Antibandwidth of Hamming graphs

Size: px
Start display at page:

Download "Antibandwidth of Hamming graphs"

Transcription

1 Antibandwidth of Hamming graphs Štefan Dobrev Rastislav Královič Dana Pardubská Ľubomír Török Imrich Vrťo Workshop on Discrete Mathematics Vienna, November 19-22, 2008

2 Antibandwidth problem Consists of placing the vertices of a graph on a line in consecutive integer points in such a way that the minimum difference of adjacent vertices is maximized. Just another labeling problem (from graph theory point of view)

3 Antibandwidth problem Example (linear)

4 Cyclic antibandwidth Example (cyclic)

5 Motivation Introduced in connection with multiprocessor scheduling problems Dual problem to bandwidth problem Bandwidth = to find vertex ordering of a graph G s.t. the length of the longest edge is minimized. Antibandwidth = to find vertex ordering of a graph G s.t. the length of the shortest edge is maximized.

6 Motivation Radio frequency assignment problem N transmitters, N frequencies. Graph representation: transmitters = vertices, egdes = possible interference Goal: to assign all frequencies to transmitters in a one-to-one manner s.t. interferencing transmitters have as different frequencies as possible.

7 Motivation Enemy facility location problem Graph representation: vertices = facilities, edges = hostility Goal: to arrange facilities in a line (cycle, mesh,...) s.t. the critical (smallest) distance between two enemies is maximized

8 Motivation Coding theory Host graph: n-dimensional hypercube Guest graph: complete graph Then ab K p,q n A is equivalent to an existence of a code with minimal Hamming distance greater or equal to A. K p

9 Previous results NP-complete (Leung, Vornberger) Polynomially solvable for the complements of Interval Arborescent comparability Threshold graphs. (Donnely, Isaak, Hamiltonian powers in graphs)

10 Previous results Trivial upper bound for connected graphs: ab G n 2

11 Previous results Also interesting for disconnected graphs. Exact values for graphs consisting of copies of simple graphs. Bandwidth: Antibandwidth:

12 Previous results Known results for: Paths, cycles, special trees complete and complete bipartite graphs 2D, 3D and n-dimensional meshes tori, hypercubes Cyclic antibandwidth Embedding into cycle

13 Previous results Raspaud, Schröder, Sýkora, Török, Vrťo: Antibandwidth and Cyclic Antibandwidth of Meshes and Hypercubes Calamoneri, Massini, Török, Vrťo: Török, Vrťo: Antibandwidth of complete k-ary trees Antibandwidth of three-dimensional meshes Antibandwidth of d-dimensional meshes

14 Hamming graph Definition Cartesian product of d complete graphs, i.e. K nk, k=1,2,...,d k=1 d K nk Hamming graph K 3 K 4

15 Definition Vertices are d-tuples Hamming graph i 1, i 2,...,i d,i k 0,1,2,..., n k 1 Two vertices i 1, i 2,...,i d and j 1, j 2,..., j d are adjacent iff the two d-tuples differ in precisely one coordinate

16 Work in progress Theorem For d 2, 2 n 1 n 2... n d Results d ab k=1 d ab k=1 K nk =n 1 n 2... n d 1,if n d 1 n d K nk =n 1 n 2... n d 1 1,if n d 1 =n d, n d 2 n d 1 d n 1 n 2... n d 1 min n 1 n 2... n d 2, n q 1... n d 1 ab k=1 K nk n 1 n 2... n d 1 1 where q is minimal index such that q d 2 and n q =n d

17 Results Labelling Case I. n d 1 n d f i 1,i 2,...,i d = N d 1 N d 1 / N 1 i 1 N d 1 N d 1 / N 2 i 2 N d 1 N d 1 / N 3 i 3... N d 1 N d 1 / N d 1 i d 1 N d 1 i d mod N d j N j = k =1 K nk, number of vertices of the product Example K 2 K 3 K 4 f i 1,i 2,i 3 = 9i 1 7i 2 6i 3 mod 24

18 Results Example of labelling of K 2 K 3 K

19 Results Labelling Case II. n d 1 =n d, let q be minimal s.t. q d 1 and n q =n d f i 1,i 2,...,i d = N d 1 N d 1 / N 1 i 1 N d 1 N d 1 / N 2 i 2... N d 1 N d 1 / N q 1 i q 1 N d 1 N d 1 / N q i q... N d 1 N d 1 / N d 1 i d 1 N d 1 i d mod N d

20 Labelling Results Case III. n d 1 =n d, define the alternative labelling f i 1,i 2,...,i d = N d 1 N 0 i 1 N d 1 N 1 i 2... N d 1 N d 2 i d 1 N d 1 i d mod N d

21 Results Antibandwidth and cyclic antibandwidth have the same value Open problem n 2 n ab K n K n K n n 2 1 Conjecture ab K n K n K n =n 2 n

22 The End Thank You

The Maximum k-differential Coloring Problem

The Maximum k-differential Coloring Problem The Maximum k-differential Coloring Problem M. A. Bekos 1, M. Kaufmann 1, S. Kobourov 2, S. Veeramoni 2 1 Wilhelm-Schickard-Institut für Informatik - Universität Tübingen, Germany {bekos,mk}@informatik.uni-tuebingen.de

More information

arxiv: v2 [cs.dm] 4 Mar 2013

arxiv: v2 [cs.dm] 4 Mar 2013 Maximum Differential Coloring of Caterpillars and Spiders M. Bekos, A. Das, M. Geyer, M. Kaufmann, S. Kobourov, S. Veeramoni arxiv:130.7085v [cs.dm] 4 Mar 013 Wilhelm-Schickard-Institut für Informatik

More information

Maximum Differential Graph Coloring

Maximum Differential Graph Coloring Maximum Differential Graph Coloring Sankar Veeramoni University of Arizona Joint work with Yifan Hu at AT&T Research and Stephen Kobourov at University of Arizona Motivation Map Coloring Problem Related

More information

arxiv: v3 [cs.dm] 12 Jun 2014

arxiv: v3 [cs.dm] 12 Jun 2014 On Maximum Differential Coloring of Planar Graphs M. A. Bekos 1, M. Kaufmann 1, S. Kobourov, S. Veeramoni 1 Wilhelm-Schickard-Institut für Informatik - Universität Tübingen, Germany Department of Computer

More information

Introduction to Algorithms. Lecture 24. Prof. Patrick Jaillet

Introduction to Algorithms. Lecture 24. Prof. Patrick Jaillet 6.006- Introduction to Algorithms Lecture 24 Prof. Patrick Jaillet Outline Decision vs optimization problems P, NP, co-np Reductions between problems NP-complete problems Beyond NP-completeness Readings

More information

The Maximum Clique Problem

The Maximum Clique Problem November, 2012 Motivation How to put as much left-over stuff as possible in a tasty meal before everything will go off? Motivation Find the largest collection of food where everything goes together! Here,

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 2769 2775 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Optimal acyclic edge colouring of grid like graphs

More information

Best Known Solutions for the Cyclic Bandwidth Problem

Best Known Solutions for the Cyclic Bandwidth Problem Best Known Solutions for the Cyclic Bandwidth Problem Eduardo Rodriguez-Tello May 8, 014 1 Standard Graphs Table 1 summarizes the best known solutions produced by the Tabu Search algorithm, called TScb,

More information

Mathematics Masters Examination

Mathematics Masters Examination Mathematics Masters Examination OPTION 4 Fall 2011 COMPUTER SCIENCE??TIME?? NOTE: Any student whose answers require clarification may be required to submit to an oral examination. Each of the twelve numbered

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

2 hours THE UNIVERSITY OF MANCHESTER. 22 May :00 16:00

2 hours THE UNIVERSITY OF MANCHESTER. 22 May :00 16:00 2 hours THE UNIVERSITY OF MANCHESTER DISCRETE MATHEMATICS 22 May 2015 14:00 16:00 Answer ALL THREE questions in Section A (30 marks in total) and TWO of the THREE questions in Section B (50 marks in total).

More information

The Tree Congestion of Graphs

The Tree Congestion of Graphs The Tree Congestion of Graphs Diana Carr August 2, 2005 Abstract Edge congestion can be thought of as the cutwidth of a graph In this paper we embed complete tripartite graphs into trees and spanning trees

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow Graph Theory Connectivity, Coloring, Matching Arjun Suresh 1 1 GATE Overflow GO Classroom, August 2018 Thanks to Subarna/Sukanya Das for wonderful figures Arjun, Suresh (GO) Graph Theory GATE 2019 1 /

More information

On Acyclic Vertex Coloring of Grid like graphs

On Acyclic Vertex Coloring of Grid like graphs On Acyclic Vertex Coloring of Grid like graphs Bharat Joshi and Kishore Kothapalli {bharatj@research., kkishore@}iiit.ac.in Center for Security, Theory and Algorithmic Research International Institute

More information

Efficient Algorithms for the Longest Path Problem

Efficient Algorithms for the Longest Path Problem Efficient Algorithms for the Longest Path Problem Ryuhei UEHARA (JAIST) Yushi UNO (Osaka Prefecture University) The Longest Path Problem Finding a longest (vertex disjoint) path in a given graph Motivation

More information

RADIO LABELING OF SOME LADDER-RELATED GRAPHS

RADIO LABELING OF SOME LADDER-RELATED GRAPHS RADIO LABELING OF SOME LADDER-RELATED GRAPHS ALI AHMAD and RUXANDRA MARINESCU-GHEMECI Communicated by Ioan Tomescu Let d(u, v) denote the distance between two distinct vertices of a connected graph G,

More information

Edge-Bandwidth. Taijiro Bernstein. August 23, 2006

Edge-Bandwidth. Taijiro Bernstein. August 23, 2006 Edge-Bandwidth Taijiro Bernstein August 3, 006 Abstract In this paper we discuss the edge-bandwidth of some families of graphs and characterize graphs by edge-bandwidth. In particular, bounds for m n grids,

More information

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs Problem definition Paths and cycles Complete subgraphs 10. Extremal graph theory 10.1. Definitions Let us examine the following forbidden subgraph problems: At most how many edges are in a graph of order

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

CS256 Applied Theory of Computation

CS256 Applied Theory of Computation CS256 Applied Theory of Computation Parallel Computation II John E Savage Overview Mesh-based architectures Hypercubes Embedding meshes in hypercubes Normal algorithms on hypercubes Summing and broadcasting

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

Sparse Hypercube 3-Spanners

Sparse Hypercube 3-Spanners Sparse Hypercube 3-Spanners W. Duckworth and M. Zito Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia Department of Computer Science, University of

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

GRASP with evolutionary path-relinking for the antibandwidth problem

GRASP with evolutionary path-relinking for the antibandwidth problem GRASP with evolutionary path-relinking for the antibandwidth problem VIII Metaheuristics International Conference (MIC 009) Hamburg, Germany July 3-6, 009 Mauricio G. C. Resende AT&T Labs Research Florham

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Key words. graph algorithms, chromatic number, circular arc graphs, induced cycles

Key words. graph algorithms, chromatic number, circular arc graphs, induced cycles SIAM J. COMPUT. Vol. 0, No. 0, pp. 000 000 c XXXX Society for Industrial and Applied Mathematics REVISITING TUCKER S ALGORITHM TO COLOR CIRCULAR ARC GRAPHS MARIO VALENCIA-PABON Abstract. The circular arc

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Generalized Pebbling Number

Generalized Pebbling Number International Mathematical Forum, 5, 2010, no. 27, 1331-1337 Generalized Pebbling Number A. Lourdusamy Department of Mathematics St. Xavier s College (Autonomous) Palayamkottai - 627 002, India lourdugnanam@hotmail.com

More information

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods The Traveling Salesman Problem on Grids with Forbidden Neighborhoods Anja Fischer Philipp Hungerländer April 0, 06 We introduce the Traveling Salesman Problem with forbidden neighborhoods (TSPFN). This

More information

Diameter (r + 1) IPEC 2013 Sophia Antipolis, France September 06, D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4

Diameter (r + 1) IPEC 2013 Sophia Antipolis, France September 06, D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4 Hardness of r-dominating SET on Graphs of Diameter (r + 1) D Lokshtanov 1, N Misra 2, G Philip 3, M S Ramanujan 4, and S Saurabh 1,4 1 University of Bergen, Bergen, Norway 2 Indian Institute of Science,

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

The Fibonacci hypercube

The Fibonacci hypercube AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 40 (2008), Pages 187 196 The Fibonacci hypercube Fred J. Rispoli Department of Mathematics and Computer Science Dowling College, Oakdale, NY 11769 U.S.A. Steven

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Motion Planning in Certain Lexicographic Product Graphs

Motion Planning in Certain Lexicographic Product Graphs International J.Math. Combin. Vol.1(2018), 146-153 Motion Planning in Certain Lexicographic Product Graphs A. D Akwu and O. Oyewumi (Department of Mathematics, Federal University of Agriculture, Makurdi,

More information

Experiments and Optimal Results for Outerplanar Drawings of Graphs

Experiments and Optimal Results for Outerplanar Drawings of Graphs Experiments and Optimal Results for Outerplanar Drawings of Graphs EPSRC GR/S76694/01 Outerlanar Crossing Numbers(2003-2006) 2006) Hongmei He Loughborough University UK Ondrej Sýkora Loughborough University,

More information

Decreasing the Diameter of Bounded Degree Graphs

Decreasing the Diameter of Bounded Degree Graphs Decreasing the Diameter of Bounded Degree Graphs Noga Alon András Gyárfás Miklós Ruszinkó February, 00 To the memory of Paul Erdős Abstract Let f d (G) denote the minimum number of edges that have to be

More information

arxiv: v1 [math.co] 1 Nov 2017

arxiv: v1 [math.co] 1 Nov 2017 The multiset dimension of graphs Rinovia Simanjuntak a, Tomáš Vetrík b, Presli Bintang Mulia a arxiv:1711.00225v1 [math.co] 1 Nov 2017 Abstract a Combinatorial Mathematics Research Group Institut Teknologi

More information

Component Connectivity of Generalized Petersen Graphs

Component Connectivity of Generalized Petersen Graphs March 11, 01 International Journal of Computer Mathematics FeHa0 11 01 To appear in the International Journal of Computer Mathematics Vol. 00, No. 00, Month 01X, 1 1 Component Connectivity of Generalized

More information

Edge disjoint monochromatic triangles in 2-colored graphs

Edge disjoint monochromatic triangles in 2-colored graphs Discrete Mathematics 31 (001) 135 141 www.elsevier.com/locate/disc Edge disjoint monochromatic triangles in -colored graphs P. Erdős a, R.J. Faudree b; ;1, R.J. Gould c;, M.S. Jacobson d;3, J. Lehel d;

More information

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model New New with Dana Richards George Mason University richards@gmu.edu December 1, 2017 GMU December 1, 2017 1 / 40 New Definitions G(V, E) is an undirected graph. V = {1, 2, 3,..., n}. A pebble at vertex

More information

Improved Bounds for the Crossing Number of the Mesh of Trees

Improved Bounds for the Crossing Number of the Mesh of Trees Improved Bounds for the Crossing Number of the Mesh of Trees ROBERT CIMIKOWSKI Computer Science Department Montana State University Bozeman, Montana 59717-3880, USA email: cimo@cs.montana.edu IMRICH VRT

More information

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs MIT PRIMES Conference Nicholas Guo Mentor: Guangyi Yue May 21, 2016 Nicholas Guo (Mentor: Guangyi Yue) PRIMES Presentation

More information

On the Complexity of Multi-Dimensional Interval Routing Schemes

On the Complexity of Multi-Dimensional Interval Routing Schemes On the Complexity of Multi-Dimensional Interval Routing Schemes Abstract Multi-dimensional interval routing schemes (MIRS) introduced in [4] are an extension of interval routing schemes (IRS). We give

More information

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity.

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. Definition A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. 120202: ESM4A - Numerical Methods 32 f(x) = e x at point c = 0. Taylor

More information

Pebbling on Directed Graphs

Pebbling on Directed Graphs Pebbling on Directed Graphs Gayatri Gunda E-mail: gundagay@notes.udayton.edu Dr. Aparna Higgins E-mail: Aparna.Higgins@notes.udayton.edu University of Dayton Dayton, OH 45469 Submitted January 25 th, 2004

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

A Note on Scheduling Parallel Unit Jobs on Hypercubes

A Note on Scheduling Parallel Unit Jobs on Hypercubes A Note on Scheduling Parallel Unit Jobs on Hypercubes Ondřej Zajíček Abstract We study the problem of scheduling independent unit-time parallel jobs on hypercubes. A parallel job has to be scheduled between

More information

Lecture outline. Graph coloring Examples Applications Algorithms

Lecture outline. Graph coloring Examples Applications Algorithms Lecture outline Graph coloring Examples Applications Algorithms Graph coloring Adjacent nodes must have different colors. How many colors do we need? Graph coloring Neighbors must have different colors

More information

Introduction to. Graph Theory. Second Edition. Douglas B. West. University of Illinois Urbana. ftentice iiilil PRENTICE HALL

Introduction to. Graph Theory. Second Edition. Douglas B. West. University of Illinois Urbana. ftentice iiilil PRENTICE HALL Introduction to Graph Theory Second Edition Douglas B. West University of Illinois Urbana ftentice iiilil PRENTICE HALL Upper Saddle River, NJ 07458 Contents Preface xi Chapter 1 Fundamental Concepts 1

More information

CMPSCI611: The SUBSET-SUM Problem Lecture 18

CMPSCI611: The SUBSET-SUM Problem Lecture 18 CMPSCI611: The SUBSET-SUM Problem Lecture 18 We begin today with the problem we didn t get to at the end of last lecture the SUBSET-SUM problem, which we also saw back in Lecture 8. The input to SUBSET-

More information

On the chromatic number of the AO(2, k, k-1) graphs.

On the chromatic number of the AO(2, k, k-1) graphs. East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 5-2006 On the chromatic number of the AO(2, k, k-1) graphs. Navya Arora East Tennessee

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 561-57 DOI: 10.751/BIMVI1703561Ç Former BULLETIN OF THE

More information

The extendability of matchings in strongly regular graphs

The extendability of matchings in strongly regular graphs The extendability of matchings in strongly regular graphs Sebastian Cioabă Department of Mathematical Sciences University of Delaware Villanova, June 5, 2014 Introduction Matching A set of edges M of a

More information

Exemples of LCP. (b,3) (c,3) (d,4) 38 d

Exemples of LCP. (b,3) (c,3) (d,4) 38 d This layout has been presented by G. Even and S. Even [ 00], and it is based on the notion of Layered Cross Product Def. A layered graph of l+1 layers G=(V 0, V 1,, V l, E) consists of l+1 layers of nodes;

More information

Algorithms for Drawing Media

Algorithms for Drawing Media Algorithms for Drawing Media David Eppstein Computer Science Department School of Information & Computer Science University of California, Irvine eppstein@uci.edu Abstract. We describe algorithms for drawing

More information

GRAPHS: THEORY AND ALGORITHMS

GRAPHS: THEORY AND ALGORITHMS GRAPHS: THEORY AND ALGORITHMS K. THULASIRAMAN M. N. S. SWAMY Concordia University Montreal, Canada A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Brisbane / Toronto /

More information

Graph (1A) Young Won Lim 4/19/18

Graph (1A) Young Won Lim 4/19/18 Graph (1A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

The Parameterized Complexity of Finding Point Sets with Hereditary Properties

The Parameterized Complexity of Finding Point Sets with Hereditary Properties The Parameterized Complexity of Finding Point Sets with Hereditary Properties David Eppstein University of California, Irvine Daniel Lokshtanov University of Bergen University of California, Santa Barbara

More information

Node-Disjoint Paths in Hierarchical Hypercube Networks

Node-Disjoint Paths in Hierarchical Hypercube Networks Node-Disjoint aths in Hierarchical Hypercube Networks Ruei-Yu Wu 1,GerardJ.Chang 2,Gen-HueyChen 1 1 National Taiwan University 2 National Taiwan University Dept. of Computer Science and Information Engineering

More information

CS612 Algorithms for Electronic Design Automation

CS612 Algorithms for Electronic Design Automation CS612 Algorithms for Electronic Design Automation Lecture 8 Network Flow Based Modeling 1 Flow Network Definition Given a directed graph G = (V, E): Each edge (u, v) has capacity c(u,v) 0 Each edge (u,

More information

Some Open Problems in Graph T

Some Open Problems in Graph T Some Open Problems in Graph T February 11, 2004 0-0 Sources Graph Theory Open Problems - Six problems suitable f uate research projects http://dimacs.rutgers.edu/ hochberg/undopen/graphth Douglas West

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Lesson 05. Mid Phase. Collision Detection

Lesson 05. Mid Phase. Collision Detection Lesson 05 Mid Phase Collision Detection Lecture 05 Outline Problem definition and motivations Generic Bounding Volume Hierarchy (BVH) BVH construction, fitting, overlapping Metrics and Tandem traversal

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

Welcome to the course Algorithm Design

Welcome to the course Algorithm Design Welcome to the course Algorithm Design Summer Term 2011 Friedhelm Meyer auf der Heide Lecture 13, 15.7.2011 Friedhelm Meyer auf der Heide 1 Topics - Divide & conquer - Dynamic programming - Greedy Algorithms

More information

Analysis of Optimal Sets of Survivable Paths in Undirected Simple Graph Applicable for Optical Networks

Analysis of Optimal Sets of Survivable Paths in Undirected Simple Graph Applicable for Optical Networks Analysis of Optimal Sets of Survivable Paths in Undirected Simple Graph Applicable for Optical Networks Z. R. Bogdanowicz 1,2 Intelligent Systems and Robotics Laboratory Armament Research, Development

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Graph Theory: Applications and Algorithms

Graph Theory: Applications and Algorithms Graph Theory: Applications and Algorithms CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 21 st February 2012 Outline 1 n-cube 2 Gray Codes 3 Shortest-Path

More information

Diversity Coloring for Distributed Storage in Mobile Networks

Diversity Coloring for Distributed Storage in Mobile Networks Diversity Coloring for Distributed Storage in Mobile Networks Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Abstract: Storing multiple copies of files is crucial for ensuring

More information

A note on the subgraphs of the (2 )-grid

A note on the subgraphs of the (2 )-grid A note on the subgraphs of the (2 )-grid Josep Díaz a,2,1 a Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya Campus Nord, Edifici Ω, c/ Jordi Girona Salgado 1-3,

More information

Studying Graph Connectivity

Studying Graph Connectivity Studying Graph Connectivity Freeman Yufei Huang July 1, 2002 Submitted for CISC-871 Instructor: Dr. Robin Dawes Studying Graph Connectivity Freeman Yufei Huang Submitted July 1, 2002 for CISC-871 In some

More information

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory About the Tutorial This tutorial offers a brief introduction to the fundamentals of graph theory. Written in a reader-friendly style, it covers the types of graphs, their properties, trees, graph traversability,

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

The Game Chromatic Number of Some Classes of Graphs

The Game Chromatic Number of Some Classes of Graphs The Game Chromatic Number of Some Classes of Graphs Casper Joseph Destacamento 1, Andre Dominic Rodriguez 1 and Leonor Aquino-Ruivivar 1,* 1 Mathematics Department, De La Salle University *leonorruivivar@dlsueduph

More information

Multicasting in the Hypercube, Chord and Binomial Graphs

Multicasting in the Hypercube, Chord and Binomial Graphs Multicasting in the Hypercube, Chord and Binomial Graphs Christopher C. Cipriano and Teofilo F. Gonzalez Department of Computer Science University of California, Santa Barbara, CA, 93106 E-mail: {ccc,teo}@cs.ucsb.edu

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements.

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements. Desiderata Reductions Desiderata. Classify problems according to their computational requirements. Frustrating news. Huge number of fundamental problems have defied classification for decades. Desiderata'.

More information

Solutions to Assignment# 4

Solutions to Assignment# 4 Solutions to Assignment# 4 Liana Yepremyan 1 Nov.12: Text p. 651 problem 1 Solution: (a) One example is the following. Consider the instance K = 2 and W = {1, 2, 1, 2}. The greedy algorithm would load

More information

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A MT6 Examination Part Solutions Q (a) (b) (c) F F F E E E G G G G is both Eulerian and Hamiltonian EF is both an Eulerian trail and a Hamiltonian cycle. G is Hamiltonian but not Eulerian and EF is a Hamiltonian

More information

Neighbor Sum Distinguishing Index

Neighbor Sum Distinguishing Index Graphs and Combinatorics (2013) 29:1329 1336 DOI 10.1007/s00373-012-1191-x ORIGINAL PAPER Neighbor Sum Distinguishing Index Evelyne Flandrin Antoni Marczyk Jakub Przybyło Jean-François Saclé Mariusz Woźniak

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information