The Maximum Clique Problem

Size: px
Start display at page:

Download "The Maximum Clique Problem"

Transcription

1 November, 2012

2 Motivation How to put as much left-over stuff as possible in a tasty meal before everything will go off?

3 Motivation Find the largest collection of food where everything goes together! Here, we have the choice:

4 Motivation Find the largest collection of food where everything goes together! Here, we have the choice:

5 Motivation Find the largest collection of food where everything goes together! Here, we have the choice:

6 Motivation Find the largest collection of food where everything goes together! Here, we have the choice:

7 Outline s 4

8 Graph (G): a network of vertices (V(G)) and edges (E(G)). Graph Complement (G): the graph with the same vertex set of G but whose edge set consists of the edges not present in G. Complete Graph: every pair of vertices is connected by an edge. A Clique in an undirected graph G=(V,E) is a subset of the vertex set C V,such that for every two vertices in C, there exists an edge connecting the two.

9

10 Maximum Clique: A Clique of the largest possible size in a given graph. The clique number, ω (G), is the cardinality of the maximum clique. Maximal Clique: A Clique that cannot be extended by including one more adjacent vertex. Independent Set: a subset of the vertices such that no two vertices in the subset are connected by an edge of G. Vertex cover: a subset of the vertices of G which contains at least one of the two endpoints of each edge.

11

12 Maximum Clique Problem Does there exist an integer k such that G contains an clique of cardinality k? What is the clique in G with maximum cardinality? What is the clique number of G?

13 Equivalent Problems Maximum Independent Set Problem in G

14 Equivalent Problems Minimum Vertex Cover Problem in G

15 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound NP-hard A problem is NP-hard if solving it in polynomial time would make it possible to solve all problems in the class of NP problems in polynomial time. All 3 versions of the Maximum Clique problem are known to be NP-hard for general graphs.

16 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound NP : the class of decision problem which can be solved by a non-deterministic polynomial algorithm. P: the class of problems which can be solved by a deterministic polynomial algorithm. NP-hard: the class of problems to which every NP problem reduces. NP-complete (NPC): the class of problems which are NP-hard and belong to NP.

17 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound Method to Solve Maximum Clique Problem Non polynomial-time algorithms. Polynomial-time algorithms providing approximate solutions. Polynomial-time algorithms providing exact solutions to graphs of special classes. Two effective algorithms for dealing with NP-complete Problems: backtracking, branch and bound

18 Bron Kerbosch Algorithm Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound The Algorithm was Designed and Published in 1973 by the Dutch scientists Joep Kerbosch and Coenradd Bron. Bron Kerbosch Algorithm is for Finding the Maximal Cliques in undirected graph. It is known to be one of the most efficient algorithm which uses recursive backtracking to find Cliques is practically proven. The Bron Kerbosch Algorithm uses the vertex in graph and its neighbour with few functions to generate some effective results.

19 Without Pivoting Strategy Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound BronKerbosch(R, P, X ) if {P = X = } Report R as the Maximal Clique for each vertex v in P BronKerbosch(R {v}, P N {v}, X N {v}) P := P\ {v} X := X {v}

20 With Pivoting Strategy Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound BronKerbosch(R, P, X ) if {P = X = } Report R as the Maximal Clique Choose Pivot Vertex u in P X for each vertex v in P BronKerbosch(R {v}, P N {v}, X N {v}) P := P\ {v} X := X {v}

21 Example Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound

22 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound R = X =, P = (1, 2, 3, 4, 5, 6) Choosing the pivot element u as 4. 4 in P\N(v) = (1, 2, 3, 4, 5, 6) \ (1, 2, 3, 5, 6) = 4 in 4 Finds the values of R new, P new, X new P new = P N (v); R new = R v; X new = X N (v) R new = 4; P new = (1, 2, 3, 5, 6) ; X new = BronKerbosch(4,(1,2,3,5,6), ) BronKerbosch((4,1),(2,3), ) BronKerbosch((4,1,2),, ) Report (4,1,2) as one of the Maximal Clique

23 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound BronKerbosch(4,(1,2,3,5,6), ) BronKerbosch((4,3),(1), ) BronKerbosch((4,3,1),, ) Report (4,3,1) as one of the other Maximal Clique. BronKerbosch(4,(1,2,3,5,6), ) BronKerbosch((4,2),(1,5), ) BronKerbosch((4,2,5),, ) Report (4,2,5) as an other Maximal Clique. BronKerbosch(4,(1,2,3,5,6), ) BronKerbosch((4,6),, ) Report (4,6) as the Maximal Clique.

24 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound This backtracking algorithm is a method for finding all the sub sets in an undirected graph G. Given a graph G with V vertices and E edges, G=(V,E) Let us take an integer variable k. This algorithm is used in scientific and engineering applications. This algorithm is a Depth First Search algorithm. The algorithm for finding k-clique in an undirected graph is a NP-complete problem.

25 Example Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound

26 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound

27 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound

28 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound List out all the possibilities in the subgraph and check for each and every edge. Check for a subgraph in which every node is connected to every other node. Check for all possible Cliques in the graphs. Check the size of clique whether it is equal to k or not.

29 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound Any n-vertex graph has at most 3 n/3 Maximal Cliques The worst-case running time of the BronKerbosch algorithm (with a pivot strategy that minimizes the number of recursive calls made at each step) is O(3 n/3 ) This Backtracking algorithm runs in polynomial time if size of k is fixed. If k is varying then it is in exponencial time Running time of the algorithm is O (nk), where k = O(log n)

30 Bron Kerbosch Algorithm Backtracking Algorithm Time Complexity Brand-and-Bound f (x) = n x i min i=1 x i + x j 1, (i, j) E x {0, 1} n f (x) = x T Ax min x {0, 1} n, wherea = A G I

31 Scheduling Coding Theory: Hamming and Johnson Graphs Map Labeling Computer Vision and Pattern Recognition

32 Problem: finding maximum cliques of a graph efficiently Hard task (in terms of memory and runtime) Bron-Kerbosch algorithm is one efficient solution Several applications

33 References 1. D.-Z. Du and P.M.Pardalos Handbook of Combinatorial Optimization. Kluwer Academic Publishers, http : //en.wikipedia.org/wiki/clique - problem.

34 Thank you for your attention!

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

P = NP; P NP. Intuition of the reduction idea:

P = NP; P NP. Intuition of the reduction idea: 1 Polynomial Time Reducibility The question of whether P = NP is one of the greatest unsolved problems in the theoretical computer science. Two possibilities of relationship between P and N P P = NP; P

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University Graphs: Introduction Ali Shokoufandeh, Department of Computer Science, Drexel University Overview of this talk Introduction: Notations and Definitions Graphs and Modeling Algorithmic Graph Theory and Combinatorial

More information

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not.

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Decision Problems Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Definition: The class of problems that can be solved by polynomial-time

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Comparing the Best Maximum Clique Finding Algorithms, Which are Using Heuristic Vertex Colouring

Comparing the Best Maximum Clique Finding Algorithms, Which are Using Heuristic Vertex Colouring Comparing the Best Maximum Clique Finding Algorithms, Which are Using Heuristic Vertex Colouring DENISS KUMLANDER Department of Informatics Tallinn University of Technology Raja St.15, 12617 Tallinn ESTONIA

More information

Introduction to Algorithms. Lecture 24. Prof. Patrick Jaillet

Introduction to Algorithms. Lecture 24. Prof. Patrick Jaillet 6.006- Introduction to Algorithms Lecture 24 Prof. Patrick Jaillet Outline Decision vs optimization problems P, NP, co-np Reductions between problems NP-complete problems Beyond NP-completeness Readings

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

Improving network robustness

Improving network robustness Improving network robustness using distance-based graph measures Sander Jurgens November 10, 2014 dr. K.A. Buchin Eindhoven University of Technology Department of Math and Computer Science dr. D.T.H. Worm

More information

Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs p.1/30

Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs p.1/30 Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs Sergiy Butenko Department of Industrial Engineering Texas A&M University College Station, TX 77843

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

REDUCING GRAPH COLORING TO CLIQUE SEARCH

REDUCING GRAPH COLORING TO CLIQUE SEARCH Asia Pacific Journal of Mathematics, Vol. 3, No. 1 (2016), 64-85 ISSN 2357-2205 REDUCING GRAPH COLORING TO CLIQUE SEARCH SÁNDOR SZABÓ AND BOGDÁN ZAVÁLNIJ Institute of Mathematics and Informatics, University

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Some graph theory applications. communications networks

Some graph theory applications. communications networks Some graph theory applications to communications networks Keith Briggs Keith.Briggs@bt.com http://keithbriggs.info Computational Systems Biology Group, Sheffield - 2006 Nov 02 1100 graph problems Sheffield

More information

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Thorsten J. Ottosen Department of Computer Science, Aalborg University, Denmark nesotto@cs.aau.dk Jiří Vomlel Institute of Information Theory and

More information

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Wei Wang joint with Zishen Yang, Xianliang Liu School of Mathematics and Statistics, Xi an Jiaotong University Dec 20, 2016

More information

Graph Theory and Optimization Approximation Algorithms

Graph Theory and Optimization Approximation Algorithms Graph Theory and Optimization Approximation Algorithms Nicolas Nisse Université Côte d Azur, Inria, CNRS, I3S, France October 2018 Thank you to F. Giroire for some of the slides N. Nisse Graph Theory and

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

Approximation Basics

Approximation Basics Milestones, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Spring 2015 Spring, 2015 Xiaofeng Gao 1/53 Outline History NP Optimization

More information

Parallelizing Maximal Clique Enumeration in Haskell

Parallelizing Maximal Clique Enumeration in Haskell Parallelizing Maximal Clique Enumeration in Haskell Andres Löh (joint work with Toni Cebrián) Well-Typed LLP 7 February 2012 Background: The Parallel GHC Project The Parallel GHC Project Currently the

More information

Deleting edges to save cows - an application of treewidth

Deleting edges to save cows - an application of treewidth Deleting edges to save cows - an application of treewidth UCLA, 14th February 2017 Kitty Meeks Joint work with Jessica Enright (University of Stirling) 2/13 The animal contact network 3/13 The animal contact

More information

Using Constraint Programming to Solve the Maximum Clique Problem

Using Constraint Programming to Solve the Maximum Clique Problem Using Constraint Programming to Solve the Maximum Clique Problem Jean-Charles Régin ILOG Sophia Antipolis Les Taissounières HB, 1681 route des Dolines, 06560 Valbonne, France regin@ilog.fr Abstract. This

More information

Lecture 3, Review of Algorithms. What is Algorithm?

Lecture 3, Review of Algorithms. What is Algorithm? BINF 336, Introduction to Computational Biology Lecture 3, Review of Algorithms Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Algorithm? Definition A process

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

NP-Complete Problems

NP-Complete Problems 1 / 34 NP-Complete Problems CS 584: Algorithm Design and Analysis Daniel Leblanc 1 1 Senior Adjunct Instructor Portland State University Maseeh College of Engineering and Computer Science Winter 2018 2

More information

Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs

Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs Giuseppe F. Italiano Università di Roma Tor Vergata Joint work with Yahav Nussbaum, Piotr Sankowski and Christian Wulff-Nilsen

More information

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions Dr. Amotz Bar-Noy s Compendium of Algorithms Problems Problems, Hints, and Solutions Chapter 1 Searching and Sorting Problems 1 1.1 Array with One Missing 1.1.1 Problem Let A = A[1],..., A[n] be an array

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19:

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19: CS270 Combinatorial Algorithms & Data Structures Spring 2003 Lecture 19: 4.1.03 Lecturer: Satish Rao Scribes: Kevin Lacker and Bill Kramer Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Combinatorial Algorithms. Unate Covering Binate Covering Graph Coloring Maximum Clique

Combinatorial Algorithms. Unate Covering Binate Covering Graph Coloring Maximum Clique Combinatorial Algorithms Unate Covering Binate Covering Graph Coloring Maximum Clique Example As an Example, let s consider the formula: F(x,y,z) = x y z + x yz + x yz + xyz + xy z The complete sum of

More information

Algorithms for the Bin Packing Problem with Conflicts

Algorithms for the Bin Packing Problem with Conflicts Algorithms for the Bin Packing Problem with Conflicts Albert E. Fernandes Muritiba *, Manuel Iori, Enrico Malaguti*, Paolo Toth* *Dipartimento di Elettronica, Informatica e Sistemistica, Università degli

More information

Network Based Models For Analysis of SNPs Yalta Opt

Network Based Models For Analysis of SNPs Yalta Opt Outline Network Based Models For Analysis of Yalta Optimization Conference 2010 Network Science Zeynep Ertem*, Sergiy Butenko*, Clare Gill** *Department of Industrial and Systems Engineering, **Department

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

Antibandwidth of Hamming graphs

Antibandwidth of Hamming graphs Antibandwidth of Hamming graphs Štefan Dobrev Rastislav Královič Dana Pardubská Ľubomír Török Imrich Vrťo Workshop on Discrete Mathematics Vienna, November 19-22, 2008 Antibandwidth problem Consists of

More information

P and NP (Millenium problem)

P and NP (Millenium problem) CMPS 2200 Fall 2017 P and NP (Millenium problem) Carola Wenk Slides courtesy of Piotr Indyk with additions by Carola Wenk CMPS 2200 Introduction to Algorithms 1 We have seen so far Algorithms for various

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Ton Kloks and Yue-Li Wang. Advances in Graph Algorithms. October 10, y X z

Ton Kloks and Yue-Li Wang. Advances in Graph Algorithms. October 10, y X z Ton Kloks and Yue-Li Wang Advances in Graph Algorithms October 10, 2013 x Z Y < y X z

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 7 Date of this version: January 28, 2019 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Maximizing edge-ratio is NP-complete

Maximizing edge-ratio is NP-complete Maximizing edge-ratio is NP-complete Steven D Noble, Pierre Hansen and Nenad Mladenović February 7, 01 Abstract Given a graph G and a bipartition of its vertices, the edge-ratio is the minimum for both

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública Setembro de 014 Approximation algorithms for simple maxcut of split graphs Rubens Sucupira 1 Luerbio Faria 1 Sulamita Klein 1- IME/UERJ UERJ, Rio de JaneiroRJ, Brasil rasucupira@oi.com.br, luerbio@cos.ufrj.br

More information

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation II - 1 Outlines What is Graph cuts Graph-based clustering

More information

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about and give two simple examples of approximation algorithms 1 Overview

More information

On the Max Coloring Problem

On the Max Coloring Problem On the Max Coloring Problem Leah Epstein Asaf Levin May 22, 2010 Abstract We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a graph G = (V, E) and positive

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

GRAPH THEORY and APPLICATIONS. Factorization Domination Indepence Clique

GRAPH THEORY and APPLICATIONS. Factorization Domination Indepence Clique GRAPH THEORY and APPLICATIONS Factorization Domination Indepence Clique Factorization Factor A factor of a graph G is a spanning subgraph of G, not necessarily connected. G is the sum of factors G i, if:

More information

Exact Algorithms for NP-hard problems

Exact Algorithms for NP-hard problems 24 mai 2012 1 Why do we need exponential algorithms? 2 3 Why the P-border? 1 Practical reasons (Jack Edmonds, 1965) For practical purposes the difference between algebraic and exponential order is more

More information

Xiao, M. (Mingyu); Lin, W. (Weibo); Dai, Y. (Yuanshun); Zeng, Y. (Yifeng)

Xiao, M. (Mingyu); Lin, W. (Weibo); Dai, Y. (Yuanshun); Zeng, Y. (Yifeng) TeesRep - Teesside's Research Repository A Fast Algorithm to Compute Maximum k-plexes in Social Network Analysis Item type Authors Citation Eprint Version Publisher Additional Link Rights Meetings and

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Maximum Clique Conformance Measure for Graph Coloring Algorithms

Maximum Clique Conformance Measure for Graph Coloring Algorithms Maximum Clique Conformance Measure for Graph Algorithms Abdulmutaleb Alzubi Jadarah University Dept. of Computer Science Irbid, Jordan alzoubi3@yahoo.com Mohammad Al-Haj Hassan Zarqa University Dept. of

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

On the Complexity of Broadcast Scheduling. Problem

On the Complexity of Broadcast Scheduling. Problem On the Complexity of Broadcast Scheduling Problem Sergiy Butenko, Clayton Commander and Panos Pardalos Abstract In this paper, a broadcast scheduling problem (BSP) in a time division multiple access (TDMA)

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Chapter 10 Part 1: Reduction

Chapter 10 Part 1: Reduction //06 Polynomial-Time Reduction Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Chapter 0 Part : Reduction Reduction. Problem X

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

SEARCH ALGORITHMS NOTES FOR THE ADVANCED ALGORITHM CLASS

SEARCH ALGORITHMS NOTES FOR THE ADVANCED ALGORITHM CLASS SEARCH ALGORITHMS NOTES FOR THE ADVANCED ALGORITHM CLASS GIUSEPPE PERSIANO Contents 1. Model 1 2. Exhaustive Search 2 3. Backtrack 3 3.1. Backtrack for Sudoku 4 3.2. Backtrack for Vertex Cover 4 4. Branch

More information

Conflict Graphs for Combinatorial Optimization Problems

Conflict Graphs for Combinatorial Optimization Problems Conflict Graphs for Combinatorial Optimization Problems Ulrich Pferschy joint work with Andreas Darmann and Joachim Schauer University of Graz, Austria Introduction Combinatorial Optimization Problem CO

More information

Matchings and Covers in bipartite graphs

Matchings and Covers in bipartite graphs Matchings and Covers in bipartite graphs A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.

More information

Randomized Graph Algorithms

Randomized Graph Algorithms Randomized Graph Algorithms Vasileios-Orestis Papadigenopoulos School of Electrical and Computer Engineering - NTUA papadigenopoulos orestis@yahoocom July 22, 2014 Vasileios-Orestis Papadigenopoulos (NTUA)

More information

Maximum Clique Problem. Team Bushido bit.ly/parallel-computing-fall-2014

Maximum Clique Problem. Team Bushido bit.ly/parallel-computing-fall-2014 Maximum Clique Problem Team Bushido bit.ly/parallel-computing-fall-2014 Agenda Problem summary Research Paper 1 Research Paper 2 Research Paper 3 Software Design Demo of Sequential Program Summary Of the

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401 Lecture 21 Prof. Piotr Indyk P vs NP (interconnectedness of all things) A whole course by itself We ll do just two lectures More in 6.045, 6.840J, etc. Introduction

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Welcome to the course Algorithm Design

Welcome to the course Algorithm Design Welcome to the course Algorithm Design Summer Term 2011 Friedhelm Meyer auf der Heide Lecture 13, 15.7.2011 Friedhelm Meyer auf der Heide 1 Topics - Divide & conquer - Dynamic programming - Greedy Algorithms

More information

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM NAME: This exam is open: - books - notes and closed: - neighbors - calculators ALGORITHMS QUALIFYING EXAM The upper bound on exam time is 3 hours. Please put all your work on the exam paper. (Partial credit

More information

The Maximum Common Subgraph Problem: Faster Solutions via Vertex Cover

The Maximum Common Subgraph Problem: Faster Solutions via Vertex Cover The Maximum Common Subgraph Problem: Faster Solutions via Vertex Cover Faisal N. Abu-Khzam Division of Computer Science and Mathematics Lebanese American University Beirut, Lebanon faisal.abukhzam@lau.edu.lb

More information

Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics

Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics Interval Graphs Joyce C. Yang Nicholas Pippenger, Advisor Arthur T. Benjamin, Reader Department of Mathematics May, 2016 Copyright c 2016 Joyce C. Yang. The author grants Harvey Mudd College and the Claremont

More information

Assignment No 2 (Group B)

Assignment No 2 (Group B) Assignment No 2 (Group B) 1 Problem Statement : Concurrent Implementation of Travelling Salesman Problem. 2 Objective : To develop problem solving abilities using Mathematical Modeling. To apply algorithmic

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Approximability Results for the p-center Problem

Approximability Results for the p-center Problem Approximability Results for the p-center Problem Stefan Buettcher Course Project Algorithm Design and Analysis Prof. Timothy Chan University of Waterloo, Spring 2004 The p-center

More information

v 2 v 3 v 1 v 0 K 3 K 1

v 2 v 3 v 1 v 0 K 3 K 1 It is Hard to Know when Greedy is Good for Finding Independent Sets Hans L. Bodlaender, Dimitrios M. Thilikos, Koichi Yamazaki Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508

More information

Solution of Maximum Clique Problem. by Using Branch and Bound Method

Solution of Maximum Clique Problem. by Using Branch and Bound Method Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 81-90 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.310601 Solution of Maximum Clique Problem by Using Branch and Bound Method Mochamad

More information

Outline Purpose How to analyze algorithms Examples. Algorithm Analysis. Seth Long. January 15, 2010

Outline Purpose How to analyze algorithms Examples. Algorithm Analysis. Seth Long. January 15, 2010 January 15, 2010 Intuitive Definitions Common Runtimes Final Notes Compare space and time requirements for algorithms Understand how an algorithm scales with larger datasets Intuitive Definitions Outline

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering

Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering Sebastian Wernicke* Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Fed. Rep. of Germany

More information

!!" '!" Fall 2003 ICS 275A - Constraint Networks 2

!! '! Fall 2003 ICS 275A - Constraint Networks 2 chapter 10 1 !"!!" # $ %&!" '!" Fall 2003 ICS 275A - Constraint Networks 2 ( Complexity : O(exp(n)) Fall 2003 ICS 275A - Constraint Networks 3 * bucket i = O(exp( w )) DR time and space : O( n exp( w *

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

Grundy chromatic number of the complement of bipartite graphs

Grundy chromatic number of the complement of bipartite graphs Grundy chromatic number of the complement of bipartite graphs Manouchehr Zaker Institute for Advanced Studies in Basic Sciences P. O. BOX 45195-159 Zanjan, Iran E-mail: mzaker@iasbs.ac.ir Abstract A Grundy

More information

NP-Complete Problems

NP-Complete Problems NP-omplete Problems P and NP Polynomial time reductions Satisfiability Problem, lique Problem, Vertex over, and ominating Set 10/19/2009 SE 5311 FLL 2009 KUMR 1 Polynomial lgorithms Problems encountered

More information

motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs { }

motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs { } motifs In the context of networks, the term motif may refer to di erent notions. Subgraph motifs Coloured motifs G M { } 2 subgraph motifs 3 motifs Find interesting patterns in a network. 4 motifs Find

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Learning decomposable models with a bounded clique size

Learning decomposable models with a bounded clique size Learning decomposable models with a bounded clique size Achievements 2014-2016 Aritz Pérez Basque Center for Applied Mathematics Bilbao, March, 2016 Outline 1 Motivation and background 2 The problem 3

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

Polynomial-Time Approximation Algorithms

Polynomial-Time Approximation Algorithms 6.854 Advanced Algorithms Lecture 20: 10/27/2006 Lecturer: David Karger Scribes: Matt Doherty, John Nham, Sergiy Sidenko, David Schultz Polynomial-Time Approximation Algorithms NP-hard problems are a vast

More information