Level Set Methods and Fast Marching Methods

Size: px
Start display at page:

Download "Level Set Methods and Fast Marching Methods"

Transcription

1 Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002

2 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method Linking moving fronts and hyperbolic conservation laws

3 Tracking a moving boundary Lagrangian approach x(s,t=0), y(s,t=0) parameterization of the curve: (x(s,t),y(s,t)) s?? How to deal with topological changes? discrete parameterization of the curve

4 Tracking a moving boundary Volume-of-fluid method: Eulerian approach ?? Drawbacks: -- approximation to the front is crude, a large number of cells -- curvature and normal is difficult to derive -- in 3D very complicated to perform

5 Level set and Fast marching methods Sethian J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, 999

6 Level Set Method: an initial value formulation φ(x,y,t) y y x φ=0 F=F(L,G,I) original front level set function x

7 How do you move the front?

8 Why is this called an initial value formulation? Level set equation: φ x(t) : φ(x(t),t)= 0 φt + x ( t) = 0 x If front moves in normal direction: φ n = F = n x ( t) φ φ + F φ = 0 IC : φ ( x, t = 0) t If front is advected by velocity field: F = ( u, v) φ + F φ = 0 φ + u φ + v φ = 0 t t x y IC : φ ( x, t = 0)

9 Fast Marching Method: a boundary value formulation T(x) dx dt dt dx = F dt F = dx F T = T = 0 o n Γ x

10 Construction of stationary level set solution

11 Summary Boundary Value Formulation: TF= Front : Γ () t = (, x y): Txy (, ) = t { } Initial Value Formulation: φ + F φ = 0 t Front : Γ () t = ( x, y): φ( x, y,) t = 0 { } F > 0 F arbitrary

12 Advantages of these perspectives Unchanged in higher dimensions Topological changes are handled naturally Geometric properties are are easily determined φ T n = or n = normal vector φ T φ k = curvature φ Both equations can be accurately solved using numerical schemes for hyperbolic conservation laws

13 Hamilton-Jacobi equation Level set equation and stationary equation are particular cases of the more general Hamilton-Jacobi equation: α u + H ( Du, x) = 0 t H ( Du, x) = F u ( α ) Du H ( u, u, u, x, y, z) α α = = x y z 0 partial derivatives of u in each variable level set equation stationary equation Hamiltonian

14 Example: viscosity solutions Smooth front, constant speed function F= The swallowtail solution The leading wave solution Speed function in the form: ε X ( t), X ( t) curvature const lim X ( t) X ( t) ε ε 0 curvature = F = ε k ε > 0 const two solutions, then

15 Link between propagating fronts and hyperbolic conservation laws Hamilton-Jacobi equation with viscosity : α u + H ( u ) = ε u t x xx Hyperbolic conservation law: Burgers equation: Burgers equation with viscosity: u u t t [ G u ] + ( ) = 0 + uu = x x 0 u + uu = εu t x xx Conclusion: Level set and Fast marching methods rely on viscosity solutions of the associated partial differential equations in order to guarantee that unique, entropy-satisfying weak solution is obtained. Both equations can be accurately solved using numerical schemes for hyperbolic conservation laws.

16 Next lectures: Efficient numerical algorithms for the Level Set and Fast Marching methods Applications of Level Set and Fast Marching methods

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS

HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS D. Adalsteinsson J.A. Sethian Dept. of Mathematics University of California, Berkeley 94720 and Juan C. Rey Technology Modeling Associates

More information

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg,

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg, Dijkstra s algorithm, Fast marching & Level sets Einar Heiberg, einar@heiberg.se Looking back Medical image segmentation is (usually) selecting a suitable method from a toolbox of available approaches

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method Implicit Surface econstruction from D Scattered Points Based on Variational Level Set Method Hanbo Liu Department ofshenzhen graduate school, Harbin Institute oftechnology, Shenzhen, 58055, China liu_hanbo@hit.edu.cn

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

Medical Image Segmentation using Level Sets

Medical Image Segmentation using Level Sets Medical Image Segmentation using Level Sets Technical Report #CS-8-1 Tenn Francis Chen Abstract Segmentation is a vital aspect of medical imaging. It aids in the visualization of medical data and diagnostics

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts

Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts J.A. Sethian Dept. of Mathematics University of California, Berkeley 94720 Feb. 20, 2000 Abstract

More information

Eindhoven University of Technology MASTER. Cell segmentation using level set method. Zhou, Y. Award date: Link to publication

Eindhoven University of Technology MASTER. Cell segmentation using level set method. Zhou, Y. Award date: Link to publication Eindhoven University of Technology MASTER Cell segmentation using level set method Zhou, Y Award date: 2007 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's),

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS

PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS PARAMETRIC SHAPE AND TOPOLOGY OPTIMIZATION WITH RADIAL BASIS FUNCTIONS Michael Yu Wang 1 and Shengyin Wang 1 Department of Automation and Computer-Aided Engineering The Chinese University of Hong Kong

More information

Segmentation with active contours: a comparative study of B-Spline and Level Set techniques

Segmentation with active contours: a comparative study of B-Spline and Level Set techniques Segmentation with active contours: a comparative study of B-Spline and Level Set techniques DEMIAN WASSERMANN 1,MARTA E. MEJAIL 1,JULIANA GAMBINI 1,MARÍA E. BUEMI 1 1 UBA Universidad de Buenos Aires, FCEyN,

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Lecture 12 Level Sets & Parametric Transforms sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2017 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these

More information

Computational Methods for Advancing Interfaces

Computational Methods for Advancing Interfaces Chapter 1 Computational Methods for Advancing Interfaces J.A. Sethian Dept. of Mathematics Univ. of California, Berkeley Berkeley, California 94720 sethian@math.berkeley.edu Abstract A large number of

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

BIRS Workshop 11w Advancing numerical methods for viscosity solutions and applications

BIRS Workshop 11w Advancing numerical methods for viscosity solutions and applications BIRS Workshop 11w5086 - Advancing numerical methods for viscosity solutions and applications Abstracts of talks February 11, 2011 M. Akian, Max Plus algebra in the numerical solution of Hamilton Jacobi

More information

CS-184: Computer Graphics Lecture #21: Fluid Simulation II

CS-184: Computer Graphics Lecture #21: Fluid Simulation II CS-184: Computer Graphics Lecture #21: Fluid Simulation II Rahul Narain University of California, Berkeley Nov. 18 19, 2013 Grid-based fluid simulation Recap: Eulerian viewpoint Grid is fixed, fluid moves

More information

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Huan Xu, and Xiao-Feng Wang,,3 Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science,

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Literature Report. Daniël Pols. 23 May 2018

Literature Report. Daniël Pols. 23 May 2018 Literature Report Daniël Pols 23 May 2018 Applications Two-phase flow model The evolution of the momentum field in a two phase flow problem is given by the Navier-Stokes equations: u t + u u = 1 ρ p +

More information

1 Mathematical Concepts

1 Mathematical Concepts 1 Mathematical Concepts Mathematics is the language of geophysical fluid dynamics. Thus, in order to interpret and communicate the motions of the atmosphere and oceans. While a thorough discussion of the

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Level Sets Methods in Imaging Science

Level Sets Methods in Imaging Science Level Sets Methods in Imaging Science Dr. Corina S. Drapaca csd12@psu.edu Pennsylvania State University University Park, PA 16802, USA Level Sets Methods in Imaging Science p.1/36 Textbooks S.Osher, R.Fedkiw,

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION 1 GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION Grégoire ALLAIRE CMAP, Ecole Polytechnique Results obtained in collaboration with F. Jouve (LJLL, Paris 7), G. Michailidis

More information

A HYBRID SEMI-PRIMITIVE SHOCK CAPTURING SCHEME FOR CONSERVATION LAWS

A HYBRID SEMI-PRIMITIVE SHOCK CAPTURING SCHEME FOR CONSERVATION LAWS Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conf. 9 (), pp. 65 73. ISSN: 7-669. URL: http://ejde.math.tstate.edu

More information

On the Use of Fast Marching Algorithms for Shortest Path Distance Calculation

On the Use of Fast Marching Algorithms for Shortest Path Distance Calculation On the Use of Fast Marching Algorithms for Shortest Path Distance Calculation J.B. Boisvert There are many uses to shortest path algorithms; in past CCG papers the shortest path algorithm has been used

More information

An Introduction to Viscosity Solutions: theory, numerics and applications

An Introduction to Viscosity Solutions: theory, numerics and applications An Introduction to Viscosity Solutions: theory, numerics and applications M. Falcone Dipartimento di Matematica OPTPDE-BCAM Summer School Challenges in Applied Control and Optimal Design July 4-8, 2011,

More information

A brief introduction to fluidstructure. O. Souček

A brief introduction to fluidstructure. O. Souček A brief introduction to fluidstructure interactions O. Souček Fluid-structure interactions Important class computational models Civil engineering Biomechanics Industry Geophysics From http://www.ihs.uni-stuttgart.de

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition

Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition Level Set Techniques for Tracking Interfaces; Fast Algorithms, Multiple Regions, Grid Generation, and Shape/Character Recognition J.A. Sethian Abstract. We describe new applications of the level set approach

More information

Lecture 1.1 Introduction to Fluid Dynamics

Lecture 1.1 Introduction to Fluid Dynamics Lecture 1.1 Introduction to Fluid Dynamics 1 Introduction A thorough study of the laws of fluid mechanics is necessary to understand the fluid motion within the turbomachinery components. In this introductory

More information

10. Cartesian Trajectory Planning for Robot Manipulators

10. Cartesian Trajectory Planning for Robot Manipulators V. Kumar 0. Cartesian rajectory Planning for obot Manipulators 0.. Introduction Given a starting end effector position and orientation and a goal position and orientation we want to generate a smooth trajectory

More information

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis Level Set Motivation: Roger Crawfi Slide collected from: Fan Ding, Charle Dyer, Donald Tanguay and Roger Crawfi 4/24/2003 R. Crawfi, Ohio State Univ. 109 Eay Cae Ue Marching Cube Input Data Noiy 4/24/2003

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

An Active Contour Model without Edges

An Active Contour Model without Edges An Active Contour Model without Edges Tony Chan and Luminita Vese Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095-1555 chan,lvese@math.ucla.edu

More information

Investigating The Stability of The Balance-force Continuum Surface Force Model of Surface Tension In Interfacial Flow

Investigating The Stability of The Balance-force Continuum Surface Force Model of Surface Tension In Interfacial Flow Investigating The Stability of The Balance-force Continuum Surface Force Model of Surface Tension In Interfacial Flow Vinh The Nguyen University of Massachusetts Dartmouth Computational Science Training

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

Dr. Ulas Bagci

Dr. Ulas Bagci Lecture 9: Deformable Models and Segmentation CAP-Computer Vision Lecture 9-Deformable Models and Segmentation Dr. Ulas Bagci bagci@ucf.edu Lecture 9: Deformable Models and Segmentation Motivation A limitation

More information

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report -

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report - Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE-2011-3-0256 - Synthesis of the technical report - Phase 1: Preparation phase Authors: Delia Teleaga, Eliza

More information

Finite element method - tutorial no. 1

Finite element method - tutorial no. 1 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 11th October 2017 1 / 22 Introduction to the tutorials E-mail: martin.nesladek@fs.cvut.cz Room no. 622 (6th floor - Dept. of mechanics,

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics

Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics David L. Chopp Department of Mathematics University of California Los Angeles, California 90024 James A. Sethian Department

More information

Modeling Human Embryos Using a Variational Level Set Approach

Modeling Human Embryos Using a Variational Level Set Approach Modeling Human Embryos Using a Variational Level Set Approach Uffe Damgaard Pedersen June 1, 2004 Abstract At fertility clinics, living human embryos are evaluated by visual inspection of light microscopy

More information

Droplet collisions using a Level Set method: comparisons between simulation and experiments

Droplet collisions using a Level Set method: comparisons between simulation and experiments Computational Methods in Multiphase Flow III 63 Droplet collisions using a Level Set method: comparisons between simulation and experiments S. Tanguy, T. Ménard & A. Berlemont CNRS-UMR6614-CORIA, Rouen

More information

Segmentation of Image Using Watershed and Fast Level set methods

Segmentation of Image Using Watershed and Fast Level set methods Segmentation of Image Using Watershed and Fast Level set methods Minal M. Purani S.A.K.E.C, Mumbai +91-9323106641 minalpuranik@ gmail.com Prof, Shobha Krishnan VESIT, Mumbai shobha krishnan@hotmail.com

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Solution for Euler Equations Lagrangian and Eulerian Descriptions

Solution for Euler Equations Lagrangian and Eulerian Descriptions Solution for Euler Equations Lagrangian and Eulerian Descriptions Valdir Monteiro dos Santos Godoi valdir.msgodoi@gmail.com Abstract We find an exact solution for the system of Euler equations, supposing

More information

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Stefan Vater 1 Kaveh Rahnema 2 Jörn Behrens 1 Michael Bader 2 1 Universität Hamburg 2014 PDES Workshop 2 TU München Partial

More information

Hamilton-Jacobi Equations for Optimal Control and Reachability

Hamilton-Jacobi Equations for Optimal Control and Reachability Hamilton-Jacobi Equations for Optimal Control and Reachability Ian Mitchell Department of Computer Science The University of British Columbia Outline Dynamic programming for discrete time optimal Hamilton-Jacobi

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

Chapter 1 - Basic Equations

Chapter 1 - Basic Equations 2.20 Marine Hydrodynamics, Fall 2017 Lecture 2 Copyright c 2017 MIT - Department of Mechanical Engineering, All rights reserved. 2.20 Marine Hydrodynamics Lecture 2 Chapter 1 - Basic Equations 1.1 Description

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Designing Cylinders with Constant Negative Curvature

Designing Cylinders with Constant Negative Curvature Designing Cylinders with Constant Negative Curvature Ulrich Pinkall Abstract. We describe algorithms that can be used to interactively construct ( design ) surfaces with constant negative curvature, in

More information

Solution for Euler Equations Lagrangian and Eulerian Descriptions

Solution for Euler Equations Lagrangian and Eulerian Descriptions Solution for Euler Equations Lagrangian and Eulerian Descriptions Valdir Monteiro dos Santos Godoi valdir.msgodoi@gmail.com Abstract We find an exact solution for the system of Euler equations, following

More information

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden Volume Tracking: A New Method for Visualization of Intracardiac Blood Flow from Three-Dimensional, Time-Resolved, Three-Component Magnetic Resonance Velocity Mapping Appendix: Theory and Numerical Implementation

More information

A CONSERVATIVE FRONT TRACKING ALGORITHM

A CONSERVATIVE FRONT TRACKING ALGORITHM A CONSERVATIVE FRONT TRACKING ALGORITHM Vinh Tan Nguyen, Khoo Boo Cheong and Jaime Peraire Singapore-MIT Alliance Department of Mechanical Engineering, National University of Singapore Department of Aeronautics

More information

A Study of Numerical Methods for the Level Set Approach

A Study of Numerical Methods for the Level Set Approach A Study of Numerical Methods for the Level Set Approach Pierre A. Gremaud, Christopher M. Kuster, and Zhilin Li October 18, 2005 Abstract The computation of moving curves by the level set method typically

More information

A TSTT integrated FronTier code and its applications in computational fluid physics

A TSTT integrated FronTier code and its applications in computational fluid physics Institute of Physics Publishing Journal of Physics: Conference Series 16 (2005) 471 475 doi:10.1088/1742-6596/16/1/064 SciDAC 2005 A TSTT integrated FronTier code and its applications in computational

More information

A Fast Phase Space Method for Computing Creeping Rays KTH. High Frequency Wave Propagation CSCAMM, September 19-22, 2005

A Fast Phase Space Method for Computing Creeping Rays KTH. High Frequency Wave Propagation CSCAMM, September 19-22, 2005 A Fast Phase Space Method for Computing Creeping Rays Olof Runborg Mohammad Motamed KTH High Frequency Wave Propagation CSCAMM, September 19-22, 2005 Geometrical optics for high-frequency waves Consider

More information

GEOPHYSICS. Time to depth conversion and seismic velocity estimation using time migration velocities

GEOPHYSICS. Time to depth conversion and seismic velocity estimation using time migration velocities Time to depth conversion and seismic velocity estimation using time migration velocities Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Geophysics draft Letters n/a Complete List

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

MULTILEVEL NON-CONFORMING FINITE ELEMENT METHODS FOR COUPLED FLUID-STRUCTURE INTERACTIONS

MULTILEVEL NON-CONFORMING FINITE ELEMENT METHODS FOR COUPLED FLUID-STRUCTURE INTERACTIONS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 3, Number 3, Pages 307 319 c 2012 Institute for Scientific Computing and Information MULTILEVEL NON-CONFORMING FINITE ELEMENT METHODS

More information

KEY WORDS: signed distance function, no-penetration condition, mesh adaptation, anisotropic mesh, level-set methods.

KEY WORDS: signed distance function, no-penetration condition, mesh adaptation, anisotropic mesh, level-set methods. Using a signed distance function for the simulation of metal forming processes: formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach. J. Bruchon,

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Flow Visualization with Integral Surfaces

Flow Visualization with Integral Surfaces Flow Visualization with Integral Surfaces Visual and Interactive Computing Group Department of Computer Science Swansea University R.S.Laramee@swansea.ac.uk 1 1 Overview Flow Visualization with Integral

More information

Technical Report TR

Technical Report TR Technical Report TR-2015-09 Boundary condition enforcing methods for smoothed particle hydrodynamics Arman Pazouki 1, Baofang Song 2, Dan Negrut 1 1 University of Wisconsin-Madison, Madison, WI, 53706-1572,

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Daniela Tudorica 1 (1) Petroleum Gas University of Ploiesti, Department of Information Technology,

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

COUPLING THE LEVEL SET METHOD AND THE TOPOLOGICAL GRADIENT IN STRUCTURAL OPTIMIZATION

COUPLING THE LEVEL SET METHOD AND THE TOPOLOGICAL GRADIENT IN STRUCTURAL OPTIMIZATION COUPLING THE LEVEL SET METHOD AND THE TOPOLOGICAL GRADIENT IN STRUCTURAL OPTIMIZATION Grégoire ALLAIRE Centre de Mathématiques Appliquées (UMR 7641) Ecole Polytechnique, 91128 Palaiseau, France gregoire.allaire@polytechnique.fr

More information

A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization

A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization A Survey of Interface Tracking Methods in Multi-phase Fluid Visualization Fang Chen 1 and Hans Hagen 2 1 University of Kaiserslautern AG Computer Graphics and HCI Group, TU Kaiserslautern, Germany chen@cs.uni-kl.de

More information

Ian Mitchell. Department of Computer Science The University of British Columbia

Ian Mitchell. Department of Computer Science The University of British Columbia CPSC 542D: Level Set Methods Dynamic Implicit Surfaces and the Hamilton-Jacobi Equation or What Water Simulation, Robot Path Planning and Aircraft Collision Avoidance Have in Common Ian Mitchell Department

More information

Converting Level Set Gradients to Shape Gradients

Converting Level Set Gradients to Shape Gradients Converting Level Set Gradients to Shape Gradients Siqi Chen 1, Guillaume Charpiat 2, and Richard J. Radke 1 1 Department of ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA chens@rpi.edu, rjradke@ecse.rpi.edu

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

Local-structure-preserving discontinuous Galerkin methods with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations

Local-structure-preserving discontinuous Galerkin methods with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations Local-structure-preserving discontinuous Galerkin methods with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations Wei Guo, Fengyan Li and Jianxian Qiu 3 Abstract: In this paper, a family

More information

Moving Interface Problems: Methods & Applications Tutorial Lecture II

Moving Interface Problems: Methods & Applications Tutorial Lecture II Moving Interface Problems: Methods & Applications Tutorial Lecture II Grétar Tryggvason Worcester Polytechnic Institute Moving Interface Problems and Applications in Fluid Dynamics Singapore National University,

More information

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Yonggang Shi, Janusz Konrad, W. Clem Karl Department of Electrical and Computer Engineering Boston University, Boston, MA 02215

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Imagery for 3D geometry design: application to fluid flows.

Imagery for 3D geometry design: application to fluid flows. Imagery for 3D geometry design: application to fluid flows. C. Galusinski, C. Nguyen IMATH, Université du Sud Toulon Var, Supported by ANR Carpeinter May 14, 2010 Toolbox Ginzburg-Landau. Skeleton 3D extension

More information

FEM techniques for interfacial flows

FEM techniques for interfacial flows FEM techniques for interfacial flows How to avoid the explicit reconstruction of interfaces Stefan Turek, Shu-Ren Hysing (ture@featflow.de) Institute for Applied Mathematics University of Dortmund Int.

More information

Segmentation. Namrata Vaswani,

Segmentation. Namrata Vaswani, Segmentation Namrata Vaswani, namrata@iastate.edu Read Sections 5.1,5.2,5.3 of [1] Edge detection and filtering : Canny edge detection algorithm to get a contour of the object boundary Hough transform:

More information

High Order Weighted Essentially Non-Oscillatory Schemes for Convection. Dominated Problems. Chi-Wang Shu 1

High Order Weighted Essentially Non-Oscillatory Schemes for Convection. Dominated Problems. Chi-Wang Shu 1 High Order Weighted Essentially Non-Oscillatory Schemes for Convection Dominated Problems Chi-Wang Shu Division of Applied Mathematics, Brown University, Providence, Rhode Island 09 ABSTRACT High order

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information