Considerations about level-set methods: Accuracy, interpolation and reinitialization

Size: px
Start display at page:

Download "Considerations about level-set methods: Accuracy, interpolation and reinitialization"

Transcription

1 Considerations about level-set methods: Accuracy, interpolation and reinitialization Gustavo C. Buscaglia Coll: E. Dari, R. Ausas, L. Ruspini Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, São Carlos, Brasil

2 Level set method Osher & Sethian, 1988 Books: Sethian, 1996, 1999 (over 1800 citations) Osher & Fedkiw, 2003 (over 700 citations)

3 Level set method Flexible Easy to code Preferred method in engineering applications Pumping station. Yang, Garcia, Buscaglia, 2005.

4 Level set method Flexible Easy to code Preferred method in engineering applications Spillway. Abad, Garcia, Buscaglia, 2005.

5 Level set method in fluid dynamics Sussman, Smereka, Osher, 1994 General algorithm: Each time step perform the following operations 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1.

6 Level set method in fluid dynamics Reinitialization 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1. Idea: Smooth the level set function without modifying its zero-level set. Make it approximate the signed distance function. Difficulty: It is impossible. Available methods: Pseudo-transient redistancing Sussman, Osher,... Fast-marching, geometric Osher & Fedkiw, 2003 Mut, Buscaglia & Dari, 2006

7 Level set method in fluid dynamics Computing the distance function: Examples 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1.

8 Level set method in fluid dynamics 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1. Reinitialization: Preserving the volume (Mut, Buscaglia & Dari, 2006) Volume preservation depends on the nodal values adjacent to S. Mission: Given a level-set function that defines S, modify the nodal values leaving S unchanged IMPOSSIBLE, even the (interpolant of) the exact distance moves S. Mission (version 2):

9 Level set method in fluid dynamics 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1. Transport Main criticism to LS method: Numerical dissipation when solving Eq. (*). High-order methods are advocated: State of the art for LS transport is HJ-WENO in space (5th order) and TVD-RK in time (3rd order). Losasso et al., Comp. & Fluids, Semi-Lagrangian methods seem natural (Strain, JCP, 1999), however they are too diffusive. A Lagrangian (SPH, particle) method seems natural too. Hieber & Koumoutsakos, JCP, 2005.

10 Level set method in fluid dynamics 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1. Correction of the level set function Enright et al, JCP, 2002, Hybrid Particle-LS method Escaped particles in light blue identify the needed correction. Enright et al, Comput. & Struct., 2005 Same idea with semi-lagrangian transport. 256 x 256 mesh ,000 initial particles!!

11 Level set method in fluid dynamics Detect the interface Given the nodal values of the LS function, where is the interface? Interpolation In the end, what counts is the difference between the exact and calculated interface positions. This position is then used to evaluate material properties, surface tension forces, etc., and proceed to the fluid solver. Some reported orders for several problems (circle, Zalezak, vortex, etc.) Sussman'99, ENO3 = 1-3 Enright'02, HJ-WENO = 1-3 Enright'02, HJ-WENO + part = 1.5 Enright'05, HJ-WENO + part = 1.4 Enright'05, SemiLag + part =1.0 Gómez'05, WENO =2.2 Olsson'05, TVD = Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1.

12 Level set method in fluid dynamics 1. Pre-process the level set function. 2. Transport the level set function. 3. Correct the level set function. 4. Detect the interface. 5. Solve for velocities & pressures with the updated interface location. 6. Back to 1. Some recent work Quantitative assessment of redistancing. Curvilinear grids. Comparison of several TVD/ENO schemes for LS transport Detection How good standard Eulerian methods are, or can get?

13 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Numerical methods in 1D Reconstruction Slopes

14 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Numerical methods in 1D Reconstruction TVD ENO

15 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Numerical methods in 1D Transport with u = c/x

16 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. TVD/ENO schemes, typical behavior: Transport with u = exp(-x/2) Redistancing: Improves robustness (errors on coarse meshes are smaller) but not accuracy. We also considered the following question: Given that each TVD/ENO scheme reconstructs the solution differently, should one use this reconstruction to detect the surface? Numerical tests have shown that the best choice to detect the surface (with 2nd order accuracy) is simple linear interpolation.

17 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. TVD/ENO schemes, 2D/3D:

18 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: Is it needed? (it will cause errors) If yes, how to do it? Semi-Lagrangian RK4, dt=0.01, after 44 steps

19 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: Is it needed? (it will cause errors) If yes, how to do it? Method: ENO, CFL=0.9

20 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: In classical test cases, TVD/ENO second-order methods seem not to need redistancing if mesh is good.

21 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: 120x120x120

22 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: Sometimes redistancing deteriorates the accuracy In any case, the exact distance is a bad choice.

23 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Assessment of redistancing in 2D/3D: 90x90x90, curvilinear, CFL=0.9, ENO Without With

24 Assessment of redistancing. Some recent work Curvilinear grids. TVD/ENO schemes. Detection. Some conclusions: Best available choice: ENO, redistancing (robustness), (bi/tri) linear detection. Accuracy in multidimensions insufficient, no improvement seems to be expectable from higher-order schemes or sophisticate detection within Eulerian framework.

25

26 Strain, JCP, 1999 Semi-Lagrangian methods for Level Set equations

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

Moment of fluid method for multimaterial flows

Moment of fluid method for multimaterial flows Moment of fluid method for multimaterial flows M. Jemison, M. Sussman, M. Shashkov Department of Mathematics, Florida State University October 1, 2012 Recent Motivating Work Volume preserving Moment-of-Fluid

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

The Level Set Method applied to Structural Topology Optimization

The Level Set Method applied to Structural Topology Optimization The Level Set Method applied to Structural Topology Optimization Dr Peter Dunning 22-Jan-2013 Structural Optimization Sizing Optimization Shape Optimization Increasing: No. design variables Opportunity

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow

Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow Frank Losasso Ronald Fedkiw Stanley Osher May 3, 2005 Abstract Since the seminal work of [92] on coupling the level set method

More information

A Study of Numerical Methods for the Level Set Approach

A Study of Numerical Methods for the Level Set Approach A Study of Numerical Methods for the Level Set Approach Pierre A. Gremaud, Christopher M. Kuster, and Zhilin Li October 18, 2005 Abstract The computation of moving curves by the level set method typically

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

A Hybrid Particle Level Set Method for Improved Interface Capturing

A Hybrid Particle Level Set Method for Improved Interface Capturing Journal of Computational Physics 183, 83 116 (2002) doi:10.1006/jcph.2002.7166 A Hybrid Particle Level Set Method for Improved Interface Capturing Douglas Enright,,1,2 Ronald Fedkiw,,1,2 Joel Ferziger,,2

More information

New formulations of the semi-lagrangian method for Vlasov-type equations

New formulations of the semi-lagrangian method for Vlasov-type equations New formulations of the semi-lagrangian method for Vlasov-type equations Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 17 September 2008 In collaboration

More information

PHYSICALLY BASED ANIMATION

PHYSICALLY BASED ANIMATION PHYSICALLY BASED ANIMATION CS148 Introduction to Computer Graphics and Imaging David Hyde August 2 nd, 2016 WHAT IS PHYSICS? the study of everything? WHAT IS COMPUTATION? the study of everything? OUTLINE

More information

1 Past Research and Achievements

1 Past Research and Achievements Parallel Mesh Generation and Adaptation using MAdLib T. K. Sheel MEMA, Universite Catholique de Louvain Batiment Euler, Louvain-La-Neuve, BELGIUM Email: tarun.sheel@uclouvain.be 1 Past Research and Achievements

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

A brief description of the particle finite element method (PFEM2). Extensions to free surface

A brief description of the particle finite element method (PFEM2). Extensions to free surface A brief description of the particle finite element method (PFEM2). Extensions to free surface flows. Juan M. Gimenez, L.M. González, CIMEC Universidad Nacional del Litoral (UNL) Santa Fe, Argentina Universidad

More information

Droplet collisions using a Level Set method: comparisons between simulation and experiments

Droplet collisions using a Level Set method: comparisons between simulation and experiments Computational Methods in Multiphase Flow III 63 Droplet collisions using a Level Set method: comparisons between simulation and experiments S. Tanguy, T. Ménard & A. Berlemont CNRS-UMR6614-CORIA, Rouen

More information

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA INTRODUCTION: Jingxiao Xu, Jason Wang LSTC Heat transfer is very important in many industrial and geophysical problems. Many

More information

Advections with Significantly Reduced Dissipation and Diffusion

Advections with Significantly Reduced Dissipation and Diffusion 1 Advections with Significantly Reduced Dissipation and Diffusion ByungMoon Kim, Yingjie Liu, Ignacio Llamas, Jarek Rossignac Georgia Institute of Technology Abstract Back and Forth Error Compensation

More information

Deforming meshes that split and merge

Deforming meshes that split and merge Deforming meshes that split and merge Chris Wojtan Nils Th urey Markus Gross Greg Turk Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Introduction ž Presents a method for accurately tracking the moving

More information

CS 231. Fluid simulation

CS 231. Fluid simulation CS 231 Fluid simulation Why Simulate Fluids? Feature film special effects Computer games Medicine (e.g. blood flow in heart) Because it s fun Fluid Simulation Called Computational Fluid Dynamics (CFD)

More information

Conservative Semi-Lagrangian solvers on mapped meshes

Conservative Semi-Lagrangian solvers on mapped meshes Conservative Semi-Lagrangian solvers on mapped meshes M. Mehrenberger, M. Bergot, V. Grandgirard, G. Latu, H. Sellama, E. Sonnendrücker Université de Strasbourg, INRIA Grand Est, Projet CALVI, ANR GYPSI

More information

USE OF THE PARTICLE LEVEL SET METHOD FOR ENHANCED RESOLUTION OF FREE SURFACE FLOWS

USE OF THE PARTICLE LEVEL SET METHOD FOR ENHANCED RESOLUTION OF FREE SURFACE FLOWS USE OF THE PARTICLE LEVEL SET METHOD FOR ENHANCED RESOLUTION OF FREE SURFACE FLOWS a dissertation submitted to the program in scientific computing and computational mathematics and the committee on graduate

More information

A CONSERVATIVE LEVEL SET METHOD FOR SHARP INTERFACE MULTIPHASE FLOW SIMULATION

A CONSERVATIVE LEVEL SET METHOD FOR SHARP INTERFACE MULTIPHASE FLOW SIMULATION V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal,4-7 June 2 A CONSERVATIVE LEVEL SET METHOD FOR SHARP INTERFACE MULTIPHASE FLOW

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

CS-184: Computer Graphics Lecture #21: Fluid Simulation II

CS-184: Computer Graphics Lecture #21: Fluid Simulation II CS-184: Computer Graphics Lecture #21: Fluid Simulation II Rahul Narain University of California, Berkeley Nov. 18 19, 2013 Grid-based fluid simulation Recap: Eulerian viewpoint Grid is fixed, fluid moves

More information

An Unconditionally Stable MacCormack Method

An Unconditionally Stable MacCormack Method An Unconditionally Stable MacCormack Method Andrew Selle Ronald Fedkiw ByungMoon Kim Yingjie Liu Jarek Rossignac June 7, 2007 Abstract The back and forth error compensation and correction (BFECC) method

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

A limiting strategy for the back and forth error compensation and correction method for solving advection equations

A limiting strategy for the back and forth error compensation and correction method for solving advection equations A limiting strategy for the back and forth error compensation and correction method for solving advection equations Lili Hu, Yao Li, Yingjie Liu April 22, 2014 Abstract We further study the properties

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS

CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS CHANG YANG AND FRANCIS FILBET Abstract. We develop weighted essentially

More information

Surface Tension Approximation in Semi-Lagrangian Level Set Based Fluid Simulations for Computer Graphics

Surface Tension Approximation in Semi-Lagrangian Level Set Based Fluid Simulations for Computer Graphics Surface Tension Approximation in Semi-Lagrangian Level Set Based Fluid Simulations for Computer Graphics Israel Pineda and Oubong Gwun Chonbuk National University israel_pineda_arias@yahoo.com, obgwun@jbnu.ac.kr

More information

Math 690N - Final Report

Math 690N - Final Report Math 690N - Final Report Yuanhong Li May 05, 008 Accurate tracking of a discontinuous, thin and evolving turbulent flame front has been a challenging subject in modelling a premixed turbulent combustion.

More information

Imagery for 3D geometry design: application to fluid flows.

Imagery for 3D geometry design: application to fluid flows. Imagery for 3D geometry design: application to fluid flows. C. Galusinski, C. Nguyen IMATH, Université du Sud Toulon Var, Supported by ANR Carpeinter May 14, 2010 Toolbox Ginzburg-Landau. Skeleton 3D extension

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

The Eikonal Equation

The Eikonal Equation The Eikonal Equation Numerical efficiency versus computational compleity Shu-Ren Hysing III Institute of Applied Mathematics LSIII University of Dortmund Level set - methodology By embedding an interface

More information

Permeable and Absorbent Materials in Fluid Simulations

Permeable and Absorbent Materials in Fluid Simulations Permeable and Absorbent Materials in Fluid Simulations Nate Andrysco Bedrich Benes Department of Computer Science Slide 1 Motivation Fluid simulations are geared toward impermeable materials What if you

More information

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Introduction Matthias Teschner Computer Science Department University of Freiburg Contact Matthias Teschner Computer Graphics University of Freiburg Georges-Koehler-Allee

More information

FLUID SIMULATION BY PARTICLE LEVEL SET METHOD WITH AN EFFICIENT DYNAMIC ARRAY IMPLEMENTATION ON GPU

FLUID SIMULATION BY PARTICLE LEVEL SET METHOD WITH AN EFFICIENT DYNAMIC ARRAY IMPLEMENTATION ON GPU FLUID SIMULATION BY PARTICLE LEVEL SET METHOD WITH AN EFFICIENT DYNAMIC ARRAY IMPLEMENTATION ON GPU Yasuhiro Matsuda The University of Tokyo Yoshinori Dobashi Hokkaido University Tomoyuki Nishita The University

More information

Simulation of Swirling Bubbly Water using Bubble Particles

Simulation of Swirling Bubbly Water using Bubble Particles Noname manuscript No. (will be inserted by the editor) Simulation of Swirling Bubbly Water using Bubble Particles Ho-Young Lee Jeong-Mo Hong Chang-Hun Kim Received: date / Accepted: date Abstract The effect

More information

Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion

Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion Journal of Scientific Computing, Vol. 19, Nos. 1 3, December 2003 ( 2003) Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion Peter Smereka 1 Received April 30, 2002; accepted (in

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

Redistancing by Flow of Time Dependent Eikonal Equation

Redistancing by Flow of Time Dependent Eikonal Equation Redistancing by Flow of Time Dependent Eikonal Equation Li-Tien Cheng and Yen-Hsi Tsai June 11, 2007 Abstract Construction of signed distance to a given inteface is a topic of special interest to level

More information

THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS. 1. Introduction. The Eikonal equation, defined by (1)

THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS. 1. Introduction. The Eikonal equation, defined by (1) Proceedings of ALGORITMY 2005 pp. xx yy THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS SHU-REN HYSING AND STEFAN TUREK Abstract. This paper presents a study

More information

Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets

Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets Journal of Scientific Computing ( 2006) DOI: 10.1007/s10915-005-9062-8 Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets Michael B. Nielsen 1 and Ken Museth

More information

FEM techniques for interfacial flows

FEM techniques for interfacial flows FEM techniques for interfacial flows How to avoid the explicit reconstruction of interfaces Stefan Turek, Shu-Ren Hysing (ture@featflow.de) Institute for Applied Mathematics University of Dortmund Int.

More information

Real-Time Marker Level Set on GPU

Real-Time Marker Level Set on GPU Real-Time Marker Level Set on GPU Xing Mei 1, Philippe Decaudin 2, Baogang Hu 1, Xiaopeng Zhang 1 1 LIAMA/NLPR, CASIA, Beijing, China 2 Evasion, INRIA, Grenoble, France xmei@(nospam) nlpr.ia.ac.cn, philippe.decaudin@(nospam)

More information

Pressure Drop Evaluation in a Pilot Plant Hydrocyclone

Pressure Drop Evaluation in a Pilot Plant Hydrocyclone Pressure Drop Evaluation in a Pilot Plant Hydrocyclone Fabio Kasper, M.Sc. Emilio Paladino, D.Sc. Marcus Reis, M.Sc. ESSS Carlos A. Capela Moraes, D.Sc. Dárley C. Melo, M.Sc. Petrobras Research Center

More information

New Finite Difference Methods in Quadtree Grids

New Finite Difference Methods in Quadtree Grids New Finite Difference Methods in Quadtree Grids Chohong Min Frédéric Gibou 11th June 2008 Abstract We present a level set method on non-graded adaptive Cartesian grids, i.e. grids for which the ratio between

More information

A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension

A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension Wen Zheng, Bo Zhu, Byungmoon Kim, Ronald Fedkiw Stanford University, 353 Serra Mall Room 207, Stanford,

More information

Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University

Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University 21st November 2014 1 Abstract This report is based on the implementation

More information

Interaction between turbulent flow and free surfaces

Interaction between turbulent flow and free surfaces Center or Turbulence Research Annual Research Bries 2002 301 Interaction between turbulent low and ree suraces By Y.-N. Young, F. E. Ham, AND N. N. Mansour 1. Motivation and objectives Fluids with interaces

More information

Recent developments for the multigrid scheme of the DLR TAU-Code

Recent developments for the multigrid scheme of the DLR TAU-Code www.dlr.de Chart 1 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Recent developments for the multigrid scheme of the DLR TAU-Code

More information

Development of an Incompressible SPH Method through SPARTACUS-2D

Development of an Incompressible SPH Method through SPARTACUS-2D Development of an Incompressible SPH Method through SPARTACUS-2D Eun-Sug Lee E.Lee-2@postgrad.manchester.ac.uk D. Laurence, C. Moulinec, P. Stansby, D. Violeau, Developing of truly incompressible method

More information

An explicit and conservative remapping strategy for semi-lagrangian advection

An explicit and conservative remapping strategy for semi-lagrangian advection An explicit and conservative remapping strategy for semi-lagrangian advection Sebastian Reich Universität Potsdam, Potsdam, Germany January 17, 2007 Abstract A conservative semi-lagrangian advection scheme

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

Integral Equation Methods for Vortex Dominated Flows, a High-order Conservative Eulerian Approach

Integral Equation Methods for Vortex Dominated Flows, a High-order Conservative Eulerian Approach Integral Equation Methods for Vortex Dominated Flows, a High-order Conservative Eulerian Approach J. Bevan, UIUC ICERM/HKUST Fast Integral Equation Methods January 5, 2016 Vorticity and Circulation Γ =

More information

Facultad de Ciencias Matemáticas D.M.A. Benjamin Ivorra

Facultad de Ciencias Matemáticas D.M.A. Benjamin Ivorra Facultad de Ciencias Matemáticas D.M.A. Tendencias actuales de la matemática interdisciplinar Mathematical Modeling and Optimization Applications to industrial design problems Benjamin Ivorra Industrial

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

The Level Set Method THE LEVEL SET METHOD THE LEVEL SET METHOD 203

The Level Set Method THE LEVEL SET METHOD THE LEVEL SET METHOD 203 The Level Set Method Fluid flow with moving interfaces or boundaries occur in a number of different applications, such as fluid-structure interaction, multiphase flows, and flexible membranes moving in

More information

Conservative high order semi-lagrangian finite difference WENO methods for advection in incompressible flow. Abstract

Conservative high order semi-lagrangian finite difference WENO methods for advection in incompressible flow. Abstract Conservative high order semi-lagrangian finite difference WENO methods for advection in incompressible flow Jing-Mei Qiu 1 and Chi-Wang Shu Abstract In this paper, we propose a semi-lagrangian finite difference

More information

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Copyright of figures and other materials in the paper belongs to original authors. Divergence-Free Smoothed Particle Hydrodynamics Bender et al. SCA 2015 Presented by MyungJin Choi 2016-11-26 1. Introduction

More information

Application of ENO technique to semi-lagrangian interpolations. RC LACE stay report Scientific supervisors: Petra Smolíková and Ján Mašek

Application of ENO technique to semi-lagrangian interpolations. RC LACE stay report Scientific supervisors: Petra Smolíková and Ján Mašek Application of ENO technique to semi-lagrangian interpolations RC LACE stay report Scientific supervisors: Petra Smolíková and Ján Mašek Alexandra Crăciun NMA, Romania CHMI, Prague 09.05-03.06.2016 1 Introduction

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Is GPU the future of Scientific Computing?

Is GPU the future of Scientific Computing? Is GPU the future of Scientific Computing? Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe Picard, Florian De Vuyst, Christophe Labourdette To cite this version: Georges-Henri

More information

High-order, conservative, finite difference schemes for computational MHD

High-order, conservative, finite difference schemes for computational MHD High-order, conservative, finite difference schemes for computational MHD A. Mignone 1, P. Tzeferacos 1 and G. Bodo 2 [1] Dipartimento di Fisica Generale, Turin University, ITALY [2] INAF Astronomic Observatory

More information

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA Jingxiao Xu 1, Jason Wang 2 1 LSTC 2 LSTC 1 Abstract Smooth particles hydrodynamics is a meshfree, Lagrangian particle method

More information

Textured Liquids based on the Marker Level Set

Textured Liquids based on the Marker Level Set EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík (Guest Editors) Volume 26 (2007), Number 3 Textured Liquids based on the Marker Level Set 1067 Abstract In this work we propose a new Eulerian method for handling

More information

High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries

High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries Frédéric Gibou Chohong Min Ron Fedkiw November 2, 2012 In honor of Stan Osher s 70 th birthday Abstract

More information

High-Order Finite Difference Schemes for computational MHD

High-Order Finite Difference Schemes for computational MHD High-Order Finite Difference Schemes for computational MHD A. Mignone 1, P. Tzeferacos 1 and G. Bodo 2 [1] Dipartimento di Fisica Generale, Turin University, ITALY [2] INAF Astronomic Observatory of Turin,,

More information

Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr )

Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr ) Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr 2007-7-2) Woosuck Hong Dept. of Computer Science Texas A&M University wshong@cs.tamu.edu Donald H. House Visualization

More information

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Ian Mitchell Department of Computer Science University of British Columbia Outline Path Planning

More information

An explicit and conservative remapping strategy for semi-lagrangian advection

An explicit and conservative remapping strategy for semi-lagrangian advection ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 8: 58 63 (2007) Published online 22 May 2007 in Wiley InterScience (www.interscience.wiley.com).151 An explicit and conservative remapping strategy for semi-lagrangian

More information

Numerical Methods for Hyperbolic and Kinetic Equations

Numerical Methods for Hyperbolic and Kinetic Equations Numerical Methods for Hyperbolic and Kinetic Equations Organizer: G. Puppo Phenomena characterized by conservation (or balance laws) of physical quantities are modelled by hyperbolic and kinetic equations.

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Fluid Simulation Quality with Violated CFL Condition

Fluid Simulation Quality with Violated CFL Condition Fluid Simulation Quality with Violated CFL Condition Philipp Erler Supervised by: Christian Hafner, Michael Wimmer Institute of Computer Graphics and Algorithms TU Wien Vienna / Austria Abstract Fluid

More information

Computational Astrophysics 5 Higher-order and AMR schemes

Computational Astrophysics 5 Higher-order and AMR schemes Computational Astrophysics 5 Higher-order and AMR schemes Oscar Agertz Outline - The Godunov Method - Second-order scheme with MUSCL - Slope limiters and TVD schemes - Characteristics tracing and 2D slopes.

More information

An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equat

An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equat An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations joint work with Olivier Bokanowski 2 and Maurizio Falcone SAPIENZA - Università di Roma 2 Laboratoire Jacques-Louis Lions,

More information

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11]

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11] Fluid Simulation [Thürey 10] [Pfaff 10] [Chentanez 11] 1 Computational Fluid Dynamics 3 Graphics Why don t we just take existing models from CFD for Computer Graphics applications? 4 Graphics Why don t

More information

A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization

A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization Fang Chen 1 and Hans Hagen 2 1 University of Kaiserslautern AG Computer Graphics and HCI Group, TU Kaiserslautern, Germany chen@cs.uni-kl.de

More information

A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting

A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno (Guest Editors) Volume 27 (2008), Number 2 A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting Doyub Kim 1 Oh-young Song 2 and Hyeong-Seok

More information

MultiFLIP for Energetic Two-Phase Fluid Simulation

MultiFLIP for Energetic Two-Phase Fluid Simulation MultiFLIP for Energetic Two-Phase Fluid Simulation LANDON BOYD and ROBERT BRIDSON University of British Columbia Additional Key Words and Phrases: multiphase fluids, FLIP ACM Reference Format: Boyd, L.,

More information

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme ECCOMAS, June 6 th -11 th 2016, Crete Island, Greece A. West & D. Caraeni Outline Industrial Motivation Numerical

More information

An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver

An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver University of Iowa Iowa Research Online Theses and Dissertations Spring 2013 An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver Akira Hanaoka University of

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

On the thickness of discontinuities computed by THINC and RK schemes

On the thickness of discontinuities computed by THINC and RK schemes The 9th Computational Fluid Dynamics Symposium B7- On the thickness of discontinuities computed by THINC and RK schemes Taku Nonomura, ISAS, JAXA, Sagamihara, Kanagawa, Japan, E-mail:nonomura@flab.isas.jaxa.jp

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information