AUTOMATING UP-SCALING OF RELATIVE PERMEABILITY CURVES FROM JBN METHOD ESCALAMIENTO AUTOMÁTICO DE CURVAS DE PERMEABILDIAD RELATIVA DEL MÉTODOS JBN

Size: px
Start display at page:

Download "AUTOMATING UP-SCALING OF RELATIVE PERMEABILITY CURVES FROM JBN METHOD ESCALAMIENTO AUTOMÁTICO DE CURVAS DE PERMEABILDIAD RELATIVA DEL MÉTODOS JBN"

Transcription

1 AUTOMATING UP-SCALING OF RELATIVE PERMEABILITY CURVES FROM JBN METHOD ESCALAMIENTO AUTOMÁTICO DE CURVAS DE PERMEABILDIAD RELATIVA DEL MÉTODOS JBN JUAN D. VALLEJO 1, JUAN M. MEJÍA 2, JUAN VALENCIA 3 Petroleum Engineering, Research Group of Flow and Transport Dynamics in Porous Media, Universidad Nacional de Colombia, jdvallejor@unal.edu.co Ph.D., Associated Professor, Research Group of Flow and Transport Dynamics in Porous Media, Universidad Nacional de Colombia, sede Medellín, jmmejiaca@unal.edu.co M.Sc., Research Group of Flow and Transport Dynamics in Porous Media, Universidad Nacional de Colombia, sede Medellín, jdvalencl@unal.edu.co ABSTRACT Relative permeability curves are a key data when any analysis is performed in a hydrocarbon reservoir. Many methods have been proposed to measure rel perm curves. One of the most complete rel perm measurement methods is the steady state method. However, it is time-consuming and consequently not often used in the industry. One alternative is the unsteady JBN method, based on the fractional flow theory. The JBN method is very simple and efficient, being one of the most used rel perm measurement methods in the oil and gas industry. Although the JBN methods is widely used, one of its major limitations is that measurements are only related to the core exit face. Therefore, the rel perm curves from JBN method are usually not representative of the core. Therefore, significant errors can be introduced in reservoir studies based on rel perm measurements from JBN tests. We present a method for calculating relative permeability curves using an inverse problem approach: we adapted a reservoir simulation tool in order to find the rel perm curves matching both, the measured oil recovery and pressure drop data with the JBN test. The AdRelPerm tool allows for different rel perm models (Corey, LET) and a general shape based on B- Splines interpolation. The results show the efficacy of the method and its potential to estimate a closer permeability curves of a core and minimize the uncertainty reservoir studies. KEYWORDS: History matching, optimization, relative permeability, simulation 1. INTRODUCTION Relative permeability curves largely determine the flow of fluids through porous media and thus they are a key variable in any analysis performed in reservoir engineering. Many methods have been developed for their calculation, which range from core tests to mathematical models and computer simulations. Conventionally, relative permeability curves are obtained from core tests. Steady state method was the first in been introduced. In this one both the wetting and not wetting phase are injected simultaneously at constant rate and constant pressure drop to make sure that a steady state is reached and Darcy equation can be used to calculate the relative permeability [1]. Although this is considered a direct method to calculate the relative permeability curves it has a great defect, it is time consuming because the steady state could take days to be stablished [2]. Because of the above, the unsteady state method emerged. In this one phase is injected into a core saturated with other phase producing a displacement. Data of pressure drop across the core and produced volumes of the phases are recollected to calculate the relative permeability curves performing an adjustment of the measured data with the graphic method JBN [3]. This method is the most used in the oil industry due to its simplicity and efficiency but it comes with some limitations. It is based on the

2 Buckley-Leverett theory so it does not consider the capillary pressure and big mistakes can be committed because that effect is high in the exit face of the core and especially in low permeability cores. Other fact is that the relative permeability curves are representative only in the exit face of the core, so errors are frequently present in high heterogeneous media [4] [5]. To remedy all the limitations described above an inverse problem process is used along with the data from the displacement test to measure the relative permeability curves. With the inverse problem, the parameters of a model are calculated from measured data. In the case of relative permeability curves, it is sought to estimate the parameter of a model that describe the behavior of the curves. 2. METHODOLOGY The inverse problem is based on the minimization of an objective function that compares the measured data from the displacement test and the results of a flow simulation that replicate the test. There are four items to consider in this process: 1. Flow simulator 2. Model that represent the behavior of the relative permeability curves 3. Objective function 4. Optimization algorithm A computational program was developed to automate this process. It was called AdRelPerm Tool Flow Simulator The used flow simulator was developed inside the Research Group of Flow and Transport Dynamics on Porous Media from Universidad Nacional de Colombia. This is an extended black oil simulator capable to work with cartesian and radial meshes developed using Fortran program language Relative Permeability curves models AdRelPerm tool allows to work with three different models: corey, LET and b-splaine. They vary in complexity being corey the simplest one and b-spline the most robust Corey This is the most used model to represent relative permeability curves due to its simplicity. It assumes that the curves represent an exponential shape. w = w(s or ) ( S w S wc ) n w o = o(s wc ) (1 S w S wc ) n o (1) (2) Here n w and n o are the corey exponents of the phases water and oil respectively. Those two coefficients are the ones that the AdRelPerm tool looks for.

3 LET This model was proposed for Lomeland, Ebeltoft, & Thomas [6]. It can represents the s shape that the relative permeability curves can adopt due to the low changes in their value at low and high saturation values. S wn Lw w = w max. (3) S Lw wn +E w (1 S wn ) T w (1 S wn ) L o o = o max. (4) (1 S wn ) L o+e o S To wn S wn = S w S wc (5) There are three parameter to adjust by curve, L w, E w, T w for the water phase and L o, E o, T o for the oil phase Cubic B-Spline The cubic B-spline interpolation can represent curves with a free form. The only imposed condition to the curves is that they must be always decreasing. 1 3 K rl = 1 [ t 3 t² t 1] [ P i P ] [ i ] (6) 3 0 P i P i+2 Here t is a parameter that range from 0 to 1 and depends on saturation. P i are the nodes with which the method interpolates the curve. Those nodes are the adjusting parameters Objective Function The objective function implemented in AdRelPerm tool consider the pressure drop across the core and the cumulative oil recovery of the displacement test. n OF = w(np simulatedi Np measuredi ) 2 + (1 w)(deltap simulatedi Deltap measuredi ) 2 i=1 (7) There W is a weight factor that indicates which data is more important to adjust Optimization Algorithm AdRelPerm tool uses the particle swarm optimization algorithm (PSO) proposed for Eberhart & Kennedy [7] to minimize the objective function. It is based in a number of particles (set of parameter to adjust) which follow a leader particle.

4 3. RESULTS OF VALIDATION To validate the provided results by the program the next methodology was performed: - Create a simulation of a displacement test using the commercial software CMG. The simulation was deployed with two different relative permeability curves, one based on the corey model and the other using the LET model, these are considered as the real curves from their respective test. - From the two simulations, the data necessary to run the AdRelPerm tool is extracted. - The relative permeability curves obtained from the tool are compared with the original ones. The basic information needed to perform the simulations is listed in Table 1. The simulated core is homogenous with constant petrophysic properties. For the two sets of data the AdRelPerm tool was run twice. In the first run the curves end points are known, and in the second run those are unknown. Also in the second test, the curve obtained using the JBN methodology was calculated and compared. Table 1. General information about the core, the displacement test and the relative permeability curves Core Properties Length 58.1 cm Diameter 2.54 cm Absolute Permeability md Porosity Displacement Test Conditions Injection Rate 0.3 cc/min Backpressure 2000 psi Relative Permeability Curves Sor c o (c) 1.0 w (Sor) The results from the first test are show in Figure 1. In both cases the tool was capable to find the right relative permeability curves. Figure 1. (a) Comparison of real and simulated curves knowing the end points using corey model, (b) Comparison of real and simulated curves when the end points are unknown using corey model w real o real w sim o sim w real o real w sim o sim

5 Figure 2. (a) Comparison of real and simulated curves knowing the end points using LET model, (b) Comparison of real and simulated curves when the end points are unknown using LET model w real o real w sim o sim w JBN o JBN w real o real w sim o sim w JBN o JBN Figure 2. shows the results when the LET based relative permeability curves were used. The match between the curves is not as perfect as in the case with corey model but the results are good enough. The maximum discrepancy is presented in the case that that end points are unknown, it evidences one problem with the freedom degrees in the optimization process. Increasing the number of adjusting parameters allows the optimization algorithm to find different solutions, regardless the solution is acceptable compared with the JBN curve obtained. 4. CONCLUSIONS - An automatic computational tool was created to adjust relative permeability curves from JBN test - The results show the accuracy of the tool predicting the relative permeability curves from homogenous cores. - The accuracy decreases when the amount of freedom degrees of the model of the relative permeability curves increase. - The calculated relative permeability curves with the AdRelPerm tool match better than curves from JBN method showing the effectiveness of the program. REFERENCES [1] S. Qadeer, W. Brigham and L. Castanier, "Techniques to Handle Limitations in Dynamic Relative Permeability Measurements," [2] A. Kantzas, Fundamental of Fluid Flow in Porous Media, [3] E. Johnson, D. Bosller and V. Naumann, "Calculation of relative permeability from displacement experiments," Society of Petroleum Engineers, [4] T. Tao and A. Watson, "Accuracy of JBN Estimates of Relative Permeability: Paart 1 - Error Analysis," Society of petroleum engineers, [5] G. Saviolli, M. Bidner and C. Grattoni, "The Influence of Capillary Pressure when Determining Relative Permeability from Unstady-State Corefloods," SPE, [6] F. Lomeland, E. Ebeltoft and W. Thomas, "A New Versatile Relative Permeability Correlation," [7] R. Eberhart and J. Kennedy, "Particle swarm optimization," IEEE Proccedings Neural Networs, 1995.

SPE Copyright 2001, Society of Petroleum Engineers Inc.

SPE Copyright 2001, Society of Petroleum Engineers Inc. SPE 69394 Scaling Up of Laboratory Relative Permeability Curves. An Advantageous Approach Based on Realistic Average Water Saturations M. A. Crotti, SPE, Inlab S.A. and R. H. Cobeñas, SPE, Chevron San

More information

OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING

OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 2, Supp, Pages 131 137 c 2005 Institute for Scientific Computing and Information OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING Abstract. SHUGUANG

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

SPE Intelligent Time Successive Production Modeling Y. Khazaeni, SPE, S. D. Mohaghegh, SPE, West Virginia University

SPE Intelligent Time Successive Production Modeling Y. Khazaeni, SPE, S. D. Mohaghegh, SPE, West Virginia University SPE 132643 Intelligent Time Successive Production Modeling Y. Khazaeni, SPE, S. D. Mohaghegh, SPE, West Virginia University Copyright 2010, Society of Petroleum Engineers This paper was prepared for presentation

More information

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation Faisal Alenezi Department of Petroleum and Natural Gas Engineering West Virginia University Email: falenezi@mix.wvu.edu Shahab Mohaghegh

More information

CYDAR-SCAL USER MANUAL

CYDAR-SCAL USER MANUAL CYDAR-SCAL USER MANUAL CYDAR-SCAL USER MANUAL... 2 CYDAR-SCAL OVERVIEW... 5 MERCURY INJECTION (MICP)... 5 ABSOLUTE PERMEABILITY... 6 TWO-PHASE FLOW EXPERIMENT... 6 RELATIVE PERMEABILITY... 7 CENTRIFUGE

More information

TMVOC Buckley-Leverett Flow

TMVOC Buckley-Leverett Flow 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com TMVOC Buckley-Leverett Flow PetraSim 2016.1 Table of Contents 1. Buckley-Leverett Flow...1 Description... 1 Create

More information

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Oliveira, Gonçalo Soares Soares, Amílcar Oliveira (CERENA/IST) Schiozer, Denis José (UNISIM/UNICAMP) Introduction

More information

Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data

Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data Exa DigitalROCK: A Virtual Lab for Fast, Reliable Permeability Data Exa Corporation 2017 CONTACT Exa Corporation 55 Network Drive Burlington, MA USA 01803 1.781.564.0200 www.exa.com Copyright 2017 Exa

More information

GAS PRODUCTION ANALYSIS:

GAS PRODUCTION ANALYSIS: New Mexico Tech THINKING FOR A NEW MILLENNIUM TIGHT-GAS GAS PRODUCTION ANALYSIS: User Guide for a Type-Curve Matching Spreadsheet Program (TIGPA 2000.1) Her-Yuan Chen Assistant Professor Department of

More information

Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model

Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model SPE-185691-MS Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model Faisal Alenezi and Shahab Mohaghegh, West Virginia University Copyright 2017, Society of Petroleum

More information

Digital Rock Physics for Coreflooding Simulations

Digital Rock Physics for Coreflooding Simulations Digital Rock Physics for Coreflooding Simulations Mahesh Avasare Masters in Petroleum Engineering, IST Lisbon Intern, R&D Center, CEPSA Experimental corefloodings have proved to be important tool for decades

More information

PTE 519 Lecture Note Finite Difference Approximation (Model)

PTE 519 Lecture Note Finite Difference Approximation (Model) PTE 519 Lecture Note 3 3.0 Finite Difference Approximation (Model) In this section of the lecture material, the focus is to define the terminology and to summarize the basic facts. The basic idea of any

More information

Experimental and simulation interpretation of capillary pressure and relative permeability from waterflooding experiments

Experimental and simulation interpretation of capillary pressure and relative permeability from waterflooding experiments Experimental and simulation interpretation of capillary pressure and relative permeability from waterflooding experiments Pål Ø. Andersen 1,2, Presenter. IEA-EOR, Copenhagen Sep 2018 Co-authors: Kenny

More information

Smart Proxy Modeling. for Numerical Reservoir Simulations BIG DATA ANALYTICS IN THE EXPLORATION & PRODUCTION INDUSTRY

Smart Proxy Modeling. for Numerical Reservoir Simulations BIG DATA ANALYTICS IN THE EXPLORATION & PRODUCTION INDUSTRY Smart Proxy Modeling for Numerical Reservoir Simulations BIG DATA ANALYTICS IN THE EXPLORATION & PRODUCTION INDUSTRY Intelligent Solutions, Inc. & West Virginia University October 2015 Data Driven Analytics

More information

A Geostatistical and Flow Simulation Study on a Real Training Image

A Geostatistical and Flow Simulation Study on a Real Training Image A Geostatistical and Flow Simulation Study on a Real Training Image Weishan Ren (wren@ualberta.ca) Department of Civil & Environmental Engineering, University of Alberta Abstract A 12 cm by 18 cm slab

More information

CIPC Louis Mattar. Fekete Associates Inc. Analytical Solutions in Well Testing

CIPC Louis Mattar. Fekete Associates Inc. Analytical Solutions in Well Testing CIPC 2003 Louis Mattar Fekete Associates Inc Analytical Solutions in Well Testing Well Test Equation 2 P 2 P 1 P + = x 2 y 2 α t Solutions Analytical Semi-Analytical Numerical - Finite Difference Numerical

More information

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies. azemi* (University of Alberta) & H.R. Siahkoohi (University of Tehran) SUMMARY Petrophysical reservoir properties,

More information

Digital Core study of Wanaea and Perseus Core Fragments:

Digital Core study of Wanaea and Perseus Core Fragments: Digital Core study of Wanaea and Perseus Core Fragments: Summary for Woodside Energy Mark A. Knackstedt,2, A. Ghous 2, C. H. Arns, H. Averdunk, F. Bauget, A. Sakellariou, T.J. Senden, A.P. Sheppard,R.

More information

Abstract. 1 Introduction

Abstract. 1 Introduction On the Use of Pore-Scale Computational Models for Two-Phase Porous-media Flows M.A. Celia, P.C Reeves, H.K. Dahle Environmental Engineering and Water Resources Program, Department of Civil Engineering

More information

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR 1 A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR B. Todd HOFFMAN and Jef CAERS Stanford University, Petroleum Engineering, Stanford CA 94305-2220 USA

More information

NUMERICAL PORE-NETWORK FUSION TO PREDICT CAPILLARY PRESSURE AND RELATIVE PERMEABILITY IN CARBONATES

NUMERICAL PORE-NETWORK FUSION TO PREDICT CAPILLARY PRESSURE AND RELATIVE PERMEABILITY IN CARBONATES SCA2012-02 1/12 NUMERICAL PORE-NETWORK FUSION TO PREDICT CAPILLARY PRESSURE AND RELATIVE PERMEABILITY IN CARBONATES Sven Roth 1, Danyong Li 1, Hu Dong 1, Martin J. Blunt 1,2 1 irock Technologies, Oriental

More information

Design optimization method for Francis turbine

Design optimization method for Francis turbine IOP Conference Series: Earth and Environmental Science OPEN ACCESS Design optimization method for Francis turbine To cite this article: H Kawajiri et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 22 012026

More information

11. Petrophysical Modeling

11. Petrophysical Modeling 11. Petrophysical Modeling 11.1 Deterministic Modeling When the well logs have been scaled up to the resolution of the cells in the 3D grid, the values for each cell along the well trajectory can be interpolated

More information

A Lattice-Boltzmann Based Method Applied to Digital Rock Characterization of Perforation Tunnel Damage

A Lattice-Boltzmann Based Method Applied to Digital Rock Characterization of Perforation Tunnel Damage SCA2016-058 1/6 A Lattice-Boltzmann Based Method Applied to Digital Rock Characterization of Perforation Tunnel Damage Bernd Crouse, David M Freed, Nils Koliha, Gana Balasubramanian EXA CORP Rajani Satti,

More information

Simulation of Matrix-Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs

Simulation of Matrix-Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs SPE-182608-MS Simulation of Matrix-Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs D. Y. Ding, N. Farah, and B. Bourbiaux, IFP Energies Nouvelles; Y-S. Wu, Colorado School

More information

DEVELOPMENT OF METHODOLOGY FOR COMPUTER-ASSISTED HISTORY MATCHING OF FRACTURED BASEMENT RESERVOIRS

DEVELOPMENT OF METHODOLOGY FOR COMPUTER-ASSISTED HISTORY MATCHING OF FRACTURED BASEMENT RESERVOIRS UDC 55:5-7; 6.4 DVLOPMNT OF MTHODOLOGY FOR COMPUTR-ASSISTD HISTORY MATCHING OF FRACTURD BASMNT RSRVOIRS Phan Ngoc Trung Nguyen The Duc (Vietnam Petroleum Institute) To obtain better simulation model for

More information

A Soft Computing-Based Method for the Identification of Best Practices, with Application in the Petroleum Industry

A Soft Computing-Based Method for the Identification of Best Practices, with Application in the Petroleum Industry CIMSA 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications Giardini Naxos, Italy, 20-22 July 2005 A Soft Computing-Based Method for the Identification

More information

SMART WELL MODELLING. Design, Scenarios and Optimisation

SMART WELL MODELLING. Design, Scenarios and Optimisation Page 1 Introduction Smart or complex wells are in increasing use by operators as reservoir environments become more challenging. The wells include a number of smart devices installed to achieve a variety

More information

403 Poyntz Avenue, Suite B Manhattan, KS PetraSim Example Manual

403 Poyntz Avenue, Suite B Manhattan, KS PetraSim Example Manual 403 Poyntz Avenue, Suite B Manhattan, KS 66502-6081 1.785.770.8511 www.thunderheadeng.com PetraSim Example Manual July 2007 TMVOC Example Guide Table of Contents 1.... 1 Description... 1 Specify the Simulator

More information

Relative Permeability Simulation using the Two-phase Lattice-Boltzmann Method

Relative Permeability Simulation using the Two-phase Lattice-Boltzmann Method 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 696-703 Relative Permeability Simulation using the Two-phase Lattice-Boltzmann Method Youngseuk Keehm, Tapan Mukerji & Amos

More information

SPE ), initial decline rate ( D

SPE ), initial decline rate ( D SPE 100562 An Integrated Technique for Production Data Analysis with Application to Mature Fields Gaskari, R., Mohaghegh, S. D. and Jalali, J., West Virginia University Copyright 2006, Society of Petroleum

More information

Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm ITB J. Eng. Sci., Vol. 44, No. 2, 2012, 106-127 106 Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm Tutuka Ariadji 1,

More information

How to load rescue and create model Trainings Rock Flow Dynamics

How to load rescue and create model Trainings Rock Flow Dynamics How to load rescue and create model Trainings 2015 Rock Flow Dynamics tnavigator Model Designer 2 Static and dynamic model in one GUI Change static model and run hydrodynamic model in one window. Edit

More information

IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL RESERVOIR SIMULATIONS USING THE CIP SCHEME WITH THIRD-ORDER ACCURACY

IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL RESERVOIR SIMULATIONS USING THE CIP SCHEME WITH THIRD-ORDER ACCURACY PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 2012 SGP-TR-194 IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL

More information

Mass Transport in a GDL with Variable Wettability

Mass Transport in a GDL with Variable Wettability Mass Transport in a GDL with Variable Wettability Jürgen Becker Christian Wagner Andreas Wiegmann 1 Who is Math2Market? Math2Market GmbH was founded September 2011 in Kaiserslautern. Spin-off of Fraunhofer

More information

SeisTool Seismic - Rock Physics Tool

SeisTool Seismic - Rock Physics Tool SeisTool Seismic - Rock Physics Tool info@traceseis.com Supports Exploration and Development Geoscientists in identifying or characterizing reservoir properties from seismic data. Reduces chance of user

More information

Relative Permeability Upscaling for Heterogeneous Reservoir Models

Relative Permeability Upscaling for Heterogeneous Reservoir Models Relative Permeability Upscaling for Heterogeneous Reservoir Models Mohamed Ali Gomaa Fouda Submitted for the degree of Doctor of Philosophy Heriot-Watt University School of Energy, Geoscience, Infrastructure

More information

UTCHEM GMS TUTORIALS. 1.1 Outline

UTCHEM GMS TUTORIALS. 1.1 Outline GMS TUTORIALS is a highly sophisticated, multi-phase flow and multi-constituent, reactive transport model capable of performing a wide variety of groundwater simulations. was developed at the Center for

More information

Rubis (NUM) Tutorial #1

Rubis (NUM) Tutorial #1 Rubis (NUM) Tutorial #1 1. Introduction This example is an introduction to the basic features of Rubis. The exercise is by no means intended to reproduce a realistic scenario. It is assumed that the user

More information

Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Petroleum Engineering/Reservoir Engineering Writer : Ibnu Hafidz Arief Faculty supervisor: Prof.Dr. Hans Spring semester,

More information

Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction

Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction Improvement of Realizations through Ranking for Oil Reservoir Performance Prediction Stefan Zanon, Fuenglarb Zabel, and Clayton V. Deutsch Centre for Computational Geostatistics (CCG) Department of Civil

More information

CFD Modeling of the Closed Injection Wet- Out Process For Pultrusion

CFD Modeling of the Closed Injection Wet- Out Process For Pultrusion CFD Modeling of the Closed Injection Wet- Out Process For Pultrusion Michael Connolly Business Development Team Auburn Hills, MI, USA Mark Brennan Core Science Team Everberg, Belgium Huntsman Polyurethanes

More information

History matching with an ensemble Kalman filter and discrete cosine parameterization

History matching with an ensemble Kalman filter and discrete cosine parameterization Comput Geosci (2008) 12:227 244 DOI 10.1007/s10596-008-9080-3 ORIGINAL PAPER History matching with an ensemble Kalman filter and discrete cosine parameterization Behnam Jafarpour & Dennis B. McLaughlin

More information

COMPUTATION OF RELATIVE PERMEABILITY FUNCTIONS IN 3D DIGITAL ROCKS BY A FRACTIONAL FLOW APPROACH USING THE LATTICE BOLTZMANN METHOD

COMPUTATION OF RELATIVE PERMEABILITY FUNCTIONS IN 3D DIGITAL ROCKS BY A FRACTIONAL FLOW APPROACH USING THE LATTICE BOLTZMANN METHOD SCA2012-36 1/12 COMPUTATION OF RELATIVE PERMEABILITY FUNCTIONS IN 3D DIGITAL ROCKS BY A FRACTIONAL FLOW APPROACH USING THE LATTICE BOLTZMANN METHOD Giuseppe De Prisco 1, Jonas Toelke 1, and Moustafa R

More information

Robust Production Optimization with Capacitance-Resistance Model as Proxy

Robust Production Optimization with Capacitance-Resistance Model as Proxy Robust Production Optimization with Capacitance-Resistance Model as Proxy What is Robust Production Optimization? Production Optimization: To optimize the objective by tuning the control variables (e.g.

More information

Emeraude v2.60 White Pages

Emeraude v2.60 White Pages Emeraude v2.60 White Pages 1. Introduction Emeraude 2.60 contains major changes, as well as a series of smaller additions which together, play an important part in further enhancing the interaction with

More information

SPE demonstrated that quality of the data plays a very important role in developing a neural network model.

SPE demonstrated that quality of the data plays a very important role in developing a neural network model. SPE 98013 Developing Synthetic Well Logs for the Upper Devonian Units in Southern Pennsylvania Rolon, L. F., Chevron, Mohaghegh, S.D., Ameri, S., Gaskari, R. West Virginia University and McDaniel B. A.,

More information

EFFECTIVE MODELS OF FRACTURED SYSTEMS

EFFECTIVE MODELS OF FRACTURED SYSTEMS EFFECTIVE MODELS OF FRACTURED SYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE

More information

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Richa Agnihotri #1, Dr. Shikha Agrawal #1, Dr. Rajeev Pandey #1 # Department of Computer Science Engineering, UIT,

More information

Downscaling saturations for modeling 4D seismic data

Downscaling saturations for modeling 4D seismic data Downscaling saturations for modeling 4D seismic data Scarlet A. Castro and Jef Caers Stanford Center for Reservoir Forecasting May 2005 Abstract 4D seismic data is used to monitor the movement of fluids

More information

SPE Abstract. Introduction

SPE Abstract. Introduction SPE 109956 A dual-grid automatic history matching technique with applications to 3D formation testing in the presence of oil-base muds Mayank Malik, Carlos Torres-Verdín, and Kamy Sepehrnoori, The University

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS

ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS Paulo Henrique Ranazzi Marcio Augusto Sampaio Pinto ranazzi@usp.br marciosampaio@usp.br Department of Mining and Petroleum Engineering, Polytechnic

More information

EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS. A Thesis PONGSATHORN LERLERTPAKDEE

EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS. A Thesis PONGSATHORN LERLERTPAKDEE EFFICIENT PRODUCTION OPTIMIZATION USING FLOW NETWORK MODELS A Thesis by PONGSATHORN LERLERTPAKDEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 3(6) pp. 224-234, July, 2013 Available online http://www.interesjournals.org/irjgm Copyright 2013 International Research Journals

More information

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells James A. Peitzmeier *1, Steven Kapturowski 2 and Xia Wang

More information

SPE Introduction Modern reservoir characterization tools can routinely generate very refined reservoir models containing millions of

SPE Introduction Modern reservoir characterization tools can routinely generate very refined reservoir models containing millions of SPE 79681 Dual Mesh Method in Upscaling Pascal Audigane, SPE, and Martin J Blunt, SPE, Centre for Petroleum Studies, Department of Earth Science and Engineering, Imperial College, London, UK. Copyright

More information

Porous Reactor with Injection Needle

Porous Reactor with Injection Needle Porous Reactor with Injection Needle Introduction This model treats the flow field and species distribution in an experimental reactor for studies of heterogeneous catalysis. The model exemplifies the

More information

SPE Copyright 2012, Society of Petroleum Engineers

SPE Copyright 2012, Society of Petroleum Engineers SPE 151994 Application of Surrogate Reservoir Model (SRM) to an Onshore Green Field in Saudi Arabia; Case Study Shahab D. Mohaghegh, Intelligent Solutions, Inc. & West Virginia University, Jim Liu, Saudi

More information

T2VOC Example: One Dimensional Gas Diffusion of an Organic Chemical

T2VOC Example: One Dimensional Gas Diffusion of an Organic Chemical 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com T2VOC Example: One Dimensional Gas Diffusion of an Organic Chemical PetraSim 5 Table of Contents Acknowledgements...

More information

Generation of Multiple History Matched Models Using Optimization Technique

Generation of Multiple History Matched Models Using Optimization Technique 1 Generation of Multiple History Matched Models Using Optimization Technique Manish Choudhary and Tapan Mukerji Department of Energy Resources Engineering Stanford University Abstract Uncertainty in the

More information

A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING

A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING 1 A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING Jonathan N Carter and Pedro J Ballester Dept Earth Science and Engineering, Imperial College, London Abstract Non-linear

More information

Toward reservoir simulation on geological grid models

Toward reservoir simulation on geological grid models 1 Toward reservoir simulation on geological grid models JØRG E. AARNES and KNUT ANDREAS LIE SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway Abstract We present a reservoir

More information

Petroleum and Chemical Industry International

Petroleum and Chemical Industry International Research Article Petroleum and Chemical Industry International Application of Fuzzy Logic for Pseudo Skin Estimation for Horizontal wells within Various Drainage Areas Monged Abdalla ISSN: 2639-7536 Petroleum

More information

A041 Production Optimization under Constraints Using Adjoint Gradients

A041 Production Optimization under Constraints Using Adjoint Gradients A041 Production Optimization under Constraints Using Adjoint Gradients P. de Montleau* (ENI SpA - E&P Div.), A. Cominelli (ENI E&P), K. Neylon (Schlumberger), D. Rowan (Schlumberger), I. Pallister (Schlumberger),

More information

Thermal Reservoir Simulator for Microsoft Windows TM

Thermal Reservoir Simulator for Microsoft Windows TM Thermal Reservoir Simulator for Microsoft Windows TM Designed for use with the Microsoft Windows XP TM, and later, operating systems: Simulator Features Simulator Applications Radial and Cartesian Coordinates

More information

SPE Distinguished Lecturer Program

SPE Distinguished Lecturer Program SPE Distinguished Lecturer Program Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow

More information

HORIZONTAL WELL PLACEMENT OPTIMIZATION IN GAS RESERVOIRS USING GENETIC ALGORITHMS. A Thesis TREVOR HOWARD GIBBS

HORIZONTAL WELL PLACEMENT OPTIMIZATION IN GAS RESERVOIRS USING GENETIC ALGORITHMS. A Thesis TREVOR HOWARD GIBBS HORIZONTAL WELL PLACEMENT OPTIMIZATION IN GAS RESERVOIRS USING GENETIC ALGORITHMS A Thesis by TREVOR HOWARD GIBBS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

TOUGHREACT Example: Aqueous Transport with Adsorption and Decay

TOUGHREACT Example: Aqueous Transport with Adsorption and Decay 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com TOUGHREACT Example: Aqueous Transport with Adsorption and Decay PetraSim 2016.1 Table of Contents Overview...1

More information

ANALTERNATIVE TO TRADITIONAL RESERVOIR MODELING

ANALTERNATIVE TO TRADITIONAL RESERVOIR MODELING I N T E L L I G E N T S O L U T I O N S, I N C. AI-BASED RESERVOIR MANAGEMENT ANALTERNATIVE TO TRADITIONAL RESERVOIR MODELING 5 5 T A R A P L A C E M O R G A N T O W N, W V 2 6 5 0 5 USA AI- B A S E D

More information

Velocity and Concentration Properties of Porous Medium in a Microfluidic Device

Velocity and Concentration Properties of Porous Medium in a Microfluidic Device Velocity and Concentration Properties of Porous Medium in a Microfluidic Device Rachel Freeman Department of Chemical Engineering University of Washington ChemE 499 Undergraduate Research December 14,

More information

Predicting Porosity through Fuzzy Logic from Well Log Data

Predicting Porosity through Fuzzy Logic from Well Log Data International Journal of Petroleum and Geoscience Engineering (IJPGE) 2 (2): 120- ISSN 2289-4713 Academic Research Online Publisher Research paper Predicting Porosity through Fuzzy Logic from Well Log

More information

FracRisk Reporting form for milestones

FracRisk Reporting form for milestones FracRisk Reporting form for milestones Milestone Number: M18 Work package number: 5 Milestone title Review of dual-porosity and MINC approaches and necessary adaptions in the Open-Source simulator DuMu

More information

Generalized Porous Media Flow in ICFDLSDYNA: FSI, Free-Surface, RTM and. Parachute Modeling

Generalized Porous Media Flow in ICFDLSDYNA: FSI, Free-Surface, RTM and. Parachute Modeling Generalized Porous Media Flow in ICFDLSDYNA: FSI, Free-Surface, RTM and Parachute Modeling Rodrigo R. Paz1, Facundo Del Pin1, Iñaki Caldichoury1 and Hugo G. Castro2 1 Livermore Software Technology Corporation,

More information

Inversion of Array Induction Logs and Its Application

Inversion of Array Induction Logs and Its Application 2007 Petroleum Science Vol.4 No.3 Inversion of Array Induction Logs and Its Application Gao Jie 1, Zhao Aibin 2, Peng Fei 1 and Li Hongqi 1 (1. School of Resources and Information, China University of

More information

Understanding and Using MINC

Understanding and Using MINC Understanding and Using MINC Background In TOUGH2, the MINC (Multiple Interacting Continua) approach is used to model flow in fractured media. It is a generalization of the classical double-porosity concept

More information

The Pennsylvania State University. The Graduate School. John and Willie Leone Family Department of Energy and Mineral Engineering

The Pennsylvania State University. The Graduate School. John and Willie Leone Family Department of Energy and Mineral Engineering The Pennsylvania State University The Graduate School John and Willie Leone Family Department of Energy and Mineral Engineering DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK BASED EXPERT SYSTEM FOR RATE

More information

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES November 20, 2018 WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES Bishal Bhattarai and Nikolai V. Priezjev Department of Mechanical and Materials Engineering

More information

Contents Foreword...v Acknowledgments...vii 1. Introduction to Simulation and History Matching...1

Contents Foreword...v Acknowledgments...vii 1. Introduction to Simulation and History Matching...1 Foreword Mathematical simulation of reservoir behavior may be used to help understand reservoir processes and predict reservoir behavior in addition simulation can be used as a tool for reservoir description

More information

Variogram Inversion and Uncertainty Using Dynamic Data. Simultaneouos Inversion with Variogram Updating

Variogram Inversion and Uncertainty Using Dynamic Data. Simultaneouos Inversion with Variogram Updating Variogram Inversion and Uncertainty Using Dynamic Data Z. A. Reza (zreza@ualberta.ca) and C. V. Deutsch (cdeutsch@civil.ualberta.ca) Department of Civil & Environmental Engineering, University of Alberta

More information

Real time production optimization in upstream petroleum production - Applied to the Troll West oil rim

Real time production optimization in upstream petroleum production - Applied to the Troll West oil rim Real time production optimization in upstream petroleum production - Applied to the Troll West oil rim Vidar Gunnerud, Bjarne Foss Norwegian University of Science and Technology - NTNU Trondheim, Norway

More information

Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling

Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling Weishan Ren, Oy Leuangthong and Clayton V. Deutsch Department of Civil & Environmental Engineering, University of Alberta

More information

Pore Scale Modelling of Porous Layers Used in Fuel Cells

Pore Scale Modelling of Porous Layers Used in Fuel Cells Pore Scale Modelling of Porous Layers Used in Fuel Cells Special Semester RICAM Linz 05.10.2011 Jürgen Becker Fraunhofer Institute for Industrial Mathematics ITWM Kaiserslautern, Germany 1 Pore Scale Modelling

More information

Use of HPC to Predict Porous Media Properties and Flow in Hydrocarbon Reservoirs

Use of HPC to Predict Porous Media Properties and Flow in Hydrocarbon Reservoirs Use of HPC to Predict Porous Media Properties and Flow in Hydrocarbon Reservoirs Henry Neeman, 2 Dimitrios V. Papavassiliou 1 1 School of Chemical Engineering and Materials Science 2 School of Computer

More information

Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics

Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics * Peter G. Tilke, David W. Holmes, and John R. Williams * Department of Mathematics and Modeling, Schlumberger-Doll Research

More information

Summary. Fracture modeling

Summary. Fracture modeling Transient Matrix-Fracture Flow Modeling for the Numerical Simulation of the Production of Unconventional Plays using Discrete and Deformable Fracture Network Model O.M. Ricois, J. Gratien, D. Bossie-Codreanu

More information

PREDICTING HORIZONTAL GAS WELL DELIVERABILITY IN A CONVENTIONAL RESERVOIR FROM VERTICAL WELL DATA. Osade O. Edo-Osagie

PREDICTING HORIZONTAL GAS WELL DELIVERABILITY IN A CONVENTIONAL RESERVOIR FROM VERTICAL WELL DATA. Osade O. Edo-Osagie PREDICTING HORIZONTAL GAS WELL DELIVERABILITY IN A CONVENTIONAL RESERVOIR FROM VERTICAL WELL DATA Osade O. Edo-Osagie A Problem Report Submitted to the College of Engineering and Mineral Resources at West

More information

Geostatistics Predictions with Deterministic Procedures

Geostatistics Predictions with Deterministic Procedures Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Predictions with Deterministic Procedures Carlos Alberto

More information

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer ENERGY-224 Reservoir Simulation Project Report Ala Alzayer Autumn Quarter December 3, 2014 Contents 1 Objective 2 2 Governing Equations 2 3 Methodolgy 3 3.1 BlockMesh.........................................

More information

History Matching, Forecasting and Updating

History Matching, Forecasting and Updating History Matching, Forecasting and Updating Dr. Helmy Sayyouh Petroleum Engineering Cairo University 12/26/2017 1 History Matching The most practical method for testing a reservoir model s validity and

More information

Werkstoffmodellierung und eigenschaftsberechnung auf Basis von CT-Aufnahmen

Werkstoffmodellierung und eigenschaftsberechnung auf Basis von CT-Aufnahmen Werkstoffmodellierung und eigenschaftsberechnung auf Basis von CT-Aufnahmen Fachtagung Computertomografie, 27.09.2010 Erik Glatt, Jürgen Becker, Stefan Rief und Andreas Wiegmann Fraunhofer Institut Techno

More information

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR)

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Yaobin Qin qinxx143@umn.edu Supervisor: Pro.lilja Department of Electrical and Computer Engineering Abstract

More information

Fluid flow modelling with seismic cluster analysis

Fluid flow modelling with seismic cluster analysis Fluid flow modelling with seismic cluster analysis Fluid flow modelling with seismic cluster analysis Laurence R. Bentley, Xuri Huang 1 and Claude Laflamme 2 ABSTRACT Cluster analysis is used to construct

More information

PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS )

PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS ) PRODUCT INFORMATION Model 1000XP Wide Range Particle Spectrometer (WPS ) With the lower size limit extended from 10nm to 5 nm, the WPS can now count and size aerosol particles automatically from 5nm to

More information

Specific Objectives Students will understand that that the family of equation corresponds with the shape of the graph. Students will be able to create a graph of an equation by plotting points. In lesson

More information

Estimating Relative Permeability from Production Data: A Streamline Approach Kari Nordaas Kulkarni, SPE and Akhil Datta-Gupta, SPE, Texas A&M U.

Estimating Relative Permeability from Production Data: A Streamline Approach Kari Nordaas Kulkarni, SPE and Akhil Datta-Gupta, SPE, Texas A&M U. SPE 56751 Estimating Relative Permeability from Production Data: A Streamline Approach Kari Nordaas Kulkarni, SPE and Akhil Datta-Gupta, SPE, Texas A&M U. Copyright 1999, Society of Petroleum Engineers

More information

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering The Pennsylvania State University The Graduate School Department of Energy and Mineral Engineering DEVELOPMENT AND TESTING OF AN ARTIFICIAL NEURAL NETWORK BASED HISTORY MATCHING PROTOCOL TO CHARACTERIZE

More information

Effective Local-Global Upscaling of Fractured Reservoirs under Discrete Fractured Discretization

Effective Local-Global Upscaling of Fractured Reservoirs under Discrete Fractured Discretization Energies 215, 8, 1178-1197; doi:1.339/en891178 Article OPEN ACCESS energies ISSN 1996-173 www.mdpi.com/journal/energies Effective Local- of Fractured Reservoirs under Discrete Fractured Discretization

More information

COPYRIGHT. Nodal Analysis Workshop. Horizontal and Fractured Wells. By the end of this lesson, you will be able to:

COPYRIGHT. Nodal Analysis Workshop. Horizontal and Fractured Wells. By the end of this lesson, you will be able to: Learning Objectives Nodal Analysis Workshop Horizontal and Fractured Wells By the end of this lesson, you will be able to: Accurately represent horizontal well geometry inside SNAP Describe the Joshi equation

More information