Syllabus. simple: no multi-edges undirected edges in-/out-/degree /0: absent 1: present (strongly) connected component subgraph, induced graph

Size: px
Start display at page:

Download "Syllabus. simple: no multi-edges undirected edges in-/out-/degree /0: absent 1: present (strongly) connected component subgraph, induced graph"

Transcription

1 Introduction to Algorithms Syllabus Recap on Graphs: un/directed, weighted Shortest Paths: single-source, all-pairs Minimum Spanning Tree: Prim, Kruskal Maximum Flow: Ford-Fulkerson, Edmonds-Karp Maximum (weighted) Bipartite Matching Minimum Cut graph recap Basic graph concepts: E V V directed edges simple: no multi-edges nor loops E symmetric: undirected edges in-/out-/degree /0: absent (un-/directed) path w:e edge weights 1: present (strongly) connected component subgraph, induced graph Handshaking lemma: #E = v V indeg(v) = v V outdeg(v) Adjacency/weight matrix A G V V Powers of A G

2 graph examples diameter? planar? Connectedness ; s,t V DFS(v) // Is t reachable in G from v? If v is marked visited Return (false); If v=t Return (true); Mark v as visited; For each neighbor u of v do if DFS(u) Return (true); Return (false); Adjacency/weight matrix A G Output: Is there a (directed) path from s to t in G? Reachable(G,s,t) For each vertex v V Mark v as unvisited; Return DFS(s) A u,v = no edge A u,u = 0

3 Shortest path(s) ; s,t V s V Adjacency/weight matrix A G Output: For every t V, weight d(s,t) of lightest path from s to t. Dijkstra s s Algorithm: Mark all vertices Initialize Q:= :=V. set of unvisited vertices vertices unvisited visited. For each vertex v let d v := ; d s :=0. While Q do Extract from Q a vertex u with least d u. Mark u as visited. For each unvisited neighbor u of v do If d':= :=d u +A uv < d v tentative distance from s Correctness??? then decrease d v :=d' d'. O(n extractmin+ m decreasekey) array array O(n n+m 1) All shortest paths Adjacency/weight matrix A G Output: For every t V, weight d(s,t) of lightest path from s to t. Loop invariant d v d(s,v). Suppose M := { v : d v > d(s,v) ) }. Then δ := min{ d(s,v) ) : v M } and v M For (s,, u, v) Thus d(s,v)= d(s,u)+ )+A uv with d(s,v)= )=δ exist. a lightest path to v, it holds δ > d(s,u) = d u. and u gets extracted from Q before v. While Q do Extract from Q a vertex u with least d u. Mark u as visited. For each unvisited neighbor u of v do in increasing If d':= :=d u +A uv < d v then decrease d v :=d' d'. order w.r.t. d For correctness, recall main loop: While

4 All shortest paths Adjacency/weight matrix A G Output: For every all s,t V, weight d(s,t) of lightest path from s to t. Floyd-Warshall Algorithm: For all pairs (u,v)) of vertices, initialize d u,v For each vertex u V For each vertex v V For each vertex w V Correctness? If d v,w > d v,u + d u,w d v,w := d v,u then v,u + d u,w u,v :=A u,v A u,v = no edge A u,u = 0 runtime O(n³) Min. Spanning Tree Symmetric Output: T E spanning tree of least weight s.t. (V,T) connected A u,v = no edge A u,u = 0

5 Prim s Algorithm Symmetric Output: T E spanning tree of least weight 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree. 3. Repeat step 2 (until all vertices are in the tree) Prim s Algorithm Symmetric Output: T E spanning tree of least weight Initialize F:= :=, Q:= :=V.. Also: d v := and e v :=0 for all v V. While Q do Extract from Q a vertex u with least d u. If e u 0, add edge (u,e u ) to F. For each neighbor v Q of u do If A uv < d v then decrease d v := A uv ; e v :=u; O(n extractmin+ m decreasekey)

6 Kruskal Algorithm Symmetric Initialize the forest (=set of trees) with edges F:={} :={},, i.e., such that each vertex v V is a separate tree. While E {} and F is not yet spanning: Extract from E edge e of least weight. If e connects two different trees of F then add e to F,, thus? combining two trees into a single one. Output: T E spanning tree of least weight O(1) after initial sorting Max Flow Input: s,t V, A G Output: f:e max. flow from s to t Goal: maximize v:( :(s,v) E f(s,v) = u:( :(u,t) E f(u,t) f flow (from s to t) Lemma: There exists an integral maximal flow. Def: A flow from s to t in G with weights A 0 is a function f:e such that v V\{s,t}: u:(u,v) E f(u,v) = w:(v,w) E f(v,w). It is admissible if it holds f(u,v) A u,v

7 Ford-Fulkerson Input: s,t V, A G Output: f:e max. flow from s to t Goal: maximize f := := The residual G v:( :(s,v) E f(s,v) f of a graph G with flow f has edges E f := { (u,v) : A u,v > f(u,v) f(v,u) > 0 } Def: Ford-Fulkerson A Fulkerson: flow from s to Initialize t in G with f 0. weights Correctness? A 0 is Runtime a function Termination? O(m f ) ) f:e While there such exists that v V\{s,t}: a path P = (s=u u:(u,v) E 1, u K f(u,v) =t) from = s w:(v,w) E to t in Gf(v,w). f It is Let admissible α := min{ if Ait uk holds f(u,v) A,u k+1 +1 f(u k,u k+1 +1) ) : k=1 K 1 u,v 1 } and f := f+α P. Edmonds-Karp Input: s,t V, A G Output: f:e max. flow from s to t Goal: maximize f := := The residual G v:( :(s,v) E f(s,v) f of a graph G with flow f has edges E f := { (u,v) : A u,v > f(u,v) f(v,u) > 0 } Edmonds-Karp Ford-Fulkerson Fulkerson: Karp: Initialize f 0. shortest Runtime O(n m²) O(m f ) ) While there exists a path P = (s=u 1, u K =t) from s to t in G f Let α := min{ A uk,u f(u k+1 k,u k+1) ) : k=1 K 1 1 } and f := f+α P.

8 Specification: Bipartite graph G=(U,V,E) Output: F E max. (weighted) matching U max. Bipartite Matching U V V Edmonds-Karp Ford-Fulkerson Fulkerson: Karp: Initialize f 0. shortest Runtime O(n m²) While there exists a path P from s to t in G f Let α := min{ A uk,u k+1 +1 f(u k,u k+1 +1) ) : k=1 K 1 1 } and f := f+α P. Min Cut Input: s,t V, A G Output: C E min.cut between s,t Def: A cut from s to t in G is a subset C V s.t. s C, t C. It has capacity Theorem: capacity λ(c) = (u,v) E min λ(c) = C cut (s,t) Proof " ":": For every C,f: λ(c) f.. " ":": Consider C V all vertices reachable Goal: minimize imize λ(c) : C cut (s,t) from s in G f for max. f from Ford-Fulkerson. Fulkerson. u C,v C max f f flow (s,t) A u,v

Maximum Flow. Flow Networks. Flow Networks Ford-Fulkerson Method Edmonds-Karp Algorithm Push-Relabel Algorithms. Example Flow Network

Maximum Flow. Flow Networks. Flow Networks Ford-Fulkerson Method Edmonds-Karp Algorithm Push-Relabel Algorithms. Example Flow Network Flow Networks Ford-Fulkerson Method Edmonds-Karp Algorithm Push-Relabel Algorithms Maximum Flow Flow Networks A flow network is a directed graph where: Each edge (u,v) has a capacity c(u,v) 0. If (u,v)

More information

Minimum Spanning Tree (undirected graph)

Minimum Spanning Tree (undirected graph) 1 Minimum Spanning Tree (undirected graph) 2 Path tree vs. spanning tree We have constructed trees in graphs for shortest path to anywhere else (from vertex is the root) Minimum spanning trees instead

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Jessica Su (some parts copied from CLRS / last quarter s notes)

Jessica Su (some parts copied from CLRS / last quarter s notes) 1 Max flow Consider a directed graph G with positive edge weights c that define the capacity of each edge. We can identify two special nodes in G: the source node s and the sink node t. We want to find

More information

Today. Maximum flow. Maximum flow. Problem

Today. Maximum flow. Maximum flow. Problem 5 Maximum Flow (slides 1 4) Today Maximum flow Algorithms and Networks 2008 Maximum flow problem Applications Briefly: Ford-Fulkerson; min cut max flow theorem Preflow push algorithm Lift to front algorithm

More information

We ve done. Introduction to the greedy method Activity selection problem How to prove that a greedy algorithm works Fractional Knapsack Huffman coding

We ve done. Introduction to the greedy method Activity selection problem How to prove that a greedy algorithm works Fractional Knapsack Huffman coding We ve done Introduction to the greedy method Activity selection problem How to prove that a greedy algorithm works Fractional Knapsack Huffman coding Matroid Theory Now Matroids and weighted matroids Generic

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

Network flows and Menger s theorem

Network flows and Menger s theorem Network flows and Menger s theorem Recall... Theorem (max flow, min cut strong duality). Let G be a network. The maximum value of a flow equals the minimum capacity of a cut. We prove this strong duality

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Chapter 23. Minimum Spanning Trees

Chapter 23. Minimum Spanning Trees Chapter 23. Minimum Spanning Trees We are given a connected, weighted, undirected graph G = (V,E;w), where each edge (u,v) E has a non-negative weight (often called length) w(u,v). The Minimum Spanning

More information

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution

Taking Stock. Last Time Flows. This Time Review! 1 Characterize the structure of an optimal solution Taking Stock IE170: Algorithms in Systems Engineering: Lecture 26 Jeff Linderoth Last Time Department of Industrial and Systems Engineering Lehigh University April 2, 2007 This Time Review! Jeff Linderoth

More information

Undirected Graphs. Hwansoo Han

Undirected Graphs. Hwansoo Han Undirected Graphs Hwansoo Han Definitions Undirected graph (simply graph) G = (V, E) V : set of vertexes (vertices, nodes, points) E : set of edges (lines) An edge is an unordered pair Edge (v, w) = (w,

More information

CS261: Problem Set #2

CS261: Problem Set #2 CS261: Problem Set #2 Due by 11:59 PM on Tuesday, February 9, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24 /8/11 Single-Source Shortest Path Chapter 1 Shortest Paths Finding the shortest path between two nodes comes up in many applications o Transportation problems o Motion planning o Communication problems

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

Strongly connected: A directed graph is strongly connected if every pair of vertices are reachable from each other.

Strongly connected: A directed graph is strongly connected if every pair of vertices are reachable from each other. Directed Graph In a directed graph, each edge (u, v) has a direction u v. Thus (u, v) (v, u). Directed graph is useful to model many practical problems (such as one-way road in traffic network, and asymmetric

More information

Week 12: Minimum Spanning trees and Shortest Paths

Week 12: Minimum Spanning trees and Shortest Paths Agenda: Week 12: Minimum Spanning trees and Shortest Paths Kruskal s Algorithm Single-source shortest paths Dijkstra s algorithm for non-negatively weighted case Reading: Textbook : 61-7, 80-87, 9-601

More information

CS 561, Lecture 9. Jared Saia University of New Mexico

CS 561, Lecture 9. Jared Saia University of New Mexico CS 561, Lecture 9 Jared Saia University of New Mexico Today s Outline Minimum Spanning Trees Safe Edge Theorem Kruskal and Prim s algorithms Graph Representation 1 Graph Definition A graph is a pair of

More information

CIS 121 Data Structures and Algorithms Minimum Spanning Trees

CIS 121 Data Structures and Algorithms Minimum Spanning Trees CIS 121 Data Structures and Algorithms Minimum Spanning Trees March 19, 2019 Introduction and Background Consider a very natural problem: we are given a set of locations V = {v 1, v 2,..., v n }. We want

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Index. stack-based, 400 A* algorithm, 325

Index. stack-based, 400 A* algorithm, 325 Index Abstract transitive closure, 174-175, 217-221 Active vertex, 411 Acyclic graph. See Digraph; Directed acyclic graph (DAG) Acyclic network, 313-321, 334-335 maxflow, 427-429 Adjacency-lists representation,

More information

Graphs. Edges may be directed (from u to v) or undirected. Undirected edge eqvt to pair of directed edges

Graphs. Edges may be directed (from u to v) or undirected. Undirected edge eqvt to pair of directed edges (p 186) Graphs G = (V,E) Graphs set V of vertices, each with a unique name Note: book calls vertices as nodes set E of edges between vertices, each encoded as tuple of 2 vertices as in (u,v) Edges may

More information

Maximum flows & Maximum Matchings

Maximum flows & Maximum Matchings Chapter 9 Maximum flows & Maximum Matchings This chapter analyzes flows and matchings. We will define flows and maximum flows and present an algorithm that solves the maximum flow problem. Then matchings

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Minimum Spanning Trees Representation of Weighted Graphs Properties of Minimum Spanning Trees Prim's Algorithm Kruskal's Algorithm Philip Bille Minimum Spanning Trees Minimum Spanning

More information

Minimum Spanning Trees

Minimum Spanning Trees CSMPS 2200 Fall Minimum Spanning Trees Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk 11/6/ CMPS 2200 Intro. to Algorithms 1 Minimum spanning trees Input: A

More information

Unweighted Graphs & Algorithms

Unweighted Graphs & Algorithms Unweighted Graphs & Algorithms Zachary Friggstad Programming Club Meeting References Chapter 4: Graph (Section 4.2) Chapter 22: Elementary Graph Algorithms Graphs Features: vertices/nodes/dots and edges/links/lines

More information

Matching in Bipartite Graphs

Matching in Bipartite Graphs July 2, 2014 We have a bipartite graph G = (C, R, E) where R represents a set of resources and C represents a set of customers. The edge set shows a customer in C likes (willing to have) a subset of resources

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Data structures: Union-Find We need to store a set of disjoint sets with the following operations: Make-Set(v): generate a set {v}. Name of the set

More information

Parallel Breadth First Search

Parallel Breadth First Search CSE341T/CSE549T 11/03/2014 Lecture 18 Parallel Breadth First Search Today, we will look at a basic graph algorithm, breadth first search (BFS). BFS can be applied to solve a variety of problems including:

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Classic Graph Theory Problems

Classic Graph Theory Problems Classic Graph Theory Problems Hiroki Sayama sayama@binghamton.edu The Origin Königsberg bridge problem Pregel River (Solved negatively by Euler in 176) Representation in a graph Can all the seven edges

More information

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths

Part VI Graph algorithms. Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths Part VI Graph algorithms Chapter 22 Elementary Graph Algorithms Chapter 23 Minimum Spanning Trees Chapter 24 Single-source Shortest Paths 1 Chapter 22 Elementary Graph Algorithms Representations of graphs

More information

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm Spanning Trees 1 Spanning Trees the minimum spanning tree problem three greedy algorithms analysis of the algorithms 2 The Union-Find Data Structure managing an evolving set of connected components implementing

More information

PERFECT MATCHING THE CENTRALIZED DEPLOYMENT MOBILE SENSORS THE PROBLEM SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS OF MOBILE SENSORS

PERFECT MATCHING THE CENTRALIZED DEPLOYMENT MOBILE SENSORS THE PROBLEM SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS OF MOBILE SENSORS SECOND PART: WIRELESS NETWORKS 2.B. SENSOR NETWORKS THE CENTRALIZED DEPLOYMENT OF MOBILE SENSORS I.E. THE MINIMUM WEIGHT PERFECT MATCHING 1 2 ON BIPARTITE GRAPHS Prof. Tiziana Calamoneri Network Algorithms

More information

Dijkstra s algorithm for shortest paths when no edges have negative weight.

Dijkstra s algorithm for shortest paths when no edges have negative weight. Lecture 14 Graph Algorithms II 14.1 Overview In this lecture we begin with one more algorithm for the shortest path problem, Dijkstra s algorithm. We then will see how the basic approach of this algorithm

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

1 Minimum Spanning Trees (MST) b 2 3 a. 10 e h. j m

1 Minimum Spanning Trees (MST) b 2 3 a. 10 e h. j m Minimum Spanning Trees (MST) 8 0 e 7 b 3 a 5 d 9 h i g c 8 7 6 3 f j 9 6 k l 5 m A graph H(U,F) is a subgraph of G(V,E) if U V and F E. A subgraph H(U,F) is called spanning if U = V. Let G be a graph with

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Minimum Spanning Tree (5A) Young Won Lim 5/11/18

Minimum Spanning Tree (5A) Young Won Lim 5/11/18 Minimum Spanning Tree (5A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Outline. Graphs. Divide and Conquer.

Outline. Graphs. Divide and Conquer. GRAPHS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Outline Graphs.

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Shortest Paths: Basics. Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender

Shortest Paths: Basics. Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender Shortest Paths: Basics Algorithms and Networks 2016/2017 Johan M. M. van Rooij Hans L. Bodlaender 1 Shortest path problem(s) Undirected single-pair shortest path problem Given a graph G=(V,E) and a length

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Overview Problem A town has a set of houses and a set of roads. A road connects and only houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and

More information

CS 125 Section #5 Graph Traversal and Linear Programs October 6, 2016

CS 125 Section #5 Graph Traversal and Linear Programs October 6, 2016 CS 125 Section #5 Graph Traversal and Linear Programs October 6, 2016 1 Depth first search 1.1 The Algorithm Besides breadth first search, which we saw in class in relation to Dijkstra s algorithm, there

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Design and Analysis of Algorithms February, 01 Massachusetts Institute of Technology 6.046J/18.410J Profs. Dana Moshkovitz and Bruce Tidor Handout 8 Problem Set Solutions This problem set is due at 9:00pm

More information

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012 topological ordering, minimum spanning tree, Union-Find problem Jiří Vyskočil, Radek Mařík 2012 Subgraph subgraph A graph H is a subgraph of a graph G, if the following two inclusions are satisfied: 2

More information

Minimum Spanning Trees My T. UF

Minimum Spanning Trees My T. UF Introduction to Algorithms Minimum Spanning Trees @ UF Problem Find a low cost network connecting a set of locations Any pair of locations are connected There is no cycle Some applications: Communication

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming and data-structures CS/ENGRD 20 SUMMER 208 Lecture 3: Shortest Path http://courses.cs.cornell.edu/cs20/208su Graph Algorithms Search Depth-first search Breadth-first search

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Minimum spanning trees

Minimum spanning trees Minimum spanning trees [We re following the book very closely.] One of the most famous greedy algorithms (actually rather family of greedy algorithms). Given undirected graph G = (V, E), connected Weight

More information

Graph Algorithms. Textbook reading. Chapter 3 Chapter 4. CSci 3110 Graph Algorithms 1/41

Graph Algorithms. Textbook reading. Chapter 3 Chapter 4. CSci 3110 Graph Algorithms 1/41 CSci 3110 Graph Algorithms 1/41 Graph Algorithms Textbook reading Chapter 3 Chapter 4 CSci 3110 Graph Algorithms 2/41 Overview Design principle: Learn the structure of a graph by systematic exploration

More information

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1 Undirected Graphs Terminology. Free Trees. Representations. Minimum Spanning Trees (algorithms: Prim, Kruskal). Graph Traversals (dfs, bfs). Articulation points & Biconnected Components. Graph Matching

More information

What is a minimal spanning tree (MST) and how to find one

What is a minimal spanning tree (MST) and how to find one What is a minimal spanning tree (MST) and how to find one A tree contains a root, the top node. Each node has: One parent Any number of children A spanning tree of a graph is a subgraph that contains all

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

2 A Template for Minimum Spanning Tree Algorithms

2 A Template for Minimum Spanning Tree Algorithms CS, Lecture 5 Minimum Spanning Trees Scribe: Logan Short (05), William Chen (0), Mary Wootters (0) Date: May, 0 Introduction Today we will continue our discussion of greedy algorithms, specifically in

More information

Theory of Computing. Lecture 7 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 7 MAS 714 Hartmut Klauck Theory of Computing Lecture 7 MAS 714 Hartmut Klauck Shortest paths in weighted graphs We are given a graph G (adjacency list with weights W(u,v)) No edge means W(u,v)=1 We look for shortest paths from

More information

Shortest Paths: Algorithms for standard variants. Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender

Shortest Paths: Algorithms for standard variants. Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender Shortest Paths: Algorithms for standard variants Algorithms and Networks 2017/2018 Johan M. M. van Rooij Hans L. Bodlaender 1 Shortest path problem(s) Undirected single-pair shortest path problem Given

More information

Announcements Problem Set 5 is out (today)!

Announcements Problem Set 5 is out (today)! CSC263 Week 10 Announcements Problem Set is out (today)! Due Tuesday (Dec 1) Minimum Spanning Trees The Graph of interest today A connected undirected weighted graph G = (V, E) with weights w(e) for each

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 11: Graphs Graph Traversals: BFS Feb 16, 2018 What s Next What s Next Graph Algorithms: Graphs: Key Definitions, Properties, Representations Exploring

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) Exam. Roll No... END-TERM EXAMINATION Paper Code : MCA-205 DECEMBER 2006 Subject: Design and analysis of algorithm Time: 3 Hours Maximum Marks: 60 Note: Attempt

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

Cuts, Connectivity, and Flow

Cuts, Connectivity, and Flow Cuts, Connectivity, and Flow Vertex Cut and Connectivity A separating set or vertex cut of a graph G is a set S V(G) such that G S G S has more than one component A graph G is k-connected if every vertex

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

Minimum Spanning Trees. Minimum Spanning Trees. Minimum Spanning Trees. Minimum Spanning Trees

Minimum Spanning Trees. Minimum Spanning Trees. Minimum Spanning Trees. Minimum Spanning Trees Properties of Properties of Philip Bille 0 0 Graph G Not connected 0 0 Connected and cyclic Connected and acyclic = spanning tree Total weight = + + + + + + = Applications Network design. Computer, road,

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms

CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms Professor Henry Carter Fall 2016 Recap Greedy algorithms iterate locally optimal choices to construct a globally optimal solution

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Student Name and ID Number. MATH 3012, Quiz 3, April 16, 2018, WTT

Student Name and ID Number. MATH 3012, Quiz 3, April 16, 2018, WTT MATH 3012, Quiz 3, April 16, 2018, WTT Student Name and ID Number 1. A graph with weights on edges is shown below. In the space to the right of the figure, list in order the edges which make up a minimum

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1 Communication Networks I December, Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page Communication Networks I December, Notation G = (V,E) denotes a

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Dan Grossman Fall 2013

CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Dan Grossman Fall 2013 CSE373: Data Structures & Algorithms Lecture 7: Minimum Spanning Trees Dan Grossman Fall 03 Spanning Trees A simple problem: Given a connected undirected graph G=(V,E), find a minimal subset of edges such

More information

1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1, 2,...

1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1, 2,... MATH 3012, Quiz 3, November 24, 2015, WTT Student Name and ID Number 1. Let n and m be positive integers with n m. a. Write the inclusion/exclusion formula for the number S(n, m) of surjections from {1,

More information

Network Design and Optimization course

Network Design and Optimization course Effective maximum flow algorithms Modeling with flows Network Design and Optimization course Lecture 5 Alberto Ceselli alberto.ceselli@unimi.it Dipartimento di Tecnologie dell Informazione Università degli

More information

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ.

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. Graph Algorithms A Brief Introduction 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. 目录 2015/5/7 1 Graph and Its Applications 2 Introduction to Graph Algorithms 3 References

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Topological sort Shortest paths Adam Smith The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle

More information

CS350: Data Structures Dijkstra s Shortest Path Alg.

CS350: Data Structures Dijkstra s Shortest Path Alg. Dijkstra s Shortest Path Alg. James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Shortest Path Algorithms Several different shortest path algorithms exist

More information

Weighted Graph Algorithms Presented by Jason Yuan

Weighted Graph Algorithms Presented by Jason Yuan Weighted Graph Algorithms Presented by Jason Yuan Slides: Zachary Friggstad Programming Club Meeting Weighted Graphs struct Edge { int u, v ; int w e i g h t ; // can be a double } ; Edge ( int uu = 0,

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

& ( D. " mnp ' ( ) n 3. n 2. ( ) C. " n

& ( D.  mnp ' ( ) n 3. n 2. ( ) C.  n CSE Name Test Summer Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n " n matrices is: A. " n C. "% n B. " max( m,n, p). The

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1

Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1 Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1 Minimum Spanning Tree Problem Given: Undirected connected weighted graph (G, W ) Output: An MST of G We have already

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Introductory Remarks

Introductory Remarks Chapter 8: Graphs Introductory Remarks Although trees are quite flexible, they have an inherent limitation in that they can only express hierarchical structures Fortunately, we can generalize a tree to

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

UNIT 3. Greedy Method. Design and Analysis of Algorithms GENERAL METHOD

UNIT 3. Greedy Method. Design and Analysis of Algorithms GENERAL METHOD UNIT 3 Greedy Method GENERAL METHOD Greedy is the most straight forward design technique. Most of the problems have n inputs and require us to obtain a subset that satisfies some constraints. Any subset

More information