Seeing the wood for the trees: Analysing multiple alternative phylogenies

Size: px
Start display at page:

Download "Seeing the wood for the trees: Analysing multiple alternative phylogenies"

Transcription

1 Seeing the wood for the trees: Analysing multiple alternative phylogenies Tom M. W. Nye, Newcastle University Isaac Newton Institute, 17 December 2007

2 Multiple alternative phylogenies Phylogenetic analysis often produces many possible trees Variability in data / uncertainty in inferred trees: - ML bootstrap trees - Bayesian posterior samples Different trees for different genes How can we summarize / represent this information? How can we compare different alternative tree topologies?

3 Multiple alternative phylogenies Phylogenetic analysis often produces many possible trees Variability in data / uncertainty in inferred trees: - ML bootstrap trees - Bayesian posterior samples Different trees for different genes How can we summarize / represent this information? How can we compare different alternative tree topologies?

4 Representing collections of trees Existing approaches include... Consensus trees Consensus networks But also... Multi-dimensional scaling (Hillis et al, Systematic Biology 2005) Clustering (Stockham et al, Bioinformatics 2002)

5 Representing collections of trees Existing approaches include... Consensus trees Consensus networks But also... Multi-dimensional scaling (Hillis et al, Systematic Biology 2005) Clustering (Stockham et al, Bioinformatics 2002)

6 Toy example How are these trees related? A B A B A C A C E C C E E B D E D D D B

7 Toy example Relate trees by a tree of trees : A B A B A C E D C E D C E D B A B A C A C C D E B D E D B E

8 Why use a tree of trees? Tree-space does not have a tree-like structure Advantages: Cluster similar trees together edges represent gain/loss of topological features Conflicting histories show up as separate clades on the meta-tree: - different modes in a distribution - outliers Convenient form of visualisation

9 Meta-trees Definition Given a fixed set of trees T 1, T 2,..., T n all having leaf-set L, a meta-tree ˆT is an unrooted tree with n leaves such that every vertex ˆv in ˆT has associated to it a species tree Tˆv with leaf set L, and the leaf vertices of ˆT are associated to the trees T 1,..., T n Aim to find meta-trees with minimum score Tree score = sum of edge scores score (ê) = d(tˆv1, Tˆv2 ) for an edge ê between vertices ˆv 1, ˆv 2 Different metrics d(, ) are available

10 Splits A split is a bi-partition of the leaves L induced by cutting a branch: B A C E D AB CDE Trees consist of sets of compatible splits e.g. AB CDE and AC BDE cannot both be in a tree The majority consensus of T 1,..., T n is the tree consisting of all splits in strictly greater than n/2 trees The Robinson-Foulds metric is defined by: d(t a, T b ) = (number of splits in T a \ T b ) + (number of splits in T b \ T a )

11 Analogy with parsimony for DNA trees Suppose we use the Robinson-Foulds metric Represent tree topologies by strings of 0 s and 1 s for presence / absence of splits Could we apply DNA parsimony algorithms to these strings to build an optimal meta-tree? No because strings must always represent trees General problem: replaced set of characters {A, C, G, T } with the set of trees with leaf-set L Meta-tree construction equivalent to Steiner tree problem

12 Analogy with parsimony for DNA trees Suppose we use the Robinson-Foulds metric Represent tree topologies by strings of 0 s and 1 s for presence / absence of splits Could we apply DNA parsimony algorithms to these strings to build an optimal meta-tree? No because strings must always represent trees General problem: replaced set of characters {A, C, G, T } with the set of trees with leaf-set L Meta-tree construction equivalent to Steiner tree problem

13 Analogy with parsimony for DNA trees Suppose we use the Robinson-Foulds metric Represent tree topologies by strings of 0 s and 1 s for presence / absence of splits Could we apply DNA parsimony algorithms to these strings to build an optimal meta-tree? No because strings must always represent trees General problem: replaced set of characters {A, C, G, T } with the set of trees with leaf-set L Meta-tree construction equivalent to Steiner tree problem

14 Analogy with parsimony for DNA trees Suppose we use the Robinson-Foulds metric Represent tree topologies by strings of 0 s and 1 s for presence / absence of splits Could we apply DNA parsimony algorithms to these strings to build an optimal meta-tree? No because strings must always represent trees General problem: replaced set of characters {A, C, G, T } with the set of trees with leaf-set L Meta-tree construction equivalent to Steiner tree problem

15 Analogy with parsimony for DNA trees Suppose we use the Robinson-Foulds metric Represent tree topologies by strings of 0 s and 1 s for presence / absence of splits Could we apply DNA parsimony algorithms to these strings to build an optimal meta-tree? No because strings must always represent trees General problem: replaced set of characters {A, C, G, T } with the set of trees with leaf-set L Meta-tree construction equivalent to Steiner tree problem

16 Majority consensus and optimality Consider a meta-tree with the star topology, central node T 0 : Meta-tree score = T 1 T n T 2 T n 1 splits p T 3 ( number of edges with p at one end but not at the other end ) Score minimised by majority consensus: majority consensus is a median tree NB: optimisation performed for each split independently

17 Majority consensus and optimality Consider a meta-tree with the star topology, central node T 0 : Meta-tree score = T 1 T n T 2 T n 1 splits p T 3 ( number of edges with p at one end but not at the other end ) Score minimised by majority consensus: majority consensus is a median tree NB: optimisation performed for each split independently

18 Majority consensus and optimality Consider a meta-tree with the star topology, central node T 0 : Meta-tree score = T 1 T n T 2 T n 1 splits p T 3 ( number of edges with p at one end but not at the other end ) Score minimised by majority consensus: majority consensus is a median tree NB: optimisation performed for each split independently

19 A local optimality condition Consider internal vertex ˆv on an optimal meta-tree: when does Tˆv contain a split p? p ˆv p p p ˆv p p (a) Score=1 if p Tˆv Score=2 if p / Tˆv (b) Score=2 if p Tˆv Score=1 if p / Tˆv

20 The Meta-NJ algorithm B Z 1 A Z 2 Z k Z 3 A X B Z 1 Z 2 Z Z k X Z 1 Z 2 Z Z k ˆT r Start with star phylogeny ˆT AB r At r-th step pick two nodes A, B to agglomerate ˆT r+1 Form new nodes X and Z that are the majority consensus of their neighbours: X = maj{a, B, Z} and Z = maj{x, Z 1,..., Z k } Calculate score for the resulting configuration ˆT AB r Try every pair A, B and pick the pair with min score

21 The Meta-NJ algorithm B Z 1 A Z 2 Z k Z 3 A X B Z 1 Z 2 Z Z k X Z 1 Z 2 Z Z k ˆT r Start with star phylogeny ˆT AB r At r-th step pick two nodes A, B to agglomerate ˆT r+1 Form new nodes X and Z that are the majority consensus of their neighbours: X = maj{a, B, Z} and Z = maj{x, Z 1,..., Z k } Calculate score for the resulting configuration ˆT AB r Try every pair A, B and pick the pair with min score

22 The Meta-NJ algorithm B Z 1 A Z 2 Z k Z 3 A X B Z 1 Z 2 Z Z k X Z 1 Z 2 Z Z k ˆT r Start with star phylogeny ˆT AB r At r-th step pick two nodes A, B to agglomerate ˆT r+1 Form new nodes X and Z that are the majority consensus of their neighbours: X = maj{a, B, Z} and Z = maj{x, Z 1,..., Z k } Calculate score for the resulting configuration ˆT AB r Try every pair A, B and pick the pair with min score

23 Features of the algorithm Simultaneous equations for X and Z can be solved (almost) uniquely: splits are considered independently Each vertex on resulting meta-tree is majority consensus of its neighbours Algorithm greedily constructs meta-trees with the local optimality condition Zero length branches are sometimes produced leads to multifurcations Ties in score: pick one agglomeration at random

24 Yeast data set Rokas et al, Genome-scale approaches to resolving incongruence, Nature 2003: Genomes from 8 species of yeast ML trees constructed for 106 orthologs 23 different topologies obtained Consensus network (Holland et al, Mol. Biol. and Evolution 2004):

25 Yeast data set results Link to web Topology 11, YDR484W Topology 15, repeated 5 Topology 1, repeated 41 Topology 6, repeated 2 Topology 10, repeated 4 Topology 7, repeated 9 Topology 8, repeated 8 Topology 18, YPL210C Topology 2, YDR531W Topology 20, YKL120W Topology 9, YGL225W Topology 5, repeated 2 Topology 21, repeated 4 Topology 3, repeated 6 Topology 17, repeated 4 Topology 12, repeated 2 Topology 13, repeated 3 Topology 14, YGL192W Topology 22, YJR068W Topology 16, repeated 4 Topology 23, repeated 2 Topology 19, YKL034W Topology 4, repeated 2

26 Yeast data set results

27 Yeast data set results

28 Yeast data set results split absent split present

29 Yeast data set results split present split absent

30 Fish data set 10 orthologous genes in 14 species of ray-finned fish Li et al, BMC Evolutionary Biology, 2007

31 Fish bootstrap analysis To what extent is incongruence caused by: (a) lack of phylogenetic signal in each gene sequence, or (b) genuine evolutionary differences? Generate 10 boostrap replicates for each gene Replicates for each gene form clusters distinct evolutionary histories Replicates scattered lack of signal in each gene

32 Fish bootstrap results

33 Fish bootstrap results sreb2 ENC1 plag12 Glyt

34 Fish bootstrap results Clade absent Gain / loss of clade (Danio, Ictalur, Ochor, Semiotil) Clade present

35 Summary Attempt to represent a collection of trees by a tree-of-trees or meta-tree Finding an optimal meta-tree is computationally hard Meta-NJ algorithm: heuristic approach that builds meta-trees by maintaining a local optimality condition: each vertex is the majority consensus of its neighbours Examples show typical insights meta-trees can provide

36 Summary Attempt to represent a collection of trees by a tree-of-trees or meta-tree Finding an optimal meta-tree is computationally hard Meta-NJ algorithm: heuristic approach that builds meta-trees by maintaining a local optimality condition: each vertex is the majority consensus of its neighbours Examples show typical insights meta-trees can provide

37 Summary Attempt to represent a collection of trees by a tree-of-trees or meta-tree Finding an optimal meta-tree is computationally hard Meta-NJ algorithm: heuristic approach that builds meta-trees by maintaining a local optimality condition: each vertex is the majority consensus of its neighbours Examples show typical insights meta-trees can provide

38 Summary Attempt to represent a collection of trees by a tree-of-trees or meta-tree Finding an optimal meta-tree is computationally hard Meta-NJ algorithm: heuristic approach that builds meta-trees by maintaining a local optimality condition: each vertex is the majority consensus of its neighbours Examples show typical insights meta-trees can provide

39 Acknowledgements Thanks to Wally Gilks Antonis Rokas (yeast data set) Chenhong Li (fish data set) Web site Software is available on line at: ntmwn/phylo comparison/multiple.html

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie.

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie. Arbres formels et Arbre de la Vie Olivier Gascuel Centre National de la Recherche Scientifique LIRMM, Montpellier, France www.lirmm.fr/gascuel 10 permanent researchers 2 technical staff 3 postdocs, 10

More information

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Basic Bioinformatics Workshop, ILRI Addis Ababa, 12 December 2017 Learning Objectives understand

More information

Parsimony-Based Approaches to Inferring Phylogenetic Trees

Parsimony-Based Approaches to Inferring Phylogenetic Trees Parsimony-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu Fall 0 Phylogenetic tree approaches! three general types! distance:

More information

Distance-based Phylogenetic Methods Near a Polytomy

Distance-based Phylogenetic Methods Near a Polytomy Distance-based Phylogenetic Methods Near a Polytomy Ruth Davidson and Seth Sullivant NCSU UIUC May 21, 2014 2 Phylogenetic trees model the common evolutionary history of a group of species Leaves = extant

More information

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst Phylogenetics Introduction to Bioinformatics Dortmund, 16.-20.07.2007 Lectures: Sven Rahmann Exercises: Udo Feldkamp, Michael Wurst 1 Phylogenetics phylum = tree phylogenetics: reconstruction of evolutionary

More information

CSE 549: Computational Biology

CSE 549: Computational Biology CSE 549: Computational Biology Phylogenomics 1 slides marked with * by Carl Kingsford Tree of Life 2 * H5N1 Influenza Strains Salzberg, Kingsford, et al., 2007 3 * H5N1 Influenza Strains The 2007 outbreak

More information

INFERENCE OF PARSIMONIOUS SPECIES TREES FROM MULTI-LOCUS DATA BY MINIMIZING DEEP COALESCENCES CUONG THAN AND LUAY NAKHLEH

INFERENCE OF PARSIMONIOUS SPECIES TREES FROM MULTI-LOCUS DATA BY MINIMIZING DEEP COALESCENCES CUONG THAN AND LUAY NAKHLEH INFERENCE OF PARSIMONIOUS SPECIES TREES FROM MULTI-LOCUS DATA BY MINIMIZING DEEP COALESCENCES CUONG THAN AND LUAY NAKHLEH Abstract. One approach for inferring a species tree from a given multi-locus data

More information

Dynamic Programming for Phylogenetic Estimation

Dynamic Programming for Phylogenetic Estimation 1 / 45 Dynamic Programming for Phylogenetic Estimation CS598AGB Pranjal Vachaspati University of Illinois at Urbana-Champaign 2 / 45 Coalescent-based Species Tree Estimation Find evolutionary tree for

More information

of the Balanced Minimum Evolution Polytope Ruriko Yoshida

of the Balanced Minimum Evolution Polytope Ruriko Yoshida Optimality of the Neighbor Joining Algorithm and Faces of the Balanced Minimum Evolution Polytope Ruriko Yoshida Figure 19.1 Genomes 3 ( Garland Science 2007) Origins of Species Tree (or web) of life eukarya

More information

Scaling species tree estimation methods to large datasets using NJMerge

Scaling species tree estimation methods to large datasets using NJMerge Scaling species tree estimation methods to large datasets using NJMerge Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana Champaign 2018 Phylogenomics Software

More information

Recent Research Results. Evolutionary Trees Distance Methods

Recent Research Results. Evolutionary Trees Distance Methods Recent Research Results Evolutionary Trees Distance Methods Indo-European Languages After Tandy Warnow What is the purpose? Understand evolutionary history (relationship between species). Uderstand how

More information

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea Descent w/modification Descent w/modification Descent w/modification Descent w/modification CPU Descent w/modification Descent w/modification Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

More information

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such)

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such) Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences joe@gs Phylogeny methods, part 1 (Parsimony and such) Methods of reconstructing phylogenies (evolutionary trees) Parsimony

More information

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Erin Molloy University of Illinois at Urbana Champaign General Allocation (PI: Tandy Warnow) Exploratory Allocation

More information

Definitions. Matt Mauldin

Definitions. Matt Mauldin Combining Data Sets Matt Mauldin Definitions Character Independence: changes in character states are independent of others Character Correlation: changes in character states occur together Character Congruence:

More information

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1 DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens Katherine St. John City University of New York 1 Thanks to the DIMACS Staff Linda Casals Walter Morris Nicole Clark Katherine St. John

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016) Phylogenetic Trees (I)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) Phylogenetic Trees (I) CISC 636 Computational iology & ioinformatics (Fall 2016) Phylogenetic Trees (I) Maximum Parsimony CISC636, F16, Lec13, Liao 1 Evolution Mutation, selection, Only the Fittest Survive. Speciation. t one

More information

Lecture: Bioinformatics

Lecture: Bioinformatics Lecture: Bioinformatics ENS Sacley, 2018 Some slides graciously provided by Daniel Huson & Celine Scornavacca Phylogenetic Trees - Motivation 2 / 31 2 / 31 Phylogenetic Trees - Motivation Motivation -

More information

SPR-BASED TREE RECONCILIATION: NON-BINARY TREES AND MULTIPLE SOLUTIONS

SPR-BASED TREE RECONCILIATION: NON-BINARY TREES AND MULTIPLE SOLUTIONS 1 SPR-BASED TREE RECONCILIATION: NON-BINARY TREES AND MULTIPLE SOLUTIONS C. THAN and L. NAKHLEH Department of Computer Science Rice University 6100 Main Street, MS 132 Houston, TX 77005, USA Email: {cvthan,nakhleh}@cs.rice.edu

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Leena Salmena and Veli Mäkinen, which are partly from http: //bix.ucsd.edu/bioalgorithms/slides.php. 582670 Algorithms for Bioinformatics Lecture 6: Distance based clustering and

More information

Supplementary Material, corresponding to the manuscript Accumulated Coalescence Rank and Excess Gene count for Species Tree Inference

Supplementary Material, corresponding to the manuscript Accumulated Coalescence Rank and Excess Gene count for Species Tree Inference Supplementary Material, corresponding to the manuscript Accumulated Coalescence Rank and Excess Gene count for Species Tree Inference Sourya Bhattacharyya and Jayanta Mukherjee Department of Computer Science

More information

Fast Hashing Algorithms to Summarize Large. Collections of Evolutionary Trees

Fast Hashing Algorithms to Summarize Large. Collections of Evolutionary Trees Texas A&M CS Technical Report 2008-6- June 27, 2008 Fast Hashing Algorithms to Summarize Large Collections of Evolutionary Trees by Seung-Jin Sul and Tiffani L. Williams Department of Computer Science

More information

human chimp mouse rat

human chimp mouse rat Michael rudno These notes are based on earlier notes by Tomas abak Phylogenetic Trees Phylogenetic Trees demonstrate the amoun of evolution, and order of divergence for several genomes. Phylogenetic trees

More information

Evolutionary tree reconstruction (Chapter 10)

Evolutionary tree reconstruction (Chapter 10) Evolutionary tree reconstruction (Chapter 10) Early Evolutionary Studies Anatomical features were the dominant criteria used to derive evolutionary relationships between species since Darwin till early

More information

Introduction to Computational Phylogenetics

Introduction to Computational Phylogenetics Introduction to Computational Phylogenetics Tandy Warnow The University of Texas at Austin No Institute Given This textbook is a draft, and should not be distributed. Much of what is in this textbook appeared

More information

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet)

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet) Phylogeny Codon models Last lecture: poor man s way of calculating dn/ds (Ka/Ks) Tabulate synonymous/non- synonymous substitutions Normalize by the possibilities Transform to genetic distance K JC or K

More information

MASTtreedist: Visualization of Tree Space based on Maximum Agreement Subtree

MASTtreedist: Visualization of Tree Space based on Maximum Agreement Subtree MASTtreedist: Visualization of Tree Space based on Maximum Agreement Subtree Hong Huang *1 and Yongji Li 2 1 School of Information, University of South Florida, Tampa, FL, 33620 2 Department of Computer

More information

A RANDOMIZED ALGORITHM FOR COMPARING SETS OF PHYLOGENETIC TREES

A RANDOMIZED ALGORITHM FOR COMPARING SETS OF PHYLOGENETIC TREES A RANDOMIZED ALGORITHM FOR COMPARING SETS OF PHYLOGENETIC TREES SEUNG-JIN SUL AND TIFFANI L. WILLIAMS Department of Computer Science Texas A&M University College Station, TX 77843-3112 USA E-mail: {sulsj,tlw}@cs.tamu.edu

More information

On the Optimality of the Neighbor Joining Algorithm

On the Optimality of the Neighbor Joining Algorithm On the Optimality of the Neighbor Joining Algorithm Ruriko Yoshida Dept. of Statistics University of Kentucky Joint work with K. Eickmeyer, P. Huggins, and L. Pachter www.ms.uky.edu/ ruriko Louisville

More information

Clustering Jacques van Helden

Clustering Jacques van Helden Statistical Analysis of Microarray Data Clustering Jacques van Helden Jacques.van.Helden@ulb.ac.be Contents Data sets Distance and similarity metrics K-means clustering Hierarchical clustering Evaluation

More information

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony Jean-Michel Richer 1 and Adrien Goëffon 2 and Jin-Kao Hao 1 1 University of Angers, LERIA, 2 Bd Lavoisier, 49045 Anger Cedex 01,

More information

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees What is a phylogenetic tree? Algorithms for Computational Biology Zsuzsanna Lipták speciation events Masters in Molecular and Medical Biotechnology a.a. 25/6, fall term Phylogenetics Summary wolf cat lion

More information

A Randomized Algorithm for Comparing Sets of Phylogenetic Trees

A Randomized Algorithm for Comparing Sets of Phylogenetic Trees A Randomized Algorithm for Comparing Sets of Phylogenetic Trees Seung-Jin Sul and Tiffani L. Williams Department of Computer Science Texas A&M University E-mail: {sulsj,tlw}@cs.tamu.edu Technical Report

More information

Tutorial using BEAST v2.4.7 MASCOT Tutorial Nicola F. Müller

Tutorial using BEAST v2.4.7 MASCOT Tutorial Nicola F. Müller Tutorial using BEAST v2.4.7 MASCOT Tutorial Nicola F. Müller Parameter and State inference using the approximate structured coalescent 1 Background Phylogeographic methods can help reveal the movement

More information

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms Seung-Jin Sul and Tiffani L. Williams Department of Computer Science Texas A&M University College Station, TX 77843-3 {sulsj,tlw}@cs.tamu.edu

More information

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ)

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) Distance based tree reconstruction Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) All organisms have evolved from a common ancestor. Infer the evolutionary tree (tree topology and edge lengths)

More information

Contents. ! Data sets. ! Distance and similarity metrics. ! K-means clustering. ! Hierarchical clustering. ! Evaluation of clustering results

Contents. ! Data sets. ! Distance and similarity metrics. ! K-means clustering. ! Hierarchical clustering. ! Evaluation of clustering results Statistical Analysis of Microarray Data Contents Data sets Distance and similarity metrics K-means clustering Hierarchical clustering Evaluation of clustering results Clustering Jacques van Helden Jacques.van.Helden@ulb.ac.be

More information

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony Jean-Michel Richer 1,AdrienGoëffon 2, and Jin-Kao Hao 1 1 University of Angers, LERIA, 2 Bd Lavoisier, 49045 Anger Cedex 01, France

More information

Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency?

Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency? Answer Set Programming or Hypercleaning: Where does the Magic Lie in Solving Maximum Quartet Consistency? Fathiyeh Faghih and Daniel G. Brown David R. Cheriton School of Computer Science, University of

More information

ABOUT THE LARGEST SUBTREE COMMON TO SEVERAL PHYLOGENETIC TREES Alain Guénoche 1, Henri Garreta 2 and Laurent Tichit 3

ABOUT THE LARGEST SUBTREE COMMON TO SEVERAL PHYLOGENETIC TREES Alain Guénoche 1, Henri Garreta 2 and Laurent Tichit 3 The XIII International Conference Applied Stochastic Models and Data Analysis (ASMDA-2009) June 30-July 3, 2009, Vilnius, LITHUANIA ISBN 978-9955-28-463-5 L. Sakalauskas, C. Skiadas and E. K. Zavadskas

More information

Prospects for inferring very large phylogenies by using the neighbor-joining method. Methods

Prospects for inferring very large phylogenies by using the neighbor-joining method. Methods Prospects for inferring very large phylogenies by using the neighbor-joining method Koichiro Tamura*, Masatoshi Nei, and Sudhir Kumar* *Center for Evolutionary Functional Genomics, The Biodesign Institute,

More information

MODERN phylogenetic analyses are rapidly increasing

MODERN phylogenetic analyses are rapidly increasing IEEE CONFERENCE ON BIOINFORMATICS & BIOMEDICINE 1 Accurate Simulation of Large Collections of Phylogenetic Trees Suzanne J. Matthews, Member, IEEE, ACM Abstract Phylogenetic analyses are growing at a rapid

More information

Heterotachy models in BayesPhylogenies

Heterotachy models in BayesPhylogenies Heterotachy models in is a general software package for inferring phylogenetic trees using Bayesian Markov Chain Monte Carlo (MCMC) methods. The program allows a range of models of gene sequence evolution,

More information

Algorithms for Computing Cluster Dissimilarity between Rooted Phylogenetic

Algorithms for Computing Cluster Dissimilarity between Rooted Phylogenetic Send Orders for Reprints to reprints@benthamscience.ae 8 The Open Cybernetics & Systemics Journal, 05, 9, 8-3 Open Access Algorithms for Computing Cluster Dissimilarity between Rooted Phylogenetic Trees

More information

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 28 th November 2007 OUTLINE 1 INFERRING

More information

Computing the All-Pairs Quartet Distance on a set of Evolutionary Trees

Computing the All-Pairs Quartet Distance on a set of Evolutionary Trees Journal of Bioinformatics and Computational Biology c Imperial College Press Computing the All-Pairs Quartet Distance on a set of Evolutionary Trees M. Stissing, T. Mailund, C. N. S. Pedersen and G. S.

More information

( ylogenetics/bayesian_workshop/bayesian%20mini conference.htm#_toc )

(  ylogenetics/bayesian_workshop/bayesian%20mini conference.htm#_toc ) (http://www.nematodes.org/teaching/tutorials/ph ylogenetics/bayesian_workshop/bayesian%20mini conference.htm#_toc145477467) Model selection criteria Review Posada D & Buckley TR (2004) Model selection

More information

Tutorial. Phylogenetic Trees and Metadata. Sample to Insight. November 21, 2017

Tutorial. Phylogenetic Trees and Metadata. Sample to Insight. November 21, 2017 Phylogenetic Trees and Metadata November 21, 2017 Sample to Insight QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com AdvancedGenomicsSupport@qiagen.com

More information

Computing the Quartet Distance Between Trees of Arbitrary Degrees

Computing the Quartet Distance Between Trees of Arbitrary Degrees January 22, 2006 University of Aarhus Department of Computer Science Computing the Quartet Distance Between Trees of Arbitrary Degrees Chris Christiansen & Martin Randers Thesis supervisor: Christian Nørgaard

More information

MLSTest Tutorial Contents

MLSTest Tutorial Contents MLSTest Tutorial Contents About MLSTest... 2 Installing MLSTest... 2 Loading Data... 3 Main window... 4 DATA Menu... 5 View, modify and export your alignments... 6 Alignment>viewer... 6 Alignment> export...

More information

The worst case complexity of Maximum Parsimony

The worst case complexity of Maximum Parsimony he worst case complexity of Maximum Parsimony mir armel Noa Musa-Lempel Dekel sur Michal Ziv-Ukelson Ben-urion University June 2, 20 / 2 What s a phylogeny Phylogenies: raph-like structures whose topology

More information

Prior Distributions on Phylogenetic Trees

Prior Distributions on Phylogenetic Trees Prior Distributions on Phylogenetic Trees Magnus Johansson Masteruppsats i matematisk statistik Master Thesis in Mathematical Statistics Masteruppsats 2011:4 Matematisk statistik Juni 2011 www.math.su.se

More information

DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION

DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION CHUANG PENG DEPARTMENT OF MATHEMATICS MOREHOUSE COLLEGE ATLANTA, GA 30314 Abstract. One of the most fundamental aspects of bioinformatics in understanding

More information

Comparison of commonly used methods for combining multiple phylogenetic data sets

Comparison of commonly used methods for combining multiple phylogenetic data sets Comparison of commonly used methods for combining multiple phylogenetic data sets Anne Kupczok, Heiko A. Schmidt and Arndt von Haeseler Center for Integrative Bioinformatics Vienna Max F. Perutz Laboratories

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

A Statistical Test for Clades in Phylogenies

A Statistical Test for Clades in Phylogenies A STATISTICAL TEST FOR CLADES A Statistical Test for Clades in Phylogenies Thurston H. Y. Dang 1, and Elchanan Mossel 2 1 Department of Electrical Engineering and Computer Sciences, University of California,

More information

A New Support Measure to Quantify the Impact of Local Optima in Phylogenetic Analyses

A New Support Measure to Quantify the Impact of Local Optima in Phylogenetic Analyses Evolutionary Bioinformatics Original Research Open Access Full open access to this and thousands of other papers at http://www.la-press.com. A New Support Measure to Quantify the Impact of Local Optima

More information

Generalized Neighbor-Joining: More Reliable Phylogenetic Tree Reconstruction

Generalized Neighbor-Joining: More Reliable Phylogenetic Tree Reconstruction Generalized Neighbor-Joining: More Reliable Phylogenetic Tree Reconstruction William R. Pearson, Gabriel Robins,* and Tongtong Zhang* *Department of Computer Science and Department of Biochemistry, University

More information

11/17/2009 Comp 590/Comp Fall

11/17/2009 Comp 590/Comp Fall Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 Problem Set #5 will be available tonight 11/17/2009 Comp 590/Comp 790-90 Fall 2009 1 Clique Graphs A clique is a graph with every vertex connected

More information

Hybrid Parallelization of the MrBayes & RAxML Phylogenetics Codes

Hybrid Parallelization of the MrBayes & RAxML Phylogenetics Codes Hybrid Parallelization of the MrBayes & RAxML Phylogenetics Codes Wayne Pfeiffer (SDSC/UCSD) & Alexandros Stamatakis (TUM) February 25, 2010 What was done? Why is it important? Who cares? Hybrid MPI/OpenMP

More information

CS 581. Tandy Warnow

CS 581. Tandy Warnow CS 581 Tandy Warnow This week Maximum parsimony: solving it on small datasets Maximum Likelihood optimization problem Felsenstein s pruning algorithm Bayesian MCMC methods Research opportunities Maximum

More information

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees Kedar Dhamdhere, Srinath Sridhar, Guy E. Blelloch, Eran Halperin R. Ravi and Russell Schwartz March 17, 2005 CMU-CS-05-119

More information

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300)

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300) Evolution Module 6.1 Phylogenetic Trees Bob Gardner and Lev Yampolski Integrated Biology and Discrete Math (IBMS 1300) Fall 2008 1 INDUCTION Note. The natural numbers N is the familiar set N = {1, 2, 3,...}.

More information

Lab 07: Maximum Likelihood Model Selection and RAxML Using CIPRES

Lab 07: Maximum Likelihood Model Selection and RAxML Using CIPRES Integrative Biology 200, Spring 2014 Principles of Phylogenetics: Systematics University of California, Berkeley Updated by Traci L. Grzymala Lab 07: Maximum Likelihood Model Selection and RAxML Using

More information

A Collapsing Method for Efficient Recovery of Optimal. Edges in Phylogenetic Trees

A Collapsing Method for Efficient Recovery of Optimal. Edges in Phylogenetic Trees A Collapsing Method for Efficient Recovery of Optimal Edges in Phylogenetic Trees by Michael Hu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Protein phylogenetics

Protein phylogenetics Protein phylogenetics Robert Hirt PAUP4.0* can be used for an impressive range of analytical methods involving DNA alignments. This, unfortunately is not the case for estimating protein phylogenies. Only

More information

Algorithms for MDC-Based Multi-locus Phylogeny Inference

Algorithms for MDC-Based Multi-locus Phylogeny Inference Algorithms for MDC-Based Multi-locus Phylogeny Inference Yun Yu 1, Tandy Warnow 2, and Luay Nakhleh 1 1 Dept. of Computer Science, Rice University, 61 Main Street, Houston, TX 775, USA {yy9,nakhleh}@cs.rice.edu

More information

Parallelizing SuperFine

Parallelizing SuperFine Parallelizing SuperFine Diogo Telmo Neves ESTGF - IPP and Universidade do Minho Portugal dtn@ices.utexas.edu Tandy Warnow Dept. of Computer Science The Univ. of Texas at Austin Austin, TX 78712 tandy@cs.utexas.edu

More information

"PRINCIPLES OF PHYLOGENETICS" Spring 2008

PRINCIPLES OF PHYLOGENETICS Spring 2008 Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2008 Lab 7: Introduction to PAUP* Today we will be learning about some of the basic features of PAUP* (Phylogenetic

More information

Genome 559: Introduction to Statistical and Computational Genomics. Lecture15a Multiple Sequence Alignment Larry Ruzzo

Genome 559: Introduction to Statistical and Computational Genomics. Lecture15a Multiple Sequence Alignment Larry Ruzzo Genome 559: Introduction to Statistical and Computational Genomics Lecture15a Multiple Sequence Alignment Larry Ruzzo 1 Multiple Alignment: Motivations Common structure, function, or origin may be only

More information

Rapid Neighbour-Joining

Rapid Neighbour-Joining Rapid Neighbour-Joining Martin Simonsen, Thomas Mailund and Christian N. S. Pedersen Bioinformatics Research Center (BIRC), University of Aarhus, C. F. Møllers Allé, Building 1110, DK-8000 Århus C, Denmark.

More information

Data Preprocessing. Slides by: Shree Jaswal

Data Preprocessing. Slides by: Shree Jaswal Data Preprocessing Slides by: Shree Jaswal Topics to be covered Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data

More information

BUCKy Bayesian Untangling of Concordance Knots (applied to yeast and other organisms)

BUCKy Bayesian Untangling of Concordance Knots (applied to yeast and other organisms) Introduction BUCKy Bayesian Untangling of Concordance Knots (applied to yeast and other organisms) Version 1.2, 17 January 2008 Copyright c 2008 by Bret Larget Last updated: 11 November 2008 Departments

More information

Parsimonious Reconciliation of Non-binary Trees. Louxin Zhang National University of Singapore

Parsimonious Reconciliation of Non-binary Trees. Louxin Zhang National University of Singapore Parsimonious Reconciliation of Non-binary Trees Louxin Zhang National University of Singapore matzlx@nus.edu.sg Gene Tree vs the (Containing) Species Tree. A species tree S represents the evolutionary

More information

Introduction to MrBayes

Introduction to MrBayes Introduction to MrBayes Fred(rik) Ronquist Dept. Bioinformatics and Genetics Swedish Museum of Natural History, Stockholm, Sweden Installing MrBayes! Two options:! Go to mrbayes.net, click Download and

More information

Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation

Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation Zaid Abdo,* à Vladimir N. Minin, Paul Joyce,* à and Jack

More information

World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences Vol:11, No:6, 2017

World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences Vol:11, No:6, 2017 BeamGA Median: A Hybrid Heuristic Search Approach Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte Abstract The median problem is significantly applied to derive the most

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/12/2013 Comp 465 Fall 2013 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other vertex A clique

More information

Brief review from last class

Brief review from last class Sequence Alignment Brief review from last class DNA is has direction, we will use only one (5 -> 3 ) and generate the opposite strand as needed. DNA is a 3D object (see lecture 1) but we will model it

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other

More information

Neighbor Joining Plus - algorithm for phylogenetic tree reconstruction with proper nodes assignment.

Neighbor Joining Plus - algorithm for phylogenetic tree reconstruction with proper nodes assignment. Neighbor Joining Plus - algorithm for phylogenetic tree reconstruction with proper nodes assignment. Piotr Płoński 1ξ, Jan P. Radomski 2ξ 1 Institute of Radioelectronics, Warsaw University of Technology,

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

Distance Methods. "PRINCIPLES OF PHYLOGENETICS" Spring 2006

Distance Methods. PRINCIPLES OF PHYLOGENETICS Spring 2006 Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2006 Distance Methods Due at the end of class: - Distance matrices and trees for two different distance

More information

Lab 13: The What the Hell Do I Do with All These Trees Lab

Lab 13: The What the Hell Do I Do with All These Trees Lab Integrative Biology 200A University of California, Berkeley Principals of Phylogenetics Spring 2012 Updated by Michael Landis Lab 13: The What the Hell Do I Do with All These Trees Lab We ve generated

More information

Resampling Methods. Levi Waldron, CUNY School of Public Health. July 13, 2016

Resampling Methods. Levi Waldron, CUNY School of Public Health. July 13, 2016 Resampling Methods Levi Waldron, CUNY School of Public Health July 13, 2016 Outline and introduction Objectives: prediction or inference? Cross-validation Bootstrap Permutation Test Monte Carlo Simulation

More information

Main Reference. Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taking a Random Walk through Tree Space Genetics 2005

Main Reference. Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taking a Random Walk through Tree Space Genetics 2005 Stochastic Models for Horizontal Gene Transfer Dajiang Liu Department of Statistics Main Reference Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taing a Random Wal through Tree Space

More information

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees Kedar Dhamdhere ½ ¾, Srinath Sridhar ½ ¾, Guy E. Blelloch ¾, Eran Halperin R. Ravi and Russell Schwartz March 17, 2005 CMU-CS-05-119

More information

Fast and accurate branch lengths estimation for phylogenomic trees

Fast and accurate branch lengths estimation for phylogenomic trees Binet et al. BMC Bioinformatics (2016) 17:23 DOI 10.1186/s12859-015-0821-8 RESEARCH ARTICLE Open Access Fast and accurate branch lengths estimation for phylogenomic trees Manuel Binet 1,2,3, Olivier Gascuel

More information

Phylogenetic networks that display a tree twice

Phylogenetic networks that display a tree twice Bulletin of Mathematical Biology manuscript No. (will be inserted by the editor) Phylogenetic networks that display a tree twice Paul Cordue Simone Linz Charles Semple Received: date / Accepted: date Abstract

More information

INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS

INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS INFERRING OPTIMAL SPECIES TREES UNDER GENE DUPLICATION AND LOSS M. S. BAYZID, S. MIRARAB and T. WARNOW Department of Computer Science, The University of Texas at Austin, Austin, Texas 78712, USA E-mail:

More information

FastJoin, an improved neighbor-joining algorithm

FastJoin, an improved neighbor-joining algorithm Methodology FastJoin, an improved neighbor-joining algorithm J. Wang, M.-Z. Guo and L.L. Xing School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, P.R. China

More information

Package rwty. June 22, 2016

Package rwty. June 22, 2016 Type Package Package rwty June 22, 2016 Title R We There Yet? Visualizing MCMC Convergence in Phylogenetics Version 1.0.1 Author Dan Warren , Anthony Geneva ,

More information

Lab 12: The What the Hell Do I Do with All These Trees Lab

Lab 12: The What the Hell Do I Do with All These Trees Lab Integrative Biology 200A University of California, Berkeley Principals of Phylogenetics Spring 2010 Updated by Nick Matzke Lab 12: The What the Hell Do I Do with All These Trees Lab We ve generated a lot

More information

Cooperative Rec-I-DCM3: A Population-Based Approach for Reconstructing Phylogenies

Cooperative Rec-I-DCM3: A Population-Based Approach for Reconstructing Phylogenies Cooperative Rec-I-DCM3: A Population-Based Approach for Reconstructing Phylogenies Tiffani L. Williams Department of Computer Science Texas A&M University tlw@cs.tamu.edu Marc L. Smith Department of Computer

More information

Stat 547 Assignment 3

Stat 547 Assignment 3 Stat 547 Assignment 3 Release Date: Saturday April 16, 2011 Due Date: Wednesday, April 27, 2011 at 4:30 PST Note that the deadline for this assignment is one day before the final project deadline, and

More information

Rapid Neighbour-Joining

Rapid Neighbour-Joining Rapid Neighbour-Joining Martin Simonsen, Thomas Mailund, and Christian N.S. Pedersen Bioinformatics Research Center (BIRC), University of Aarhus, C. F. Møllers Allé, Building 1110, DK-8000 Århus C, Denmark

More information

Sistemática Teórica. Hernán Dopazo. Biomedical Genomics and Evolution Lab. Lesson 03 Statistical Model Selection

Sistemática Teórica. Hernán Dopazo. Biomedical Genomics and Evolution Lab. Lesson 03 Statistical Model Selection Sistemática Teórica Hernán Dopazo Biomedical Genomics and Evolution Lab Lesson 03 Statistical Model Selection Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina 2013 Statistical

More information

A practical O(n log 2 n) time algorithm for computing the triplet distance on binary trees

A practical O(n log 2 n) time algorithm for computing the triplet distance on binary trees A practical O(n log 2 n) time algorithm for computing the triplet distance on binary trees Andreas Sand 1,2, Gerth Stølting Brodal 2,3, Rolf Fagerberg 4, Christian N. S. Pedersen 1,2 and Thomas Mailund

More information

arxiv: v2 [q-bio.pe] 8 Aug 2016

arxiv: v2 [q-bio.pe] 8 Aug 2016 Combinatorial Scoring of Phylogenetic Networks Nikita Alexeev and Max A. Alekseyev The George Washington University, Washington, D.C., U.S.A. arxiv:160.0841v [q-bio.pe] 8 Aug 016 Abstract. Construction

More information

SAMPLING DISCRETE COMBINATORIAL SPACES IN PHYLOGENETICS

SAMPLING DISCRETE COMBINATORIAL SPACES IN PHYLOGENETICS SAMPLING DISCRETE COMBINATORIAL SPACES IN PHYLOGENETICS by Alexander Safatli Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science at Dalhousie University Halifax,

More information