A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING

Size: px
Start display at page:

Download "A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING"

Transcription

1 1 A012 A REAL PARAMETER GENETIC ALGORITHM FOR CLUSTER IDENTIFICATION IN HISTORY MATCHING Jonathan N Carter and Pedro J Ballester Dept Earth Science and Engineering, Imperial College, London Abstract Non-linear inverse problems, by their very nature, can be expected to yield multiple solutions. This will occur even when the problem is well defined, in the sense that the number of measurements is significantly greater than the number of free parameters. These solutions will manifest themselves as local optima for some objective function, and will be separated by regions of poor objective function value. In history matching the challenge is to identify all of the high quality local optima, and sample the parameter space around them. Within a Bayesian framework this allows us to estimate the likelihood and quantify the uncertainty associated with a solution. Algorithms, such as Monte Carlo Markov Chain (MCMC), allow us to do this. However in practice they are not very efficient and not suitable for practical problems. In this paper we present a real parameter Genetic Algorithm that has been designed to search for multiple local optima and to sample the parameter space around the optima. The methodology has been implemented within a non-generational steady-state scheme. Possible solutions generated by the Genetic Algorithm are evaluated in parallel on a cluster of computers. All of the solutions generated are finally clustered using a new clustering algorithm. This algorithm does not need the user to specify the number of clusters to be identified, unlike most other clustering algorithms. The application of the algorithms is illustrated on two inverse problems. The first is a simple three parameter cross-sectional model, which was already known to have multiple solutions. The second is a real world case study, with 82 free parameters. In each case it is shown that the Genetic Algorithm can find multiple optima and that the results can be clustered with the clustering algorithm. Introduction In the petroleum industry the business pressure of making faster decisions with less risk, makes the understanding of subsurface uncertainty increasingly important. To be able to do this we need to understand which of the many possible models, that might represent the reservoir, are consistent with the measurement data that is available. In the language of history matching we are no longer looking for the single set of model parameters that give the best match between simulated and measured history. But instead must find all those areas in parameter space the give acceptable matches to the measurements. This means that it is not sufficient to simply find all of the local optima on the response surface, we also need to sample the space around each of the 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 30 August - 2 September 2004

2 2 optima. Work by Oliver et al[1] and the PUNQ group[2] have demonstrated the importance of exploring the whole of the parameter space, additional reasons to favour this approach have been discussed by Sambridge[3]. Due to errors within the modelling process, the measurement process and possibly insufficient measurements it is likely that the response surface, that characterizes the history matching problem, has multiple high quality optima[4]. These features make clear the need of a method that preferentially samples regions of the parameter space that fit the data well. Among the algorithms commonly used to search a parameter space, Markov Chain Monte Carlo (MCMC) is probably the best known. This approach has fallen out of favour as it has become clear that it only effective for problems with a few parameters [5,6,7]. A recent technique, the Neighbourhood Algorithm[8], has quickly gained popularity in the earth sciences. It is based on the idea of using all previously evaluated models to guide the search for new models. It has been used to provide important new results in geophysics[9]. Despite their success and growing acceptance, global search methods still have room for improvement. Genetic Algorithms are a group of optimization algorithms that are inspired by the ideas of Darwinian evolution and genetics to generate solutions to problems. GAs have been used in the petroleum for 20 years[10,11], although their use for history matching has been limited. The literature that describes the many ways of implementing a GA is extensive, there are a number of introductory texts. Mosegaard and Sambridge[12] have identified GAs as a promising approach to sampling the optimal regions of a parameter space. In this paper we present a real parameter non-generational GA which has been designed to work with a heterogeneous computing cluster that identifies and samples multiple local optima on the response surface. We also present a clustering algorithm that is used to isolate the clusters identified by the GA. Below we describe both these algorithms and give some preliminary results from two reservoir characterization problems. Genetic Algorithm The GA that we have used has a number of particular properties: it uses real numbers as genes (rather than the common binary representation), it operates on a non-generational basis, and works without modification on a multi-processor computer cluster. The general structure of our GA is shown in figure 1. There are three independent activities going on: the breeding of children from parents selected from the adult population, the testing (training) of these children, and their initiation into the adult population. The most time consuming element of this process is testing and evaluation of the children. Depending on the problem being considered, and the computer being used, this may take anything from minutes to hours to complete for each child. The two other tasks operate as background activities, so as to ensure that there are always children waiting in the training queue, and that children are initiated quickly into the adult population. One of the advantages of this set-up is that the multi-processor system can be any collection of computers, from a group of networked PCs to a dedicated computing cluster. The number of computers can range from one to hundreds, and need not be constant during the process. All that needs to happen is that as a processor becomes available it is able to collect a child from the training queue, and when the evaluation is complete then the result is placed in the initiation queue, each computer operates completely independently. The key components of this GA have been designed to work efficiently for optimization problems with only real variables and where we expect there to be multiple local optima which

3 3 will be of interest. There are three elements of the implementation that appear to be very important to its effectiveness: The crossover operator does a gene by gene recombination to obtain the child.[13] Our parental selection policy is completely random, with no bias towards the better members of the population, this is contrary to normal practice. Our culling policy is designed to maintain selection pressure and to allow the development of niche populations. The child competes in a probabilistic two person tournament with an adult for the right to be part of the adult population, the loser being stored in an archive. The adult selected is one of R randomly chosen adults from the population. From these R adults the one nearest the child in parameter space then enters the tournament. A version of the algorithm has been implemented using a generational approach and tested on a wide range of test problems. The results of these tests can be found elsewhere [13,14,15]. Is initiation queue size >= N No Yes Pause Initiate child into adult population Is initiation queue empty Yes No Initiation queue No Is training queue empty Yes Select the parents Evaluate fitness using multi-processor system Yes Breed 1 child using crossover operator Training queue No Is training queue size <= M Generate initial population The structure of the parallel GA used in this study Cluster Analysis The output from the GA described in the previous section is the final population. Which if the algorithm has been run for sufficient time will consist some subpopulations, plus some number of outlier points, not associated with any of the subpopulations. It is assumed that each of the subpopulations will be associated with a different local optimum. The challenge is to separate out the various groups, which will then allow further analysis. A review of the literature shows that none of the many cluster analysis techniques that have been devised are well suited to our problem. In general they require the user to many one of several possible assumptions about the characteristics of the data: eg the number of clusters, the density of points within clusters, the minimum separation between clusters. There is also a lack of algorithms that claim to be able to deal with what is known as full dimensional clustering in high dimensional spaces. For clusters that may exist within the final population of the GA we are going to face several problems that make the existing algorithms difficult to use. We can not 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 30 August - 2 September 2004

4 4 be sure about the number of clusters that will have formed, and we have the problem of an unknown number of outlier points. We have no guaranty that the point density inside each cluster is similar, nor do we know the likely separation between clusters. Finally we can not predict in how many dimensions clustering might be occurring. We have developed an algorithm that overcomes all of the difficulties that we have described. It is fully described elsewhere[16] and is subject to a patent application[17]. Results We have tested our methods on two problems. The first is a simple three parameter crossectional model of a reservoir, the second is an 82 parameter model of a real world reservoir provided to us by British Petroleum PLC. IC Fault Model Our model is a cross-section of a simple layered reservoir, with a single vertical fault midway between an injector producer pair, as shown in figure 3. The model that we calibrate has three parameters: the vertical displacement (throw) of the fault; the permeability of the poor quality sand; and the permeability of the good quality sand. The geological layers are assumed to be homogeneous (ie they have constant physical properties). The truth case, which is used to generate the measurements for the calibration, is a variant of the calibration model, but with fixed parameter values. In the case of no model error, then the truth case is a member of the set of all possible calibration models. The size and type of model error is chosen by how a specific calibration model is perturbed to obtain the truth case. In the work presented in this paper, the model error is obtained by introducing small variations into the spatial properties of the geological layers. The permeability and porosity in each grid block are randomly perturbed. The maximum variations that are allowed is 1% of the unperturbed mean values. These perturbations are much lower than would be expected for a real world rock that had been classified as homogeneous. A more extensive description of the model can be found a papers that deal with estimating model errors[18,19], the data set has also been made available electronically[20]. Good sand Poor sand Schematic if the IC fault model

5 exp( Dm/0.15) kp h This figure shows the sampling achieved (in two of the three dimensions) with a single run of the GA. The figure shows that the algorithm has sampled more densely in the region of highest likelihood, and that in a single run we have identified several local minima. It was not necessary to use the clustering algorithm to identify the clusters around the local optima Midge Reservoir Model The Midge reservoir is a fractured and faulted chalk above a salt diaper. The key uncertainties are the volumes of oil in the various compartments, the transmissibility across the faults and the allocation of water to the injection wells. In total there are 82 variables, each has an upper and lower bound defined by the reservoir engineer, and the data available for history matching is primarily well bottom hole pressures and RFT measurements. Each simulation takes about 20 minutes, on a sun ultra 5, to complete. Analysis by BP suggested that at least four significant local optima exist for this problem. Our testing to date on this problem has been to use the GA to search for individual local optima and to sample the space around each optimum identified. We then used the clustering algorithm to check whether the local optima found in eight runs were the same or different. Each time we run the history match we completed 9500 simulations and then kept the best 25 function evaluations. 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 30 August - 2 September 2004

6 6 This shows the results of using the clustering algorithm on the 200 samples generated in this way, and the table shows the relative importance of the four components of the objective function. In each case the match to the measured BHP and GOR seems very similar. The RFT measurements were considered very important by the reservoir engineering team and the key measurements are shown in figure9. The penalty is a measure of the number of months that wells failed to meet prescribed production targets. RFT BHP GOR Penalty The left hand figure shows the key RFT measurements for the second optima, and the right hand figure shows the RFT measurements for the eight optima.

7 7 Conclusions In this paper we have shown the application of two complementary algorithms to the identification of multiple optima in two history matching problems. It has been observed that multiple high quality optima seem to be quite common in history matching problems. This suggests that it is more important to search for multiple solutions than is commonly the case. References [1] Oliver, D., Reynolds, A., Bi, Z., and Abacioglu, Y., Integration of production data into reservoir models, petroleum Geoscience 7, S65-S73, [2] Floris, F., Bush, M., Cuypers, M., Roggero, F., Syversveen, A.R., Methods for quantifying the uncertainty of production forecasts: a comparative study, Petroleum Geoscience 7 S87- S96, [3] Sambridge, M., An ensemble view of earth s inner core, Science 299, , [4] Oliver, D., Cunha, L., Reynolds, A., A Markov chain monte carlo methods for conditioning a permeability field to pressure data. Mathematical Geology 29, 61-91, [5] Sambridge, M., Geophysical inversion with a neighbourhood algorithm: searching a parameter space, Geophysical Journal International 138, ,1999. [6] Mosegaard, K., Sambridge, M, Monte carlo analysis of inverse problems, Inverse Problems 18,R29-R54, [7] Oliver, D., Cunha, L., Reynolds, A.: Markov chain monte carlo methods for conditioning a permeability field to pressure data., Mathematical geology 29,61-91, 1997 [8] Sambridge, Geophysical inversion with a neighbourhood algorithm -i. searching a parameter space, Geophysical Journal International 138, , [9] Beghein, C., Trampert, J.: Robust normal mode constraints on inner-core anisotropy from model space search, Svience 299, , [10] Goldberg, D., Computer aided gas pipeline operation using genetic algorithms and rule learning, part 1, SPE 14590, [11] Goldberg, D., Computer aided gas pipeline operation using genetic algorithms and rule learning, part 2, SPE 14591, [12] Mosegaard and Sambridge, Montecarlo analysis of inverse problems, Inverse problems 18, R29-R54, 2002 [13] Real parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization, Ballester, P.J. and Carter J.N., Lecture Notes in Computer science 2723, Springer, , 2003 [14] A effective real parameter genetic algorithm for multi-modal optimization, Adaptive Computing in Design and Manufacture, Ed I.Parmee, Springer, , [15] An effective real parameter genetic algorithm with parent centric normal crossover for mulri-modal optimization, Genetic and evolutionary conference Ed K.Deb, Springer, [16] Ballester, P.J., Carter, J.N.: An algorithm to identify clusters of solutions in multimodal optimisation., Experimental and Efficient Algorithms International Workshop, Lecture Notes in Computer Science 3059, Springer (2004) th European Conference on the Mathematics of Oil Recovery Cannes, France, 30 August - 2 September 2004

8 8 [17] Method for managing a database (2003) UK Patent Application filed on 5 th August [18] J.N.~Carter, Using Bayesian Statistics to Capture the Effects of Modelling Errors in Inverse Problems, \emph{mathematical Geology}, 36:187, [19] Carter, Ballester, Tavassoli, King, Our Calibrated model has no predictive value, proc Sensitivity analysis of model outputs Conference, Carter).pdf, 2004 [20] IC Fault Model

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry Our Calibrated Model as No Predictive Value: An Example from te Petroleum Industry J.N. Carter a, P.J. Ballester a, Z. Tavassoli a and P.R. King a a Department of Eart Sciences and Engineering, Imperial

More information

IMPERIAL COLLEGE LONDON. Department of Earth Science and Engineering. Centre for Petroleum Studies. Construction of the Midge History Match Model

IMPERIAL COLLEGE LONDON. Department of Earth Science and Engineering. Centre for Petroleum Studies. Construction of the Midge History Match Model IMPERIAL COLLEGE LONDON Department of Earth Science and Engineering Centre for Petroleum Studies Construction of the Midge History Match Model By Lukman Wahab A report submitted in partial fulfilment of

More information

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization 1 Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department

More information

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract

2076, Yola, Nigeria 2 Babawo Engineering Consultant, Osun State, Nigeria. Abstract International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 3(6) pp. 224-234, July, 2013 Available online http://www.interesjournals.org/irjgm Copyright 2013 International Research Journals

More information

Prediction under Uncertainty in Reservoir Modeling

Prediction under Uncertainty in Reservoir Modeling 1 Prediction under Uncertainty in Reservoir Modeling Mike Christie 1, Sam Subbey 1, Malcolm Sambridge 1 Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK Institute of

More information

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Andrea Zunino, Katrine Lange, Yulia Melnikova, Thomas Mejer Hansen and Klaus Mosegaard 1 Introduction Reservoir modeling

More information

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR

A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR 1 A009 HISTORY MATCHING WITH THE PROBABILITY PERTURBATION METHOD APPLICATION TO A NORTH SEA RESERVOIR B. Todd HOFFMAN and Jef CAERS Stanford University, Petroleum Engineering, Stanford CA 94305-2220 USA

More information

SMART WELL MODELLING. Design, Scenarios and Optimisation

SMART WELL MODELLING. Design, Scenarios and Optimisation Page 1 Introduction Smart or complex wells are in increasing use by operators as reservoir environments become more challenging. The wells include a number of smart devices installed to achieve a variety

More information

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation

Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Integration of Geostatistical Modeling with History Matching: Global and Regional Perturbation Oliveira, Gonçalo Soares Soares, Amílcar Oliveira (CERENA/IST) Schiozer, Denis José (UNISIM/UNICAMP) Introduction

More information

Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm ITB J. Eng. Sci., Vol. 44, No. 2, 2012, 106-127 106 Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm Tutuka Ariadji 1,

More information

Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation

Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation Thomas Mejer Hansen, Klaus Mosegaard, and Knud Skou Cordua 1 1 Center for Energy Resources

More information

Development of Optimized History-Matched Models for Coalbed Methane Reservoirs

Development of Optimized History-Matched Models for Coalbed Methane Reservoirs 637 Development of Optimized History-Matched Models for Coalbed Methane Reservoirs Anne Y. Oudinot, Advanced Resources International Inc. Aiysha Sultana, Advanced Resources International Inc. Reynaldo

More information

Fluid flow modelling with seismic cluster analysis

Fluid flow modelling with seismic cluster analysis Fluid flow modelling with seismic cluster analysis Fluid flow modelling with seismic cluster analysis Laurence R. Bentley, Xuri Huang 1 and Claude Laflamme 2 ABSTRACT Cluster analysis is used to construct

More information

Prediction under uncertainty in reservoir modeling

Prediction under uncertainty in reservoir modeling Journal of Petroleum Science and Engineering 44 (2004) 143 153 www.elsevier.com/locate/petrol Prediction under uncertainty in reservoir modeling S. Subbey a, *, M. Christie a, M. Sambridge b a Institute

More information

A Soft Computing-Based Method for the Identification of Best Practices, with Application in the Petroleum Industry

A Soft Computing-Based Method for the Identification of Best Practices, with Application in the Petroleum Industry CIMSA 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications Giardini Naxos, Italy, 20-22 July 2005 A Soft Computing-Based Method for the Identification

More information

Iterative spatial resampling applied to seismic inverse modeling for lithofacies prediction

Iterative spatial resampling applied to seismic inverse modeling for lithofacies prediction Iterative spatial resampling applied to seismic inverse modeling for lithofacies prediction Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department of Energy Resources Engineering Stanford University

More information

History Matching: Towards Geologically Reasonable Models

History Matching: Towards Geologically Reasonable Models Downloaded from orbit.dtu.dk on: Oct 13, 018 History Matching: Towards Geologically Reasonable Models Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus Publication date: 01 Document Version Publisher's

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model

Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model SPE-185691-MS Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model Faisal Alenezi and Shahab Mohaghegh, West Virginia University Copyright 2017, Society of Petroleum

More information

Multi-Objective Stochastic Optimization by Co-Direct Sequential Simulation for History Matching of Oil Reservoirs

Multi-Objective Stochastic Optimization by Co-Direct Sequential Simulation for History Matching of Oil Reservoirs Multi-Objective Stochastic Optimization by Co-Direct Sequential Simulation for History Matching of Oil Reservoirs João Daniel Trigo Pereira Carneiro under the supervision of Amílcar de Oliveira Soares

More information

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

More information

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES SHIHADEH ALQRAINY. Department of Software Engineering, Albalqa Applied University. E-mail:

More information

Exploring Direct Sampling and Iterative Spatial Resampling in History Matching

Exploring Direct Sampling and Iterative Spatial Resampling in History Matching Exploring Direct Sampling and Iterative Spatial Resampling in History Matching Matz Haugen, Grergoire Mariethoz and Tapan Mukerji Department of Energy Resources Engineering Stanford University Abstract

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS

ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS ASSISTED HISTORY MATCHING USING COMBINED OPTIMIZATION METHODS Paulo Henrique Ranazzi Marcio Augusto Sampaio Pinto ranazzi@usp.br marciosampaio@usp.br Department of Mining and Petroleum Engineering, Polytechnic

More information

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you?

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? Gurjit Randhawa Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? This would be nice! Can it be done? A blind generate

More information

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies. azemi* (University of Alberta) & H.R. Siahkoohi (University of Tehran) SUMMARY Petrophysical reservoir properties,

More information

Calibration of NFR models with interpreted well-test k.h data. Michel Garcia

Calibration of NFR models with interpreted well-test k.h data. Michel Garcia Calibration of NFR models with interpreted well-test k.h data Michel Garcia Calibration with interpreted well-test k.h data Intermediate step between Reservoir characterization Static model conditioned

More information

EVOLVING LEGO. Exploring the impact of alternative encodings on the performance of evolutionary algorithms. 1. Introduction

EVOLVING LEGO. Exploring the impact of alternative encodings on the performance of evolutionary algorithms. 1. Introduction N. Gu, S. Watanabe, H. Erhan, M. Hank Haeusler, W. Huang, R. Sosa (eds.), Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer- Aided

More information

Real Coded Genetic Algorithm Particle Filter for Improved Performance

Real Coded Genetic Algorithm Particle Filter for Improved Performance Proceedings of 2012 4th International Conference on Machine Learning and Computing IPCSIT vol. 25 (2012) (2012) IACSIT Press, Singapore Real Coded Genetic Algorithm Particle Filter for Improved Performance

More information

Model-Based Optimization and Control of Subsurface Flow in Oil Reservoirs

Model-Based Optimization and Control of Subsurface Flow in Oil Reservoirs Model-Based Optimization and Control of Subsurface Flow in Oil Reservoirs Paul Van den Hof Eindhoven University of Technology, The Netherlands with: Jan Dirk Jansen and Arnold Heemink, Delft Univ. Techn.

More information

Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling

Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling Geostatistical Reservoir Characterization of McMurray Formation by 2-D Modeling Weishan Ren, Oy Leuangthong and Clayton V. Deutsch Department of Civil & Environmental Engineering, University of Alberta

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

Path Planning Optimization Using Genetic Algorithm A Literature Review

Path Planning Optimization Using Genetic Algorithm A Literature Review International Journal of Computational Engineering Research Vol, 03 Issue, 4 Path Planning Optimization Using Genetic Algorithm A Literature Review 1, Er. Waghoo Parvez, 2, Er. Sonal Dhar 1, (Department

More information

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 20 CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 2.1 CLASSIFICATION OF CONVENTIONAL TECHNIQUES Classical optimization methods can be classified into two distinct groups:

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

An Introduction to Evolutionary Algorithms

An Introduction to Evolutionary Algorithms An Introduction to Evolutionary Algorithms Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi http://users.jyu.fi/~kasindhy/

More information

CHAPTER 5. CHE BASED SoPC FOR EVOLVABLE HARDWARE

CHAPTER 5. CHE BASED SoPC FOR EVOLVABLE HARDWARE 90 CHAPTER 5 CHE BASED SoPC FOR EVOLVABLE HARDWARE A hardware architecture that implements the GA for EHW is presented in this chapter. This SoPC (System on Programmable Chip) architecture is also designed

More information

Programs for MDE Modeling and Conditional Distribution Calculation

Programs for MDE Modeling and Conditional Distribution Calculation Programs for MDE Modeling and Conditional Distribution Calculation Sahyun Hong and Clayton V. Deutsch Improved numerical reservoir models are constructed when all available diverse data sources are accounted

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Sci.Int.(Lahore),28(1), ,2016 ISSN ; CODEN: SINTE 8 201

Sci.Int.(Lahore),28(1), ,2016 ISSN ; CODEN: SINTE 8 201 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 201 A NOVEL PLANT PROPAGATION ALGORITHM: MODIFICATIONS AND IMPLEMENTATION Muhammad Sulaiman 1, Abdel Salhi 2, Eric S Fraga 3, Wali Khan

More information

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS 6.1 Introduction Gradient-based algorithms have some weaknesses relative to engineering optimization. Specifically, it is difficult to use gradient-based algorithms

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 10: Genetic Algorithm Basics Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic

More information

Genetic Programming: A study on Computer Language

Genetic Programming: A study on Computer Language Genetic Programming: A study on Computer Language Nilam Choudhary Prof.(Dr.) Baldev Singh Er. Gaurav Bagaria Abstract- this paper describes genetic programming in more depth, assuming that the reader is

More information

Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms

Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms B. D. Phulpagar Computer Engg. Dept. P. E. S. M. C. O. E., Pune, India. R. S. Bichkar Prof. ( Dept.

More information

Toward reservoir simulation on geological grid models

Toward reservoir simulation on geological grid models 1 Toward reservoir simulation on geological grid models JØRG E. AARNES and KNUT ANDREAS LIE SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway Abstract We present a reservoir

More information

SPE Copyright 2012, Society of Petroleum Engineers

SPE Copyright 2012, Society of Petroleum Engineers SPE 151994 Application of Surrogate Reservoir Model (SRM) to an Onshore Green Field in Saudi Arabia; Case Study Shahab D. Mohaghegh, Intelligent Solutions, Inc. & West Virginia University, Jim Liu, Saudi

More information

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS BERNA DENGIZ AND FULYA ALTIPARMAK Department of Industrial Engineering Gazi University, Ankara, TURKEY 06570 ALICE E.

More information

Joint quantification of uncertainty on spatial and non-spatial reservoir parameters

Joint quantification of uncertainty on spatial and non-spatial reservoir parameters Joint quantification of uncertainty on spatial and non-spatial reservoir parameters Comparison between the Method and Distance Kernel Method Céline Scheidt and Jef Caers Stanford Center for Reservoir Forecasting,

More information

CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS

CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS Introduction Ning Liu and Dean S. Oliver University of Oklahoma, Norman, Oklahoma, USA; ning@ou.edu The problem of estimating the

More information

Time Complexity Analysis of the Genetic Algorithm Clustering Method

Time Complexity Analysis of the Genetic Algorithm Clustering Method Time Complexity Analysis of the Genetic Algorithm Clustering Method Z. M. NOPIAH, M. I. KHAIRIR, S. ABDULLAH, M. N. BAHARIN, and A. ARIFIN Department of Mechanical and Materials Engineering Universiti

More information

A grid representation for Distributed Virtual Environments

A grid representation for Distributed Virtual Environments A grid representation for Distributed Virtual Environments Pedro Morillo, Marcos Fernández, Nuria Pelechano Instituto de Robótica, Universidad de Valencia. Polígono Coma S/N. Aptdo.Correos 22085, CP: 46071

More information

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II Genetic Algorithms Genetic Algorithms Iterative method for doing optimization Inspiration from biology General idea (see Pang or Wikipedia for more details): Create a collection of organisms/individuals

More information

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS Jim Gasvoda and Qin Ding Department of Computer Science, Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA {jmg289, qding}@psu.edu

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Modeling response uncertainty Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Modeling Uncertainty in the Earth Sciences High dimensional Low dimensional uncertain uncertain certain

More information

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman Lecture 4 3B1B Optimization Michaelmas 2017 A. Zisserman Convexity Robust cost functions Optimizing non-convex functions grid search branch and bound simulated annealing evolutionary optimization The Optimization

More information

Spoofing Detection in Wireless Networks

Spoofing Detection in Wireless Networks RESEARCH ARTICLE OPEN ACCESS Spoofing Detection in Wireless Networks S.Manikandan 1,C.Murugesh 2 1 PG Scholar, Department of CSE, National College of Engineering, India.mkmanikndn86@gmail.com 2 Associate

More information

MAXIMUM LIKELIHOOD ESTIMATION USING ACCELERATED GENETIC ALGORITHMS

MAXIMUM LIKELIHOOD ESTIMATION USING ACCELERATED GENETIC ALGORITHMS In: Journal of Applied Statistical Science Volume 18, Number 3, pp. 1 7 ISSN: 1067-5817 c 2011 Nova Science Publishers, Inc. MAXIMUM LIKELIHOOD ESTIMATION USING ACCELERATED GENETIC ALGORITHMS Füsun Akman

More information

Application of Genetic Algorithms to CFD. Cameron McCartney

Application of Genetic Algorithms to CFD. Cameron McCartney Application of Genetic Algorithms to CFD Cameron McCartney Introduction define and describe genetic algorithms (GAs) and genetic programming (GP) propose possible applications of GA/GP to CFD Application

More information

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation

A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation A Data-Driven Smart Proxy Model for A Comprehensive Reservoir Simulation Faisal Alenezi Department of Petroleum and Natural Gas Engineering West Virginia University Email: falenezi@mix.wvu.edu Shahab Mohaghegh

More information

History matching of petroleum reservoirs employing adaptive genetic algorithm

History matching of petroleum reservoirs employing adaptive genetic algorithm J Petrol Explor Prod Technol (216) 6:653 674 DOI 1.17/s1322-15-216-4 ORIGINAL PAPER - EXPLORATION ENGINEERING History matching of petroleum reservoirs employing adaptive genetic algorithm N. C. Chithra

More information

Optimizing Well Completion Design and Well Spacing with Integration of Advanced Multi-Stage Fracture Modeling & Reservoir Simulation

Optimizing Well Completion Design and Well Spacing with Integration of Advanced Multi-Stage Fracture Modeling & Reservoir Simulation Optimizing Well Completion Design and Well Spacing with Integration of Advanced Multi-Stage Fracture Modeling & Reservoir Simulation Dr. Hongjie Xiong Feb 2018 Title Overview 2 Introduction the status

More information

CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM

CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM CHAPTER 4 FEATURE SELECTION USING GENETIC ALGORITHM In this research work, Genetic Algorithm method is used for feature selection. The following section explains how Genetic Algorithm is used for feature

More information

A Geostatistical and Flow Simulation Study on a Real Training Image

A Geostatistical and Flow Simulation Study on a Real Training Image A Geostatistical and Flow Simulation Study on a Real Training Image Weishan Ren (wren@ualberta.ca) Department of Civil & Environmental Engineering, University of Alberta Abstract A 12 cm by 18 cm slab

More information

A family of particle swarm optimizers for reservoir characterization and seismic history matching.

A family of particle swarm optimizers for reservoir characterization and seismic history matching. P-487 Summary A family of particle swarm optimizers for reservoir characterization and seismic history matching. Tapan Mukerji*, Amit Suman (Stanford University), Juan Luis Fernández-Martínez (Stanford

More information

GRID-ENABLED ENSEMBLE SUBSURFACE MODELING

GRID-ENABLED ENSEMBLE SUBSURFACE MODELING GRID-ENABLED ENSEMBLE SUBSURFACE MODELING Xin Li 1,2, Zhou Lei 1, Christopher D White 1,2, Gabrielle Allen 1, Guan Qin 4, Frank T-C. Tsai 3 1 Center for Computation & Technology, Louisiana State University,

More information

Tensor Based Approaches for LVA Field Inference

Tensor Based Approaches for LVA Field Inference Tensor Based Approaches for LVA Field Inference Maksuda Lillah and Jeff Boisvert The importance of locally varying anisotropy (LVA) in model construction can be significant; however, it is often ignored

More information

Evolving SQL Queries for Data Mining

Evolving SQL Queries for Data Mining Evolving SQL Queries for Data Mining Majid Salim and Xin Yao School of Computer Science, The University of Birmingham Edgbaston, Birmingham B15 2TT, UK {msc30mms,x.yao}@cs.bham.ac.uk Abstract. This paper

More information

Cluster analysis of 3D seismic data for oil and gas exploration

Cluster analysis of 3D seismic data for oil and gas exploration Data Mining VII: Data, Text and Web Mining and their Business Applications 63 Cluster analysis of 3D seismic data for oil and gas exploration D. R. S. Moraes, R. P. Espíndola, A. G. Evsukoff & N. F. F.

More information

Workshop - Model Calibration and Uncertainty Analysis Using PEST

Workshop - Model Calibration and Uncertainty Analysis Using PEST About PEST PEST (Parameter ESTimation) is a general-purpose, model-independent, parameter estimation and model predictive uncertainty analysis package developed by Dr. John Doherty. PEST is the most advanced

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

Using Genetic Algorithms to Solve the Box Stacking Problem

Using Genetic Algorithms to Solve the Box Stacking Problem Using Genetic Algorithms to Solve the Box Stacking Problem Jenniffer Estrada, Kris Lee, Ryan Edgar October 7th, 2010 Abstract The box stacking or strip stacking problem is exceedingly difficult to solve

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

ACCEPTED VERSION.

ACCEPTED VERSION. ACCEPTED VERSION Vitkovsky, John; Simpson, Angus Ross; Lambert, Martin Francis Leak detection and calibration using transients and genetic algorithms Journal of Water Resources Planning & Management, 2000;

More information

Robust Production Optimization with Capacitance-Resistance Model as Proxy

Robust Production Optimization with Capacitance-Resistance Model as Proxy Robust Production Optimization with Capacitance-Resistance Model as Proxy What is Robust Production Optimization? Production Optimization: To optimize the objective by tuning the control variables (e.g.

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Outline. CS 6776 Evolutionary Computation. Numerical Optimization. Fitness Function. ,x 2. ) = x 2 1. , x , 5.0 x 1.

Outline. CS 6776 Evolutionary Computation. Numerical Optimization. Fitness Function. ,x 2. ) = x 2 1. , x , 5.0 x 1. Outline CS 6776 Evolutionary Computation January 21, 2014 Problem modeling includes representation design and Fitness Function definition. Fitness function: Unconstrained optimization/modeling Constrained

More information

Search Algorithms for Regression Test Suite Minimisation

Search Algorithms for Regression Test Suite Minimisation School of Physical Sciences and Engineering King s College London MSc in Advanced Software Engineering Search Algorithms for Regression Test Suite Minimisation By Benjamin Cook Supervised by Prof. Mark

More information

2D Geostatistical Modeling and Volume Estimation of an Important Part of Western Onland Oil Field, India.

2D Geostatistical Modeling and Volume Estimation of an Important Part of Western Onland Oil Field, India. and Volume Estimation of an Important Part of Western Onland Oil Field, India Summary Satyajit Mondal*, Liendon Ziete, and B.S.Bisht ( GEOPIC, ONGC) M.A.Z.Mallik (E&D, Directorate, ONGC) Email: mondal_satyajit@ongc.co.in

More information

arxiv:cs/ v1 [cs.ne] 15 Feb 2004

arxiv:cs/ v1 [cs.ne] 15 Feb 2004 Parameter-less Hierarchical BOA Martin Pelikan and Tz-Kai Lin arxiv:cs/0402031v1 [cs.ne] 15 Feb 2004 Dept. of Math. and Computer Science, 320 CCB University of Missouri at St. Louis 8001 Natural Bridge

More information

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Daniel A. Silva and Clayton V. Deutsch A Multiple Point Statistics simulation based on the mixing of two

More information

Mutations for Permutations

Mutations for Permutations Mutations for Permutations Insert mutation: Pick two allele values at random Move the second to follow the first, shifting the rest along to accommodate Note: this preserves most of the order and adjacency

More information

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM Anticipatory Versus Traditional Genetic Algorithm ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM ABSTRACT Irina Mocanu 1 Eugenia Kalisz 2 This paper evaluates the performances of a new type of genetic

More information

Using a genetic algorithm for editing k-nearest neighbor classifiers

Using a genetic algorithm for editing k-nearest neighbor classifiers Using a genetic algorithm for editing k-nearest neighbor classifiers R. Gil-Pita 1 and X. Yao 23 1 Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Madrid (SPAIN) 2 Computer Sciences Department,

More information

Pseudo-code for typical EA

Pseudo-code for typical EA Extra Slides for lectures 1-3: Introduction to Evolutionary algorithms etc. The things in slides were more or less presented during the lectures, combined by TM from: A.E. Eiben and J.E. Smith, Introduction

More information

MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS

MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS MODELLING DOCUMENT CATEGORIES BY EVOLUTIONARY LEARNING OF TEXT CENTROIDS J.I. Serrano M.D. Del Castillo Instituto de Automática Industrial CSIC. Ctra. Campo Real km.0 200. La Poveda. Arganda del Rey. 28500

More information

Grid Scheduling Strategy using GA (GSSGA)

Grid Scheduling Strategy using GA (GSSGA) F Kurus Malai Selvi et al,int.j.computer Technology & Applications,Vol 3 (5), 8-86 ISSN:2229-693 Grid Scheduling Strategy using GA () Dr.D.I.George Amalarethinam Director-MCA & Associate Professor of Computer

More information

Quantifying Data Needs for Deep Feed-forward Neural Network Application in Reservoir Property Predictions

Quantifying Data Needs for Deep Feed-forward Neural Network Application in Reservoir Property Predictions Quantifying Data Needs for Deep Feed-forward Neural Network Application in Reservoir Property Predictions Tanya Colwell Having enough data, statistically one can predict anything 99 percent of statistics

More information

Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Petroleum Engineering/Reservoir Engineering Writer : Ibnu Hafidz Arief Faculty supervisor: Prof.Dr. Hans Spring semester,

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

Curvature. Definition of curvature in 2D and 3D

Curvature.  Definition of curvature in 2D and 3D Curvature Deformation associated with folding and faulting alters the location and shape of geological surfaces. In Move, the strain caused by deformation can be quantified using restoration algorithms

More information

Using Genetic Algorithms to solve the Minimum Labeling Spanning Tree Problem

Using Genetic Algorithms to solve the Minimum Labeling Spanning Tree Problem Using to solve the Minimum Labeling Spanning Tree Problem Final Presentation, oliverr@umd.edu Advisor: Dr Bruce L. Golden, bgolden@rhsmith.umd.edu R. H. Smith School of Business (UMD) May 3, 2012 1 / 42

More information

MDL-based Genetic Programming for Object Detection

MDL-based Genetic Programming for Object Detection MDL-based Genetic Programming for Object Detection Yingqiang Lin and Bir Bhanu Center for Research in Intelligent Systems University of California, Riverside, CA, 92521, USA Email: {yqlin, bhanu}@vislab.ucr.edu

More information

A Hierarchical Statistical Framework for the Segmentation of Deformable Objects in Image Sequences Charles Kervrann and Fabrice Heitz IRISA / INRIA -

A Hierarchical Statistical Framework for the Segmentation of Deformable Objects in Image Sequences Charles Kervrann and Fabrice Heitz IRISA / INRIA - A hierarchical statistical framework for the segmentation of deformable objects in image sequences Charles Kervrann and Fabrice Heitz IRISA/INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex,

More information

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm So-Yeong Jeon 1 and Yong-Hyuk Kim 2,* 1 Department of Computer Science, Korea Advanced Institute of Science

More information

Approximate Discrete Probability Distribution Representation using a Multi-Resolution Binary Tree

Approximate Discrete Probability Distribution Representation using a Multi-Resolution Binary Tree Approximate Discrete Probability Distribution Representation using a Multi-Resolution Binary Tree David Bellot and Pierre Bessière GravirIMAG CNRS and INRIA Rhône-Alpes Zirst - 6 avenue de l Europe - Montbonnot

More information

Ensemble-based decision making for reservoir management present and future outlook. TPD R&T ST MSU DYN and FMU team

Ensemble-based decision making for reservoir management present and future outlook. TPD R&T ST MSU DYN and FMU team Ensemble-based decision making for reservoir management present and future outlook TPD R&T ST MSU DYN and FMU team 11-05-2017 The core Ensemble based Closed Loop Reservoir Management (CLOREM) New paradigm

More information