S.

15 Reduction to DOM-A-VC Reduction to DOM-A-VC Outline of proof of Theorem 1. The original instance can be visualized in three parts A, B, C. Part C can be removed because there are no edges between A an C. A k or fewer non-dominated vertices. Each connected to one or more already dominated vertex. Note A is a vertex cover for A B B Already dominated vertices. May have edges between them. C Vertices S. May have edges between them.

16 Reduction to DOM-A-VC Inc Dominating Set is in FPT 1. Reset G. Do all edge additions and all edge deletions until we have a problem. 2. Finish all edge deletions, at most k of them, to get G. These deletions necessarily leave some vertices not dominated. 3. There are at most k edge deletions so there are at most k vertices that are no longer dominated in G. 4. Picture the input instance after S is removed. Part A consists of the k vertices that need to be dominated. Part B is an independent set. After removing edges between vertices of B, (they do nothing to dominate A) and these vertices are already dominated by S. Every vertex in B is connected to a vertex in A. So A is a vertex cover of size k. If k r then we are done, take all of A. Otherwise k > r and the problem is now DOM-A-VC.

17 Proof Overview Proof INC-DS in FPT Theorem The problem INC-DS is in FPT. The proof of Theorem 1 involves a reduction to the following problem of possible independent interest: DOMINATING A VERTEX COVER (DOM-A-VC) Given: A graph G and a vertex cover C for G of size k, and a positive integer r k Parameter: (k,r) Question: Is there a set D of at most r vertices of G such that every vertex in C either belongs to D or has a neighbour in D?

18 DOM-A-VC is FPT DOM-A-VC FPT A k Hex These 2 vertices have the same type as they have the same neighbourhood exactly in A. Triangle both of these reach vertices a, b, c only. Call this TYPE a-b-c

19 DOM-A-VC is FPT DOM-A-VC is FPT Note there are only 2 2k dierent types by their neighborhoods in the eected A (left hand side) No need to add to S more than one vertex of any given type This gives us an (exponential) FPT kernel for the problem INC DS has no Poly(k) kernel INC Independent Set is still W [2] hard

20 What we need to show Lower Bounds Techniques - 3 Steps To show that a problem has no polynomial kernel there are 3 steps: 1. Show that the parameterized problem Q is FPT. 2. Find a parameterized problem P that is known to have no polynomial kernel. 3. Show the unparameterized versions of both P and Q are NP-complete. 4. Show PPT transform from P to Q 5. Using contrapositive of Lemma [DLS]If P has no polynomial kernel then neither does Q.

21 INC DS no Poly(k) Part I A parameterized problem is Compositional if there is a composition algorithm for it. Lemma [DLS] Let L be a compositional parameterized problem whose unparameterized version L is NP-complete then unless PH = 3 P there is no polynomial kernel for L. Theorem The problem INC-DS is does not have a polynomial kernel unless conp NP. PPT reduce π to INC-DS where π is a non-poly(k) FPT problem.

22 INC DS no Poly(k) Part I Incremental DS is NP-Hard If G has a dominating set of size s, then in G we can delete k 1 and G will have a dominating set S of size k + 1. Suppose G has a dominating set of size s and G such that d v (S S ) r. Then, H has a dominating set of size s.

23 Reduction from DOM-A-VC to Incremental Dominating Set Reduction from DOM-A-VC to Incremental Dominating Set Assume we have a VC of size k in G 1 and it is dominated by r vertices from either the boxed vertices of the independent set or both. In G 2 we can delete any k vertices and dominate the new graph with the same vertices and a and b, hence r + 2 vertices. In G 2 we have the graph dominated by {a, b}. Modify the graph by deleting k edges. If the edges are deleted

24 Reduction from DOM-A-VC to Incremental Dominating Set Reduction from RBDS to DOM-A-VC If there is a dom set in B that dominates R then in DOM-A-VC use the same vertices to dominate the VC If there is a small r Dom set among the independent set and some from VC that dominate the VC, then use those same vertices in B to dominate R. Replacing the vertices in VC to their neighbours in B

25 Reduction from DOM-A-VC to Incremental Dominating Set Inc Dominating Set (INC-DS) version II INC-DS-II Given: G, e, S where e is an edge and S is a dominating set of G but not G e = G Parameter: k Question: Can we nd S such that d v (S, S ) k, S = S and S is a dominating set of G

26 Reduction from DOM-A-VC to Incremental Dominating Set Another experiment: Feedback Vertex Set A simple heuristic Step 1 Order the vetices from high degree t o low degree Step 1b (alt) Start with spanning tree Step 3 Use this as an initial move to build G Step 4 Turn this into an edge-addition move; start with the empty graph on n vertices an add eges as directed by M to build G. This is the inductive route Step 5 If adding the edge e creates a unique uncovered cycle, choose the verte of the cycle of highest degree. If multiple cycles involving e are created, then choose the endpoint of highest degree. This leads to the incremental problem: INC-FVS Given: G, e, S where e is an edge and S is a Feedback Vertex Set G but not G = G + e Parameter: k

27 Future Work Conclusion Central thesis: Almost all practical heuristics can be improved by appropriately targeted FPT subroutines Applying parameterized complexity and incremental computing to heuristics Improving heuristics FPT subroutines

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems Royal Holloway, University of London Joint work with Mark Jones and Anders Yeo WorKer 2011, Vienna

More information

Dynamic Dominating Set and Turbo-Charging Greedy Heuristics

Dynamic Dominating Set and Turbo-Charging Greedy Heuristics TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll02/08llpp329-337 Volume 19, Number 4, August 2014 Dynamic Dominating Set and Turbo-Charging Greedy Heuristics Rodney G. Downey, Judith Egan, Michael R.

More information

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Sebastian Wernicke* Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Fed. Rep. of Germany

More information

Partial vs. Complete Domination:

Partial vs. Complete Domination: Partial vs. Complete Domination: t-dominating SET Joachim Kneis Daniel Mölle Peter Rossmanith Theory Group, RWTH Aachen University January 22, 2007 Complete vs. Partial Solutions VERTEX COVER (VC): DOMINATING

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman M. S. Ramanujan Saket Saurabh Abstract It is well known that in a bipartite (and more generally in a König) graph, the size of the minimum vertex cover is

More information

Linear Problem Kernels for NP-Hard Problems on Planar Graphs

Linear Problem Kernels for NP-Hard Problems on Planar Graphs Linear Problem Kernels for NP-Hard Problems on Planar Graphs Jiong Guo and Rolf Niedermeier Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany. {guo,niedermr}@minet.uni-jena.de

More information

Parameterized Complexity - an Overview

Parameterized Complexity - an Overview Parameterized Complexity - an Overview 1 / 30 Parameterized Complexity - an Overview Ue Flarup 1 flarup@imada.sdu.dk 1 Department of Mathematics and Computer Science University of Southern Denmark, Odense,

More information

Linear Kernel for Planar Connected Dominating Set

Linear Kernel for Planar Connected Dominating Set Linear Kernel for Planar Connected Dominating Set Daniel Lokshtanov Matthias Mnich Saket Saurabh Abstract We provide polynomial time data reduction rules for Connected Dominating Set on planar graphs and

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

The Dominating Set Problem in Intersection Graphs

The Dominating Set Problem in Intersection Graphs The Dominating Set Problem in Intersection Graphs Mark de Berg Sándor Kisfaludi-Bak Gerhard Woeginger IPEC, 6 September 2017 1 / 17 Dominating Set in intersection graphs Problem (Dominating Set) Given

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Greedy Algorithms 1. For large values of d, brute force search is not feasible because there are 2 d

Greedy Algorithms 1. For large values of d, brute force search is not feasible because there are 2 d Greedy Algorithms 1 Simple Knapsack Problem Greedy Algorithms form an important class of algorithmic techniques. We illustrate the idea by applying it to a simplified version of the Knapsack Problem. Informally,

More information

Improved Upper Bounds for Partial Vertex Cover

Improved Upper Bounds for Partial Vertex Cover Improved Upper Bounds for Partial Vertex Cover Joachim Kneis, Alexander Langer, Peter Rossmanith Dept. of Computer Science, RWTH Aachen University, Germany Abstract. The Partial Vertex Cover problem is

More information

Hardness of Subgraph and Supergraph Problems in c-tournaments

Hardness of Subgraph and Supergraph Problems in c-tournaments Hardness of Subgraph and Supergraph Problems in c-tournaments Kanthi K Sarpatwar 1 and N.S. Narayanaswamy 1 Department of Computer Science and Engineering, IIT madras, Chennai 600036, India kanthik@gmail.com,swamy@cse.iitm.ac.in

More information

Faster parameterized algorithm for Cluster Vertex Deletion

Faster parameterized algorithm for Cluster Vertex Deletion Faster parameterized algorithm for Cluster Vertex Deletion Dekel Tsur arxiv:1901.07609v1 [cs.ds] 22 Jan 2019 Abstract In the Cluster Vertex Deletion problem the input is a graph G and an integer k. The

More information

Parameterized Algorithm for Eternal Vertex Cover

Parameterized Algorithm for Eternal Vertex Cover Parameterized Algorithm for Eternal Vertex Cover Fedor V. Fomin a,1, Serge Gaspers b, Petr A. Golovach c, Dieter Kratsch d, Saket Saurabh e, a Department of Informatics, University of Bergen, N-5020 Bergen,

More information

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}.

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}. Greedy Algorithms 1 Simple Knapsack Problem Greedy Algorithms form an important class of algorithmic techniques. We illustrate the idea by applying it to a simplified version of the Knapsack Problem. Informally,

More information

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar The Institute of Mathematical Sciences, Chennai, India.

More information

Parameterized Computational Complexity of Dodgson and Young Elections

Parameterized Computational Complexity of Dodgson and Young Elections Parameterized Computational Complexity of Dodgson and Young Elections Nadja Betzler joint work with Jiong Guo and Rolf Niedermeier Friedrich-Schiller-Universität Jena Institut für Informatik Dagstuhl Seminar

More information

A linear kernel for planar red-blue dominating set

A linear kernel for planar red-blue dominating set A linear kernel for planar red-blue dominating set Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos Version of August 24, 2013 (12:41h) Abstract In the Red-Blue Dominating Set problem, we are given

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

Fixed Parameter Algorithms

Fixed Parameter Algorithms Fixed Parameter Algorithms Dániel Marx Tel Aviv University, Israel Open lectures for PhD students in computer science January 9, 2010, Warsaw, Poland Fixed Parameter Algorithms p.1/41 Parameterized complexity

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Assignment # 4 Selected Solutions

Assignment # 4 Selected Solutions Assignment # 4 Selected Solutions Problem 2.3.3 Let G be a connected graph which is not a tree (did you notice this is redundant?) and let C be a cycle in G. Prove that the complement of any spanning tree

More information

KERNELIZATION. Polynomial time preprocessing - data reduction

KERNELIZATION. Polynomial time preprocessing - data reduction KERNELIZATION Polynomial time preprocessing - data reduction Christophe Paul Journée Algo & Calcul - NUMEV 11 Janvier 2012 What does computational theory tell us? SAT is NP-Complete [Cook s Theorem, 1971]

More information

Fixed-Parameter Algorithms

Fixed-Parameter Algorithms Fixed-Parameter Algorithms Rolf Niedermeier and Jiong Guo Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Institut für Informatik Friedrich-Schiller-Universität Jena niedermr@minet.uni-jena.de

More information

Important separators and parameterized algorithms

Important separators and parameterized algorithms Important separators and parameterized algorithms Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary School on Parameterized Algorithms

More information

Coping with NP-Completeness

Coping with NP-Completeness Coping with NP-Completeness Siddhartha Sen Questions: sssix@cs.princeton.edu Some figures obtained from Introduction to Algorithms, nd ed., by CLRS Coping with intractability Many NPC problems are important

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Lecture 4: September 11, 2003

Lecture 4: September 11, 2003 Algorithmic Modeling and Complexity Fall 2003 Lecturer: J. van Leeuwen Lecture 4: September 11, 2003 Scribe: B. de Boer 4.1 Overview This lecture introduced Fixed Parameter Tractable (FPT) problems. An

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Parameterized Complexity of Finding Regular Induced Subgraphs

Parameterized Complexity of Finding Regular Induced Subgraphs Parameterized Complexity of Finding Regular Induced Subgraphs Hannes Moser 1 and Dimitrios M. Thilikos 2 abstract. The r-regular Induced Subgraph problem asks, given a graph G and a non-negative integer

More information

Treewidth: Preprocessing and Kernelization

Treewidth: Preprocessing and Kernelization Treewidth: Preprocessing and Kernelization Hans L. Bodlaender Joint work with Arie Koster, Frank van den Eijkhof, Bart Jansen, Stefan Kratsch, Vincent Kreuzen 1 This talk Survey of work on preprocessing

More information

Directed Feedback Vertex Set Problem is FPT

Directed Feedback Vertex Set Problem is FPT Directed Feedback Vertex Set Problem is FPT Jianer Chen Yang Liu Songjian Lu Department of Computer Science Texas A&M University College Station, TX 77843, USA {chen,yangliu,sjlu}@cs.tamu.edu Abstract

More information

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition Wenjun Li a, Binhai Zhu b, a Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha

More information

Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez

Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez Highway Hierarchies (Dominik Schultes) Presented by: Andre Rodriguez Central Idea To go from Tallahassee to Gainesville*: Get to the I-10 Drive on the I-10 Get to Gainesville (8.8 mi) (153 mi) (1.8 mi)

More information

Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual

Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual Jiong Guo Rolf Niedermeier Sebastian Wernicke Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes J.-F. Couturier 1 P. Heggernes 2 D. Kratsch 1 P. van t Hof 2 1 LITA Université de Lorraine F-57045 Metz France 2 University

More information

Data Reduction and Problem Kernels for Voting Problems

Data Reduction and Problem Kernels for Voting Problems Data Reduction and Problem Kernels for Voting Problems Nadja Betzler Friedrich-Schiller-Universität Jena Dagstuhl Seminar Computational Foundations of Social Choice March 2010 Nadja Betzler (Universität

More information

arxiv: v1 [cs.ds] 8 Jan 2019

arxiv: v1 [cs.ds] 8 Jan 2019 Subset Feedback Vertex Set in Chordal and Split Graphs Geevarghese Philip 1, Varun Rajan 2, Saket Saurabh 3,4, and Prafullkumar Tale 5 arxiv:1901.02209v1 [cs.ds] 8 Jan 2019 1 Chennai Mathematical Institute,

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems Michael R. Fellows 1,, Jiong Guo 2,, Hannes Moser 2,, and Rolf Niedermeier 2 1 PC Research Unit, Office of DVC (Research),

More information

On some problems in graph theory: from colourings to vertex identication

On some problems in graph theory: from colourings to vertex identication On some problems in graph theory: from colourings to vertex identication F. Foucaud 1 Joint works with: E. Guerrini 1,2, R. Klasing 1, A. Kosowski 1,3, M. Kov²e 1,2, R. Naserasr 1, A. Parreau 2, A. Raspaud

More information

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions.

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions. CS 787: Advanced Algorithms NP-Hardness Instructor: Dieter van Melkebeek We review the concept of polynomial-time reductions, define various classes of problems including NP-complete, and show that 3-SAT

More information

DIMAP & Mathematics Institute

DIMAP & Mathematics Institute Structural Solutions to Maximum Independent Set and Related Problems by Konrad Kazimierz Dabrowski Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy DIMAP & Mathematics

More information

Cluster Editing with Locally Bounded Modifications Revisited

Cluster Editing with Locally Bounded Modifications Revisited Cluster Editing with Locally Bounded Modifications Revisited Peter Damaschke Department of Computer Science and Engineering Chalmers University, 41296 Göteborg, Sweden ptr@chalmers.se Abstract. For Cluster

More information

Interaction Between Input and Output-Sensitive

Interaction Between Input and Output-Sensitive Interaction Between Input and Output-Sensitive Really? Mamadou M. Kanté Université Blaise Pascal - LIMOS, CNRS Enumeration Algorithms Using Structure, Lorentz Institute, August 26 th, 2015 1 Introduction

More information

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it. 1 Introduction There are hundreds of NP-complete problems. For a recent selection see http://www. csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson.

More information

Important separators and parameterized algorithms

Important separators and parameterized algorithms Important separators and parameterized algorithms Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary PCSS 2017 Vienna, Austria September

More information

Multicut is FPT. Lyon Cedex 07, France

Multicut is FPT. Lyon Cedex 07, France Multicut is FPT Nicolas Bousquet 1, Jean Daligault 1, and Stéphan Thomassé 2 1 LIRMM (Université Montpellier 2, CNRS), 161 Rue Ada, 34392 Montpellier, France 2 LIP (ENS Lyon, Université Lyon, CNRS, INRIA,

More information

Weak Dynamic Coloring of Planar Graphs

Weak Dynamic Coloring of Planar Graphs Weak Dynamic Coloring of Planar Graphs Caroline Accurso 1,5, Vitaliy Chernyshov 2,5, Leaha Hand 3,5, Sogol Jahanbekam 2,4,5, and Paul Wenger 2 Abstract The k-weak-dynamic number of a graph G is the smallest

More information

Simplicity is Beauty: Improved Upper Bounds for Vertex Cover

Simplicity is Beauty: Improved Upper Bounds for Vertex Cover Simplicity is Beauty: Improved Upper Bounds for Vertex Cover Jianer Chen, Iyad A. Kanj, and Ge Xia Department of Computer Science, Texas A&M University, College Station, TX 77843 email: {chen, gexia}@cs.tamu.edu

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

REU Problems of the Czech Group

REU Problems of the Czech Group REU Problems of the Czech Group Adam Juraszek, Tomáš Masařík, Jitka Novotná, Martin Töpfer, Tomáš Toufar, Jan Voborník, Peter Zeman Mentor: Dr. James Abello DIMACS REU 2015, Piscataway Dominating Sets

More information

Graph Editing to a Given Degree Sequence,

Graph Editing to a Given Degree Sequence, Graph Editing to a Given Degree Sequence, Petr A. Golovach a, George B. Mertzios b, a Department of Informatics, University of Bergen, N-5020 Bergen, Norway b School of Engineering and Computing Sciences,

More information

A Polynomial Kernel for Block Graph Vertex Deletion

A Polynomial Kernel for Block Graph Vertex Deletion A Polynomial Kernel for Block Graph Vertex Deletion O-joung Kwon Institute for Computer Science and Control, Hungarian Academy of Sciences in Budapest, Hungary Joint work with Eun Jung Kim (cnrs - lamsade,

More information

1 Variations of the Traveling Salesman Problem

1 Variations of the Traveling Salesman Problem Stanford University CS26: Optimization Handout 3 Luca Trevisan January, 20 Lecture 3 In which we prove the equivalence of three versions of the Traveling Salesman Problem, we provide a 2-approximate algorithm,

More information

Diameter (r + 1) IPEC 2013 Sophia Antipolis, France September 06, D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4

Diameter (r + 1) IPEC 2013 Sophia Antipolis, France September 06, D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4 Hardness of r-dominating SET on Graphs of Diameter (r + 1) D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4 1 University of Bergen, Bergen, Norway 2 Indian Institute of Science,

More information

arxiv: v3 [cs.ds] 28 Apr 2017

arxiv: v3 [cs.ds] 28 Apr 2017 A Linear Kernel for Planar Red-Blue Dominating Set Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos arxiv:1408.6388v3 [cs.ds] 28 Apr 2017 Abstract In the Red-Blue Dominating Set problem, we are

More information

FPT Algorithms Msc Thesis

FPT Algorithms Msc Thesis Eötvös Loránd University Faculty of Science Ágoston Weisz Mathematics MSc FPT Algorithms Msc Thesis Supervisor: Zoltán Király Departement of Computer Science Budapest, 2016 2 Acknowledgement I would like

More information

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Wei Wang joint with Zishen Yang, Xianliang Liu School of Mathematics and Statistics, Xi an Jiaotong University Dec 20, 2016

More information

Hardness of r-dominating set on graphs of diameter (r + 1)

Hardness of r-dominating set on graphs of diameter (r + 1) Hardness of r-dominating set on graphs of diameter (r + 1) Daniel Lokshtanov 1, Neeldhara Misra 2, Geevarghese Philip 3, M S Ramanujan 4, Saket Saurabh 1,4 University of Bergen, Norway Indian Institute

More information

On the Parameterized Max-Leaf Problems: Digraphs and Undirected Graphs

On the Parameterized Max-Leaf Problems: Digraphs and Undirected Graphs On the Parameterized Max-Leaf Problems: Digraphs and Undirected Graphs Jianer Chen and Yang Liu Department of Computer Science Texas A&M University College Station, TX 77843, USA {chen,yangliu}@cs.tamu.edu

More information

Exact Algorithms Lecture 7: FPT Hardness and the ETH

Exact Algorithms Lecture 7: FPT Hardness and the ETH Exact Algorithms Lecture 7: FPT Hardness and the ETH February 12, 2016 Lecturer: Michael Lampis 1 Reminder: FPT algorithms Definition 1. A parameterized problem is a function from (χ, k) {0, 1} N to {0,

More information

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness

Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Introduction. Some facts about Graph Isomorphism. Proving Graph Isomorphism completeness Graph Let G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) be graphs. Algorithms and Networks Graph Hans Bodlaender and Stefan Kratsch March 24, 2011 An G 1 to G 2 is a bijection φ : V 1 V 2 s.t.: {u, v} E 1 {φ(u),

More information

Vertex Cover Reconfiguration and Beyond

Vertex Cover Reconfiguration and Beyond algorithms Article Vertex Cover Reconfiguration and Beyond Amer E. Mouawad 1, *, Naomi Nishimura 2, Venkatesh Raman 3 and Sebastian Siebertz 4, 1 Department of Informatics, University of Bergen, PB 7803,

More information

Fixed Parameter Complexity of the Weighted Max Leaf Problem

Fixed Parameter Complexity of the Weighted Max Leaf Problem Fixed Parameter Complexity of the Weighted Max Leaf Problem by Bart Jansen Thesis Submitted to the Utrecht University for the degree of Master of Science Supervisors: dr. H. L. Bodlaender and dr. G. Tel

More information

Towards more efficient infection and fire fighting

Towards more efficient infection and fire fighting Towards more efficient infection and fire fighting Peter Floderus Andrzej Lingas Mia Persson The Centre for Mathematical Sciences, Lund University, 00 Lund, Sweden. Email: pflo@maths.lth.se Department

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

Coverage Approximation Algorithms

Coverage Approximation Algorithms DATA MINING LECTURE 12 Coverage Approximation Algorithms Example Promotion campaign on a social network We have a social network as a graph. People are more likely to buy a product if they have a friend

More information

6.006 Introduction to Algorithms. Lecture 25: Complexity Prof. Erik Demaine

6.006 Introduction to Algorithms. Lecture 25: Complexity Prof. Erik Demaine 6.006 Introduction to Algorithms Lecture 25: Complexity Prof. Erik Demaine Today Reductions between problems Decision vs. optimization problems Complexity classes P, NP, co NP, PSPACE, EXPTIME, NP completeness

More information

Graph-Based Data Clustering with Overlaps

Graph-Based Data Clustering with Overlaps Graph-Based Data Clustering with Overlaps Michael R. Fellows 1, Jiong Guo 2, Christian Komusiewicz 2, Rolf Niedermeier 2, and Johannes Uhlmann 2 1 PC Research Unit, Office of DVC (Research), University

More information

Preprocessing for treewidth

Preprocessing for treewidth Preprocessing for treewidth Bodlaender, H.L.; Jansen, B.M.P.; Kratsch, S. Published in: arxiv Published: 21/04/2011 Please check the document version of this publication: A submitted manuscript is the

More information

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques CS 4407 Algorithms Lecture 8: Circumventing Intractability, using Approximation and other Techniques Prof. Gregory Provan Department of Computer Science University College Cork CS 4010 1 Lecture Outline

More information

On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism

On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism Faisal N. Abu-Khzam 1, Édouard Bonnet2 and Florian Sikora 2 1 Lebanese American University, Beirut, Lebanon faisal.abukhzam@lau.edu.lb

More information

Graph-Based Data Clustering with Overlaps

Graph-Based Data Clustering with Overlaps Graph-Based Data Clustering with Overlaps Michael R. Fellows 1, Jiong Guo 2, Christian Komusiewicz 2, Rolf Niedermeier 2, and Johannes Uhlmann 2 1 PC Research Unit, Office of DVC (Research), University

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

arxiv: v1 [cs.ds] 29 Dec 2018

arxiv: v1 [cs.ds] 29 Dec 2018 arxiv:1812.11254v1 [cs.ds] 29 Dec 2018 A Dynamically Turbo-Charged Greedy Heuristic for Graph Coloring Faisal N. Abu-Khzam and Bachir M. Chahine Department of Computer Science and Mathematics Lebanese

More information

A linear kernel for planar red-blue dominating set

A linear kernel for planar red-blue dominating set A linear kernel for planar red-blue dominating set Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos Version of December 9, 2014 Abstract In the Red-Blue Dominating Set problem, we are given a bipartite

More information

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 While we have good algorithms for many optimization problems, the previous lecture showed that many

More information

Sparse Hypercube 3-Spanners

Sparse Hypercube 3-Spanners Sparse Hypercube 3-Spanners W. Duckworth and M. Zito Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia Department of Computer Science, University of

More information

Fast algorithms for max independent set

Fast algorithms for max independent set Fast algorithms for max independent set N. Bourgeois 1 B. Escoffier 1 V. Th. Paschos 1 J.M.M. van Rooij 2 1 LAMSADE, CNRS and Université Paris-Dauphine, France {bourgeois,escoffier,paschos}@lamsade.dauphine.fr

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

9. Parameter Treewidth

9. Parameter Treewidth 9. Parameter Treewidth COMP6741: Parameterized and Exact Computation Serge Gaspers Semester 2, 2017 Contents 1 Algorithms for trees 1 2 Tree decompositions 2 3 Monadic Second Order Logic 4 4 Dynamic Programming

More information

What Makes Equitable Connected Partition Easy

What Makes Equitable Connected Partition Easy What Makes Equitable Connected Partition Easy Rosa Enciso 1, Micheal R. Fellows 2, Jiong Guo 3, Iyad Kanj 4, Frances Rosamond 2, and Ondřej Suchý 5 1 School of Electrical Engineering and Computer Science

More information

Finding a -regular Supergraph of Minimum Order

Finding a -regular Supergraph of Minimum Order Finding a -regular Supergraph of Minimum Order Hans L. Bodlaender a, Richard B. Tan a,b and Jan van Leeuwen a a Department of Computer Science Utrecht University Padualaan 14, 3584 CH Utrecht The Netherlands

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

Approximability Results for the p-center Problem

Approximability Results for the p-center Problem Approximability Results for the p-center Problem Stefan Buettcher Course Project Algorithm Design and Analysis Prof. Timothy Chan University of Waterloo, Spring 2004 The p-center

More information

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic Principles of AI Planning June 8th, 2010 7. Planning as search: relaxed planning tasks Principles of AI Planning 7. Planning as search: relaxed planning tasks Malte Helmert and Bernhard Nebel 7.1 How to

More information

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 18, no. 4, pp. 603 631 (2014) DOI: 10.7155/jgaa.00339 Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Jiong

More information

Fixed-Parameter Algorithm for 2-CNF Deletion Problem

Fixed-Parameter Algorithm for 2-CNF Deletion Problem Fixed-Parameter Algorithm for 2-CNF Deletion Problem Igor Razgon Igor Razgon Computer Science Department University College Cork Ireland A brief introduction to the area of fixed-parameter algorithms 2

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information