Diagrams encoding group actions

Size: px
Start display at page:

Download "Diagrams encoding group actions"

Transcription

1 University of California, Riverside July 27, 2012

2 Segal monoids Definition A Segal monoid is a functor X : op ssets such that X 0 = [0] and the Segal maps X n (X 1 ) n are weak equivalences for n 2. There is a model structure SeMon on the category of functors X : op ssets with X 0 = [0], with fibrant objects Segal monoids.

3 Segal monoids Definition A Segal monoid is a functor X : op ssets such that X 0 = [0] and the Segal maps X n (X 1 ) n are weak equivalences for n 2. There is a model structure SeMon on the category of functors X : op ssets with X 0 = [0], with fibrant objects Segal monoids. Theorem (B) There is a Quillen equivalence smon SeMon. In other words, every Segal monoid can be rigidified to a simplicial monoid.

4 Segal categories Definition A Segal category is a functor X : op ssets such that X 0 is discrete and the Segal maps are weak equivalences for n 2. X n X 1 X0 X0 }{{} n There is a model structure SeCat with fibrant objects Segal categories, which we can compare to categories enriched in simplicial sets, which form a model category SC.

5 Comparison to simplicial categories Theorem (B) There is a Quillen equivalence SC SeCat. These give two of the models for (, 1)-categories.

6 Segal groups To model a group structure, we can change the Segal maps. The usual Segal maps encode composition: ( ) [2]. On the other hand, Bousfield-Segal maps also force the existence of inverses: ( ) [2]. Theorem (Bousfield, B) There is a Quillen equivalence sgp SeGp.

7 Category actions on categories Definition The action of a category C on a category D, denoted C D, is given by: such that a moment map µ: Mor(D) Ob(C), an action map : Mor(C) s µ Mor(D) Mor(D), the moment respects the action: µ(f g) = t(f ), the action is associative, the identity map of any object acts trivially, µ(g g ) = µ(g), and s(f g) = s(g).

8 A morphism of actions is given by functors C C and D D respecting the moment and action maps. Category actions and morphisms form a category CatAct. Notice that it suffices to define the moment map only on objects, since µ(g) = µ(id t(g) g) = µ(id t(g) ).

9 Key example Example Let C 1,1 and D 1,1 be the categories 1 y z p p g p id x g x 0 w with moment map µ defined by µ(w) =, µ(x) = 0, µ(y) = µ(z) = 1. Then C 1,1 acts on D 1,1 as indicated by the maps in D 1,1.

10 Key example Example Let C 1,1 and D 1,1 be the categories 1 y z p p g p id x g x 0 w with moment map µ defined by µ(w) =, µ(x) = 0, µ(y) = µ(z) = 1. Then C 1,1 acts on D 1,1 as indicated by the maps in D 1,1. More generally, if A acts on B, then Mor(A) s µ Mor(B) = Hom CatAct (C 1,1 D 1,1, A B).

11 C n,k and D n,k More generally, define C n,k to be the category 0 k n. Define D n,k inductively, beginning with D 0,k = [k]. The moment map to the objects of C 0,k is given by { i 0 i < k µ(i) = 0 i = k.

12 C n,k and D n,k Then D 1,k looks like 0 1 k with µ( ) = k for each object.

13 C n,k and D n,k Then D 1,k looks like 0 1 k with µ( ) = k for each object. Then D n,k is built from D n 1,k by adding new objects (n, k) for each morphism h in D n 1,k with moment n 1, such that µ(n, k) = n, and morphisms p n 1,n h : s(h) (n, k).

14 Examples Figure: The categories D 0,2, D 1,2, and D 2,2

15 Action of C n,k on D n,k The action of C n,k on D n,k is given by p l,l h = p l l,l ( (p l,l+1 h)). Write [n k] for C n,k D n,k.

16 Action of C n,k on D n,k The action of C n,k on D n,k is given by p l,l h = p l l,l ( (p l,l+1 h)). Write [n k] for C n,k D n,k. A map X : [n k] A B is essentially a pair of functors α: [n] A and β : [k] B with µ(β(k)) = α(0). Taking all values of n and k gives a category.

17 The category Ω Definition (Moerdijk-Weiss) Let Ω be the category whose objects are rooted trees and whose morphisms are given by the operad morphisms between the (colored) operads generated by them. Denote by η the tree with no vertices and one edge. Definition A dendroidal set is a functor Ω op Sets. Given an object T of Ω, let Ω[T ] denote the representable functor Hom Ω (, T ), called the standard T -dendrex.

18 Dendroidal spaces Similarly, a dendroidal space is a functor X : Ω op ssets. Consider the category of dendroidal spaces X such that X (η) = [0]. We can also impose a condition similar to the Segal condition for simplicial spaces.

19 Dendroidal spaces Similarly, a dendroidal space is a functor X : Ω op ssets. Consider the category of dendroidal spaces X such that X (η) = [0]. We can also impose a condition similar to the Segal condition for simplicial spaces. Definition Let T be an object of Ω. Its Segal core Sc[T ] is the subobject of the T -dendrex given by all the corollas in T. In other words, Sc[T ] = v Ω[C n(v) ] where v denotes a vertex of T, n(v) denotes the number of input vertices of v, and C n denotes the n-corolla.

20 Segal operads So we have an inclusion Sc[T ] Ω[T ] for any tree T which we can use to define Segal maps. Definition A Segal operad is a dendroidal space X : Ω op ssets such that X (η) = [0] and the induced map Map(Ω[T ], X ) Map(Sc[T ], X ) is a weak equivalence of simplicial sets for all objects T of Ω. Since we have imposed the condition that X (η) = [0], we expect that Segal operads should correspond to ordinary (single-colored) operads.

21 Rigidification of Segal operads Theorem (B-Hackney) There is a model structure SeOper on the category of dendroidal spaces X with X (η) = [0] such that the fibrant objects are Segal operads.

22 Rigidification of Segal operads Theorem (B-Hackney) There is a model structure SeOper on the category of dendroidal spaces X with X (η) = [0] such that the fibrant objects are Segal operads. Let soper denote the category of simplicial operads. Theorem (B-Hackney) There is a Quillen equivalence soper SeOper. The Quillen equivalence between colored Segal operads and simplicial colored operads (without fixing the color) has been established by Cisinski and Moerdijk.

23 Categories acting on operads Let S be an object of Ω. Let C n,s be the free category with objects given by the edges of S and 0, 1,..., n, with 0 identified with the root edge of S, and morphisms generated by the p i,i+1 : i i + 1.

24 Categories acting on operads Let S be an object of Ω. Let C n,s be the free category with objects given by the edges of S and 0, 1,..., n, with 0 identified with the root edge of S, and morphisms generated by the p i,i+1 : i i + 1. Let O 0,S be the free operad on S. Define O n,s inductively similarly to the case for categories.

25 Categories acting on operads Let [n S] = C n,s O n,s. A map [n S] A P is determined by maps α: [n] A and β : S P. We get a category Ω of all such category actions.

26 Homotopy group actions on operads Consider the category of functors ( Ω) op ssets such that the image of [0 η] is [0]. We can localize with respect to the Segal maps for Ω and the Bousfield-Segal maps for to get a model structure Se(Gp Oper). Let sgp soper be the category of simplicial groups acting on simplicial operads.

27 Homotopy group actions on operads Consider the category of functors ( Ω) op ssets such that the image of [0 η] is [0]. We can localize with respect to the Segal maps for Ω and the Bousfield-Segal maps for to get a model structure Se(Gp Oper). Let sgp soper be the category of simplicial groups acting on simplicial operads. Theorem (B-Hackney) There is a Quillen equivalence sgp soper Se(Gp Oper).

Homotopy theory of higher categorical structures

Homotopy theory of higher categorical structures University of California, Riverside August 8, 2013 Higher categories In a category, we have morphisms, or functions, between objects. But what if you have functions between functions? This gives the idea

More information

Action graphs and Catalan numbers

Action graphs and Catalan numbers University of California, Riverside March 4, 2015 Catalan numbers The Catalan numbers are a sequence of natural numbers C 0, C 1, C 2,... given by the recursive formula C 0 = 1 C k+1 = k C i C k i. i=0

More information

EQUIVALENCE OF MODELS FOR EQUIVARIANT (, 1)-CATEGORIES

EQUIVALENCE OF MODELS FOR EQUIVARIANT (, 1)-CATEGORIES EQUIVALENCE OF MODELS FOR EQUIVARIANT (, 1)-CATEGORIES JULIA E. BERGNER Abstract. In this paper we show that the known models for (, 1)-categories can all be extended to equivariant versions for any discrete

More information

ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES

ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1 26 ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES JULIA E. BERGNER (communicated by Name of Editor) Abstract We modify a previous

More information

EQUIVARIANT COMPLETE SEGAL SPACES

EQUIVARIANT COMPLETE SEGAL SPACES EQUIVARIANT COMPLETE SEGAL SPACES JULIA E. BERGNER AND STEVEN GREG CHADWICK Abstract. In this paper we give a model for equivariant (, 1)-categories. We modify an approach of Shimakawa for equivariant

More information

in simplicial sets, or equivalently a functor

in simplicial sets, or equivalently a functor Contents 21 Bisimplicial sets 1 22 Homotopy colimits and limits (revisited) 10 23 Applications, Quillen s Theorem B 23 21 Bisimplicial sets A bisimplicial set X is a simplicial object X : op sset in simplicial

More information

ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES

ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1?? ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES JULIA E. BERGNER (communicated by Name of Editor) Abstract In previous

More information

Lecture 008 (November 13, 2009)

Lecture 008 (November 13, 2009) Lecture 008 (November 13, 2009) 17 The Dold-Kan correspondence Suppose that A : op R Mod is a simplicial R-module. Examples to keep in mind are the free simplicial objects R(X) associated to simplicial

More information

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules.

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. Lecture 009 (November 25, 2009) 20 Homotopy colimits Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. The objects of this category are the functors

More information

Rigidification of quasi-categories

Rigidification of quasi-categories Rigidification of quasi-categories DANIEL DUGGER DAVID I. SPIVAK We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification

More information

A MODEL STRUCTURE FOR QUASI-CATEGORIES

A MODEL STRUCTURE FOR QUASI-CATEGORIES A MODEL STRUCTURE FOR QUASI-CATEGORIES EMILY RIEHL DISCUSSED WITH J. P. MAY 1. Introduction Quasi-categories live at the intersection of homotopy theory with category theory. In particular, they serve

More information

Homotopy theories of dynamical systems

Homotopy theories of dynamical systems University of Western Ontario July 15, 2013 Dynamical systems A dynamical system (or S-dynamical system, or S-space) is a map of simplicial sets φ : X S X, giving an action of a parameter space S on a

More information

2 J.E. BERGNER is the discrete simplicial set X 0. Also, given a simplicial space W, we denote by sk n W the n-skeleton of W, or the simplicial space

2 J.E. BERGNER is the discrete simplicial set X 0. Also, given a simplicial space W, we denote by sk n W the n-skeleton of W, or the simplicial space A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES JULIA E. BERGNER Abstract. In this note we prove that Reedy fibrant Segal categories are fibrant objects in the model category structure SeCatc. Combining

More information

WORKSHOP ON THE HOMOTOPY THEORY OF HOMOTOPY THEORIES

WORKSHOP ON THE HOMOTOPY THEORY OF HOMOTOPY THEORIES WORKSHOP ON THE HOMOTOPY THEORY OF HOMOTOPY THEORIES JULIA E. BERGNER Abstract. These notes are from a series of lectures given at the Workshop on the Homotopy Theory of Homotopy Theories which took place

More information

Classifying Spaces and Spectral Sequences

Classifying Spaces and Spectral Sequences Classifying Spaces and Spectral Sequences Introduction Christian Carrick December 2, 2016 These are a set of expository notes I wrote in preparation for a talk given in the MIT Kan Seminar on December

More information

Combinatorics I (Lecture 36)

Combinatorics I (Lecture 36) Combinatorics I (Lecture 36) February 18, 2015 Our goal in this lecture (and the next) is to carry out the combinatorial steps in the proof of the main theorem of Part III. We begin by recalling some notation

More information

The formal theory of homotopy coherent monads

The formal theory of homotopy coherent monads The formal theory of homotopy coherent monads Emily Riehl Harvard University http://www.math.harvard.edu/~eriehl 23 July, 2013 Samuel Eilenberg Centenary Conference Warsaw, Poland Joint with Dominic Verity.

More information

Simplicial Objects and Homotopy Groups

Simplicial Objects and Homotopy Groups Simplicial Objects and Homotopy Groups Jie Wu Department of Mathematics National University of Singapore July 8, 2007 Simplicial Objects and Homotopy Groups -Objects and Homology Simplicial Sets and Homotopy

More information

MODELS FOR (, n)-categories AND THE COBORDISM HYPOTHESIS

MODELS FOR (, n)-categories AND THE COBORDISM HYPOTHESIS MODELS FOR (, n)-categories AND THE COBORDISM HYPOTHESIS JULIA E. BERGNER Abstract. In this paper we introduce the models for (, n)-categories which have been developed to date, as well as the comparisons

More information

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T Monads Definition A monad T is a category C is a monoid in the category of endofunctors C C. More explicitly, a monad in C is a triple T, η, µ, where T : C C is a functor and η : I C T, µ : T T T are natural

More information

COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES

COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES MICHAEL CHING AND EMILY RIEHL Abstract. We show that the category of algebraically cofibrant objects in a combinatorial and simplicial model category

More information

GABRIEL C. DRUMMOND-COLE

GABRIEL C. DRUMMOND-COLE MILY RIHL: -CTGORIS FROM SCRTCH (TH SIC TWO-CTGORY THORY) GRIL C. DRUMMOND-COL I m trying to be really gentle on the category theory, within reason. So in particular, I m expecting a lot o people won t

More information

Lecture 18: Groupoids and spaces

Lecture 18: Groupoids and spaces Lecture 18: Groupoids and spaces The simplest algebraic invariant of a topological space T is the set π 0 T of path components. The next simplest invariant, which encodes more of the topology, is the fundamental

More information

Introduction to -categories

Introduction to -categories Introduction to -categories Paul VanKoughnett October 4, 2016 1 Introduction Good evening. We ve got a spectacular show for you tonight full of scares, spooks, and maybe a few laughs too. The standard

More information

THE Q-CONSTRUCTION FOR STABLE -CATEGORIES

THE Q-CONSTRUCTION FOR STABLE -CATEGORIES THE Q-CONSTRUCTION FOR STABLE -CATEGORIES RUNE HAUGSENG The aim of these notes is to define the Q-construction for a stable -category C, and sketch the proof that it is equivalent to the (Waldhausen) K-theory

More information

1 Lecture 2: Overview of higher category theory

1 Lecture 2: Overview of higher category theory Jacob Lurie Workshop on TFT s at Northwestern Notes, errors, and incompleteness by Alex Hoffnung May 19, 2009 DRAFT VERSION ONLY 1 Lecture 2: Overview of higher category theory Definition 1. A category

More information

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES JULIA E. BERGNER Abstract. In this paper we put a cofibrantly generated model category structure on the category of small simplicial

More information

SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS

SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS CHARLES REZK, STEFAN SCHWEDE, AND BROOKE SHIPLEY Abstract. We produce a highly structured way of associating a simplicial category to a model category

More information

Quasi-categories vs Simplicial categories

Quasi-categories vs Simplicial categories Quasi-categories vs Simplicial categories André Joyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence

More information

Small CW -models for Eilenberg-Mac Lane spaces

Small CW -models for Eilenberg-Mac Lane spaces Small CW -models for Eilenberg-Mac Lane spaces in honour of Prof. Dr. Hans-Joachim Baues Bonn, March 2008 Clemens Berger (Nice) 1 Part 1. Simplicial sets. The simplex category is the category of finite

More information

THE DOLD-KAN CORRESPONDENCE

THE DOLD-KAN CORRESPONDENCE THE DOLD-KAN CORRESPONDENCE 1. Simplicial sets We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable category. It turns out that simplicial sets provide a (purely

More information

Metrics on diagrams and persistent homology

Metrics on diagrams and persistent homology Background Categorical ph Relative ph More structure Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik_p/ July 18, 2013 joint work with Vin

More information

A SURVEY OF (, 1)-CATEGORIES

A SURVEY OF (, 1)-CATEGORIES A SURVEY OF (, 1)-CATEGORIES JULIA E. BERGNER Abstract. In this paper we give a summary of the comparisons between different definitions of so-called (, 1)-categories, which are considered to be models

More information

arxiv:math/ v1 [math.at] 11 Jul 2000

arxiv:math/ v1 [math.at] 11 Jul 2000 UNIVERSAL HOMOTOPY THEORIES arxiv:math/0007070v1 [math.at] 11 Jul 2000 DANIEL DUGGER Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a

More information

Sheaves and Stacks. November 5, Sheaves and Stacks

Sheaves and Stacks. November 5, Sheaves and Stacks November 5, 2014 Grothendieck topologies Grothendieck topologies are an extra datum on a category. They allow us to make sense of something being locally defined. Give a formal framework for glueing problems

More information

Quasi-category theory you can use

Quasi-category theory you can use Quasi-category theory you can use Emily Riehl Harvard University http://www.math.harvard.edu/ eriehl Graduate Student Topology & Geometry Conference UT Austin Sunday, April 6th, 2014 Plan Part I. Introduction

More information

SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY. Contents

SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY. Contents SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY W. D. GILLAM Abstract. This is an introduction to / survey of simplicial techniques in algebra and algebraic geometry. We begin with the basic notions

More information

Steps towards a directed homotopy hypothesis. (, 1)-categories, directed spaces and perhaps rewriting

Steps towards a directed homotopy hypothesis. (, 1)-categories, directed spaces and perhaps rewriting Steps towards a directed homotopy hypothesis. (, 1)-categories, directed spaces and perhaps rewriting Timothy Porter Emeritus Professor, University of Wales, Bangor June 12, 2015 1 Introduction. Some history

More information

Topos Theory. Lectures 3-4: Categorical preliminaries II. Olivia Caramello. Topos Theory. Olivia Caramello. Basic categorical constructions

Topos Theory. Lectures 3-4: Categorical preliminaries II. Olivia Caramello. Topos Theory. Olivia Caramello. Basic categorical constructions Lectures 3-4: Categorical preliminaries II 2 / 17 Functor categories Definition Let C and D be two categories. The functor category [C,D] is the category having as objects the functors C D and as arrows

More information

A Brisk Jaunt To Motivic Homotopy

A Brisk Jaunt To Motivic Homotopy A Brisk Jaunt To Motivic Homotopy Kyle Ferendo April 2015 The invariants employed by algebraic topology to study topological spaces arise from certain qualities of the category of topological spaces. Homotopy

More information

DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS

DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS LECTURES BY SOREN GALATIUS, NOTES BY TONY FENG Contents 1. Homotopy theory of representations 1 2. The classical theory 2 3. The derived theory 3 References

More information

SUMMER 2016 HOMOTOPY THEORY SEMINAR

SUMMER 2016 HOMOTOPY THEORY SEMINAR SUMMER 2016 HOMOTOPY THEORY SEMINAR ARUN DEBRAY AUGUST 1, 2016 Contents 1. Simplicial Localizations and Homotopy Theory: 5/24/16 1 2. Simplicial Sets: 5/31/16 3 3. Model Categories: 6/7/16 8 4. Localization:

More information

Spaces with algebraic structure

Spaces with algebraic structure University of California, Riverside January 6, 2009 What is a space with algebraic structure? A topological space has algebraic structure if, in addition to being a topological space, it is also an algebraic

More information

DUALITY, TRACE, AND TRANSFER

DUALITY, TRACE, AND TRANSFER DUALITY, TRACE, AND TRANSFER RUNE HAUGSENG ABSTRACT. For any fibration of spaces whose fibres are finite complexes there exists a stable map going the wrong way, called a transfer map. A nice way to construct

More information

THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY

THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY D. BLANC, W. G. DWYER, AND P. G. GOERSS Contents 1. Introduction 1 2. Moduli spaces 7 3. Postnikov systems for spaces 10 4.

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Mapping spaces in quasi-categories

Mapping spaces in quasi-categories Mapping spaces in quasi-categories DANIEL DUGGER DAVID I. SPIVAK We apply the Dwyer-Kan theory of homotopy function complexes in model categories to the study of mapping spaces in quasi-categories. Using

More information

A Model of Type Theory in Simplicial Sets

A Model of Type Theory in Simplicial Sets A Model of Type Theory in Simplicial Sets A brief introduction to Voevodsky s Homotopy Type Theory T. Streicher Fachbereich 4 Mathematik, TU Darmstadt Schlossgartenstr. 7, D-64289 Darmstadt streicher@mathematik.tu-darmstadt.de

More information

REPLACING MODEL CATEGORIES WITH SIMPLICIAL ONES

REPLACING MODEL CATEGORIES WITH SIMPLICIAL ONES REPLACING MODEL CATEGORIES WITH SIMPLICIAL ONES DANIEL DUGGER Abstract. In this paper we show that model categories of a very broad class can be replaced up to Quillen equivalence by simplicial model categories.

More information

Ho(T op) Ho(S). Here is the abstract definition of a Quillen closed model category.

Ho(T op) Ho(S). Here is the abstract definition of a Quillen closed model category. 7. A 1 -homotopy theory 7.1. Closed model categories. We begin with Quillen s generalization of the derived category. Recall that if A is an abelian category and if C (A) denotes the abelian category of

More information

arxiv: v2 [math.ct] 19 May 2017

arxiv: v2 [math.ct] 19 May 2017 CROSSED SIMPLICIAL GROUP CATEGORICAL NERVES SCOTT BALCHIN arxiv:1603.08768v2 [math.ct] 19 May 2017 Abstract. We extend the notion of the nerve of a category for a small class of crossed simplicial groups,

More information

CODESCENT THEORY II : COFIBRANT APPROXIMATIONS

CODESCENT THEORY II : COFIBRANT APPROXIMATIONS OESENT THEORY II : OFIBRNT PPROXIMTIONS PUL BLMER N MIHEL MTTHEY bstract. We establish a general method to produce cofibrant approximations in the model category U S, ) of S-valued -indexed diagrams with

More information

arxiv: v2 [math.ct] 8 Feb 2011

arxiv: v2 [math.ct] 8 Feb 2011 ON THE STRUCTURE OF SIMPLICIAL CATEGORIES ASSOCIATED TO QUASI-CATEGORIES arxiv:0912.4809v2 [math.ct] 8 Feb 2011 EMILY RIEHL DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO 5734 S. UNIVERSITY AVE., CHICAGO,

More information

Homotopical algebra and higher categories

Homotopical algebra and higher categories Homotopical algebra and higher categories Winter term 2016/17 Christoph Schweigert Hamburg University Department of Mathematics Section Algebra and Number Theory and Center for Mathematical Physics (as

More information

Using context and model categories to define directed homotopies

Using context and model categories to define directed homotopies Using context and model categories to define directed homotopies p. 1/57 Using context and model categories to define directed homotopies Peter Bubenik Ecole Polytechnique Fédérale de Lausanne (EPFL) peter.bubenik@epfl.ch

More information

The language of categories

The language of categories The language of categories Mariusz Wodzicki March 15, 2011 1 Universal constructions 1.1 Initial and inal objects 1.1.1 Initial objects An object i of a category C is said to be initial if for any object

More information

arxiv: v4 [math.ct] 3 Jun 2017

arxiv: v4 [math.ct] 3 Jun 2017 FUNCTORS (BETWEEN -CATEGORIES) THAT AREN T STRICTLY UNITAL arxiv:1606.05669v4 [math.ct] 3 Jun 2017 HIRO LEE TANAKA Abstract. Let C and D be quasi-categories (a.k.a. -categories). Suppose also that one

More information

Notes on categories, the subspace topology and the product topology

Notes on categories, the subspace topology and the product topology Notes on categories, the subspace topology and the product topology John Terilla Fall 2014 Contents 1 Introduction 1 2 A little category theory 1 3 The subspace topology 3 3.1 First characterization of

More information

GALOIS THEORY OF SIMPLICIAL COMPLEXES

GALOIS THEORY OF SIMPLICIAL COMPLEXES GALOIS THEORY OF SIMPLICIAL COMPLEXES Marco Grandis 1,* and George Janelidze 2, 1 Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy email: grandis@dima.unige.it 2

More information

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY 1. Geometric and abstract simplicial complexes Let v 0, v 1,..., v k be points in R n. These points determine a hyperplane in R n, consisting of linear combinations

More information

arxiv:math/ v2 [math.ag] 26 Jun 2003

arxiv:math/ v2 [math.ag] 26 Jun 2003 Segal topoi and stacks over Segal categories arxiv:math/0212330v2 [math.ag] 26 Jun 2003 Bertrand Toën Laboratoire J. A. Dieudonné UMR CNRS 6621 Université de Nice Sophia-Antipolis France Abstract Gabriele

More information

CLASSIFYING SPACES AND FIBRATIONS OF SIMPLICIAL SHEAVES

CLASSIFYING SPACES AND FIBRATIONS OF SIMPLICIAL SHEAVES CLASSIFYING SPACES AND FIBRATIONS OF SIMPLICIAL SHEAVES MATTHIAS WENDT Abstract. In this paper, we discuss the construction of classifying spaces of fibre sequences in model categories of simplicial sheaves.

More information

arxiv:math/ v2 [math.at] 9 Nov 1998

arxiv:math/ v2 [math.at] 9 Nov 1998 ariv:math/9811038v2 [math.at] 9 Nov 1998 FIBRATIONS AND HOMOTOPY COLIMITS OF SIMPLICIAL SHEAVES CHARLES REZK Abstract. We show that homotopy pullbacks o sheaves o simplicial sets over a Grothendieck topology

More information

NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS

NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS NICK GURSKI Abstract. In this paper, we aim to move towards a definition of weak n- category akin to Street s definition of weak ω-category. This will

More information

Univalent fibrations in type theory and topology

Univalent fibrations in type theory and topology Univalent fibrations in type theory and topology Dan Christensen University of Western Ontario Wayne State University, April 11, 2016 Outline: Background on type theory Equivalence and univalence A characterization

More information

Homology cycle bases from acyclic matchings

Homology cycle bases from acyclic matchings Homology cycle bases from acyclic matchings Dmitry Feichtner-Kozlov University of Bremen Kyoto Workshop, January 019 What is... Applied Topology? studying global features of shapes applications in other

More information

Crossed Simplicial Group Categorical Nerves

Crossed Simplicial Group Categorical Nerves Appl Categor Struct 2018) 26:545 558 https://doi.org/10.1007/s10485-017-9502-2 Crossed Simplicial Group Categorical Nerves Scott Balchin 1 Received: 4 April 2016 / Accepted: 5 September 2017 / Published

More information

Moduli Spaces of Commutative Ring Spectra

Moduli Spaces of Commutative Ring Spectra Moduli Spaces of Commutative Ring Spectra P. G. Goerss and M. J. Hopkins Abstract Let E be a homotopy commutative ring spectrum, and suppose the ring of cooperations E E is flat over E. We wish to address

More information

Principal -bundles Presentations

Principal -bundles Presentations Principal -bundles Presentations Thomas Niolaus, Urs Schreiber, Danny Stevenson July 11, 2012 Abstract We discuss two aspects of the presentation of the theory of principal -bundles in an -topos, introduced

More information

arxiv: v1 [math.qa] 19 Aug 2009

arxiv: v1 [math.qa] 19 Aug 2009 QPL 2009 arxiv:0908.2675v1 [math.qa] 19 Aug 2009 Abstract Feynman graphs, and nerve theorem for compact symmetric multicategories (extended abstract) André Joyal 1 Département des mathématiques Université

More information

Probabilistic systems a place where categories meet probability

Probabilistic systems a place where categories meet probability Probabilistic systems a place where categories meet probability Ana Sokolova SOS group, Radboud University Nijmegen University Dortmund, CS Kolloquium, 12.6.6 p.1/32 Outline Introduction - probabilistic

More information

Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces. J.P. May

Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces. J.P. May Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces J.P. May November 10, 2008 K(,1) Groups i Cats π 1 N Spaces S Simp. Sets Sd Reg. Simp. Sets Sd 2 τ Sd 1 i Simp.

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

David Penneys. Temperley Lieb Diagrams and 2-Categories 4/14/08

David Penneys. Temperley Lieb Diagrams and 2-Categories 4/14/08 Temperley Lieb iagrams and 2-ategories avid Penneys 4/14/08 (1) Simplicial Resolutions. Let : be a left adjoint to U :, and denote by σ (respectively δ) the unit (respectively counit) of the adjunction.

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Homotopy Colimits and Universal Constructions

Homotopy Colimits and Universal Constructions Homotopy Colimits and Universal Constructions Dylan Wilson February 12, 2017 In this talk I ll take of the gloves and say -category for what I was calling homotopy theory before. You may take that to mean

More information

Simplicial Objects and Homotopy Groups. J. Wu

Simplicial Objects and Homotopy Groups. J. Wu Simplicial Objects and Homotopy Groups J. Wu Department of Mathematics, National University of Singapore, Singapore E-mail address: matwuj@nus.edu.sg URL: www.math.nus.edu.sg/~matwujie Partially supported

More information

Categorical models of type theory

Categorical models of type theory 1 / 59 Categorical models of type theory Michael Shulman February 28, 2012 2 / 59 Outline 1 Type theory and category theory 2 Categorical type constructors 3 Dependent types and display maps 4 Fibrations

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

References. C.H. Dowker, D. Strauss, Sums in the category of frames, Houston J. Math.

References. C.H. Dowker, D. Strauss, Sums in the category of frames, Houston J. Math. References M. Artin, B. Mazur, Etale Homotopy, Springer LNM 100, Springer-Verlag, Berlin, 1969. M. Artin, A. Grothendieck, and J.-L. Verdier, Theorie de topos et cohomologie eiale des schemes, ("SGA4")

More information

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield Draft: 8th November 2007

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield   Draft: 8th November 2007 Category Theory 3 Eugenia Cheng Department of Mathematics, University of Sheffield E-mail: e.cheng@sheffield.ac.uk Draft: 8th November 2007 Contents 3 Functors: definition and examples 1 3.1 The definition.............................

More information

Towards the syntax and semantics of higher dimensional type theory

Towards the syntax and semantics of higher dimensional type theory Towards the syntax and semantics of higher dimensional type theory Thorsten Altenkirch Nicolai Kraus Oxford, HoTT/UF 18, 8 July [picture by Andrej Bauer, (CC BY-SA 2.5 SI)] The goal: type theory in type

More information

Homotopy coherent centers versus centers of homotopy categories

Homotopy coherent centers versus centers of homotopy categories Homotopy coherent centers versus centers of homotopy categories Markus Szymik May 2013 Centers of categories capture the natural operations on their objects. Homotopy coherent centers are introduced here

More information

Contents Introduction and Technical Preliminaries Composition of Schema Mappings: Syntax and Semantics

Contents Introduction and Technical Preliminaries Composition of Schema Mappings: Syntax and Semantics 1 Introduction and Technical Preliminaries... 1 1.1 Historical Background... 1 1.2 Introduction to Lattices, Algebras and Intuitionistic Logics... 5 1.3 Introduction to First-Order Logic (FOL)... 12 1.3.1

More information

The diagonal of the Stasheff polytope

The diagonal of the Stasheff polytope The diagonal of the Stasheff polytope Jean-Louis Loday Institut de Recherche Mathématique Avancée CNRS et Université Louis Pasteur 7 rue R. Descartes 67084 Strasbourg Cedex, France loday@math.u-strasbg.fr

More information

Homological theory of polytopes. Joseph Gubeladze San Francisco State University

Homological theory of polytopes. Joseph Gubeladze San Francisco State University Homological theory of polytopes Joseph Gubeladze San Francisco State University The objects of the category of polytopes, denoted Pol, are convex polytopes and the morphisms are the affine maps between

More information

Towards an n-category of cobordisms

Towards an n-category of cobordisms Towards an n-category of cobordisms Eugenia Cheng and Nick Gurski Department of Mathematics University of Chicago E-mail: eugenia@math.uchicago.edu, gurski@math.uchicago.edu August 2006 Abstract We discuss

More information

Convex Hull Realizations of the Multiplihedra

Convex Hull Realizations of the Multiplihedra Convex Hull Realizations of the Multiplihedra Stefan Forcey, Department of Physics and Mathematics Tennessee State University Nashville, TN 3709 USA Abstract We present a simple algorithm for determining

More information

Recursively defined cpo algebras

Recursively defined cpo algebras Recursively defined cpo algebras Ohad Kammar and Paul Blain Levy July 13, 2018 Ohad Kammar and Paul Blain Levy Recursively defined cpo algebras July 13, 2018 1 / 16 Outline 1 Bilimit compact categories

More information

A LEISURELY INTRODUCTION TO SIMPLICIAL SETS

A LEISURELY INTRODUCTION TO SIMPLICIAL SETS A LEISURELY INTRODUCTION TO SIMPLICIAL SETS EMILY RIEHL Abstract. Simplicial sets are introduced in a way that should be pleasing to the formally-inclined. Care is taken to provide both the geometric intuition

More information

Towards an (,2)-category of homotopy coherent monads in an -cosmos

Towards an (,2)-category of homotopy coherent monads in an -cosmos Towards an (,)-category of homotopy coherent monads in an -cosmos THÈSE N O 7748 (7) PRÉSENTÉE LE SEPTEMBRE 7 À LA FACULTÉ DES SCIENCES DE LA VIE LABORATOIRE POUR LA TOPOLOGIE ET LES NEUROSCIENCES PROGRAMME

More information

(k, 1)-coloring of sparse graphs

(k, 1)-coloring of sparse graphs (k, 1)-coloring of sparse graphs O.V. Borodin, A.O. Ivanova, Mickael Montassier, André Raspaud To cite this version: O.V. Borodin, A.O. Ivanova, Mickael Montassier, André Raspaud. (k, 1)-coloring of sparse

More information

arxiv:math/ v2 [math.at] 28 Nov 2006

arxiv:math/ v2 [math.at] 28 Nov 2006 Contemporary Mathematics arxiv:math/0609537v2 [math.at] 28 Nov 2006 Model Categories and Simplicial Methods Paul Goerss and Kristen Schemmerhorn Abstract. There are many ways to present model categories,

More information

Cell-Like Maps (Lecture 5)

Cell-Like Maps (Lecture 5) Cell-Like Maps (Lecture 5) September 15, 2014 In the last two lectures, we discussed the notion of a simple homotopy equivalences between finite CW complexes. A priori, the question of whether or not a

More information

Operads and the Tree of Life John Baez and Nina Otter

Operads and the Tree of Life John Baez and Nina Otter Operads and the Tree of Life John Baez and Nina Otter We have entered a new geological epoch, the Anthropocene, in which the biosphere is rapidly changing due to human activities. Last week two teams

More information

EQUIVALENCES OF MONOIDAL MODEL CATEGORIES

EQUIVALENCES OF MONOIDAL MODEL CATEGORIES EQUIVALENCES OF MONOIDAL MODEL CATEGORIES STEFAN SCHWEDE AND BROOKE SHIPLEY Abstract: We construct Quillen equivalences between the model categories of monoids (rings), modules and algebras over two Quillen

More information

Summary of Raptor Codes

Summary of Raptor Codes Summary of Raptor Codes Tracey Ho October 29, 2003 1 Introduction This summary gives an overview of Raptor Codes, the latest class of codes proposed for reliable multicast in the Digital Fountain model.

More information

An introduction to simplicial sets

An introduction to simplicial sets An introduction to simplicial sets 25 Apr 2010 1 Introduction This is an elementary introduction to simplicial sets, which are generalizations of -complexes from algebraic topology. The theory of simplicial

More information

Topoi: Theory and Applications

Topoi: Theory and Applications : Theory and Applications 1 1 Computer Science, Swansea University, UK http://cs.swan.ac.uk/~csoliver Categorical logic seminar Swansea, March 19+23, 2012 Meaning I treat topos theory as a theory, whose

More information

MAPPING CYLINDERS AND THE OKA PRINCIPLE. Finnur Lárusson University of Western Ontario

MAPPING CYLINDERS AND THE OKA PRINCIPLE. Finnur Lárusson University of Western Ontario MAPPING CYLINDERS AND THE OKA PRINCIPLE Finnur Lárusson University of Western Ontario Abstract. We apply concepts and tools from abstract homotopy theory to complex analysis and geometry, continuing our

More information