Guard Placement For Wireless Localization

Size: px
Start display at page:

Download "Guard Placement For Wireless Localization"

Transcription

1 Guard Placement For Wireless Localization David Eppstein Michael T. Goodrich Nodari Sitchinava Computer Science Dept., UC Irvine Guard Placement For Wireless Localization p. 1/1

2 Motivating example: Cyber-Café Supply wireless internet to paying customers inside Prevent access to non-paying customers outside But how to tell which customers are which? Guard Placement For Wireless Localization p. 2/1

3 Proposed Solution Use multiple directional transmitters Customers in range of both transmitters are inside Guard Placement For Wireless Localization p. 3/1

4 Sculpture Garden Problem Sculpture Garden Problem the problem of placing angle guards to define a given polygon d a b c Guard Placement For Wireless Localization p. 4/1

5 Sculpture Garden Problem Sculpture Garden Problem the problem of placing angle guards to define a given polygon d a a b d b c Guard Placement For Wireless Localization p. 4/1

6 Sculpture Garden Problem Sculpture Garden Problem the problem of placing angle guards to define a given polygon d a c d b c Guard Placement For Wireless Localization p. 4/1

7 Sculpture Garden Problem Sculpture Garden Problem the problem of placing angle guards to define a given polygon d a a b d c d b c F = abd + cd = (ab + c)d Guard Placement For Wireless Localization p. 4/1

8 Natural Angle Guards Natural angle guards are placed at vertices of the polygon with angle of vertex = angle of guard Non-natural guards: Guard Placement For Wireless Localization p. 5/1

9 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

10 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

11 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

12 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

13 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

14 Natural Guards Aren t Enough Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement. Proof. Guard Placement For Wireless Localization p. 6/1

15 Quadrilaterals Theorem. Any quadrilateral can be guarded with 2 natural angle guards. Guard Placement For Wireless Localization p. 7/1

16 Pentagons Theorem. Any pentagon can be guarded with 3 angle guards. C B B D C D A E F A E B C C D B D A E A E Guard Placement For Wireless Localization p. 8/1

17 Hexagons Theorem. Any hexagon can be guarded with 4 angle guards. C B A F D E Guard Placement For Wireless Localization p. 9/1

18 General Upper Bound Theorem. n + 2(h 1) guards are sufficient to define any n-vertex polygon with h holes. Proof. Triangulate into n + 2(h 1) triangles Partition triangulation into quadrilaterals, pentagons, and hexagons In each piece, # guards = # triangles Definition is concise: each region is defined by O(1) guards Guard Placement For Wireless Localization p. 10/1

19 Lower Bounds Theorem. At least n 2 guards are required to solve the SGP for any polygon with no two edges lying on the same line. Theorem. n 2 guards are always sufficient to solve SGP for any convex polygon. Guard Placement For Wireless Localization p. 11/1

20 Lower Bounds Theorem. Any n-sided polygon requires Ω( n) guards. Theorem. There exist n-sided simple polygons that can be guarded concisely by O( n) guards. Guard Placement For Wireless Localization p. 12/1

21 Orthogonal Polygons Definition. xy-monotone polygon is an orthogonal polygon which is monotone with respect to the x = y line. extreme vertex top edge left edge right edge bottom edge extreme vertex Guard Placement For Wireless Localization p. 13/1

22 Orthogonal Polygons n Theorem. 2 natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge. Proof. By induction on unguarded reflex vertices. extreme vertex Base Case top edge left edge right edge bottom edge extreme vertex Guard Placement For Wireless Localization p. 14/1

23 Orthogonal Polygons n Theorem. 2 natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge. Proof. By induction on unguarded reflex vertices. Inductive Hypothesis v P P v v p v p q q Guard Placement For Wireless Localization p. 14/1

24 Minimizing Number of Guards Open Problem: How hard is it to find the minimum number of guards for a particular polygon? Theorem (APPROXIMATION). For any polygon P, we can find a collection of guards for P, using a number of guards that is within a factor of two of optimal. Proof. Place an edge guard on the line bounding each edge of P Use a Peterson-style constructive-solid-geometry formula In optimal solution, each line must be guarded and each guard can cover at most two lines so optimal # guards is at least half the guards used Guard Placement For Wireless Localization p. 15/1

25 Summary Sometimes required Always Sufficient Arbitrary Ω( n) n + 2(h 1) General position n 2 n + 2(h 1) n n Orthogonal 2 2 general position Convex n 2 n 2 Obvious open question: close factor-of-two gap for non-orthogonal general position Guard Placement For Wireless Localization p. 16/1

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =?

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? 36 74 0 78 0 154 o 44 48 54 o y x 154 o 78 0 12 74 0 9 1. 8 ft 2. 21m 3. 21 ft 4. 30cm 5. 6mm 6. 16 in 7. yes 9 = 7

More information

The Art Gallery Problem

The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery. Computational Geometry [csci 3250] The Art Gallery Problem Laura Toma Bowdoin

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College The Art Gallery Problem The Art Gallery Problem Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the

More information

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle.

Lesson Plan #39. 2) Students will be able to find the sum of the measures of the exterior angles of a triangle. Lesson Plan #39 Class: Geometry Date: Tuesday December 11 th, 2018 Topic: Sum of the measures of the interior angles of a polygon Objectives: Aim: What is the sum of the measures of the interior angles

More information

Happy Endings for Flip Graphs. David Eppstein Univ. of California, Irvine Computer Science Department

Happy Endings for Flip Graphs. David Eppstein Univ. of California, Irvine Computer Science Department Happy Endings for Flip Graphs David Eppstein Univ. of California, Irvine Computer Science Department Rotation in binary trees Rearrange links in and out of two adjacent nodes while preserving in-order

More information

Three-Dimensional Shapes

Three-Dimensional Shapes Lesson 11.1 Three-Dimensional Shapes Three-dimensional objects come in different shapes. sphere cone cylinder rectangular prism cube Circle the objects that match the shape name. 1. rectangular prism 2.

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon into triangles). Computational Geometry [csci 3250] Polygon Triangulation Laura Toma

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon

More information

Polygon decomposition. Motivation: Art gallery problem

Polygon decomposition. Motivation: Art gallery problem CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Convex decomposition

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Review Interior Angle Sum New: Exterior Angle Sum

Review Interior Angle Sum New: Exterior Angle Sum Review Interior Angle Sum New: Exterior Angle Sum QUIZ: Prove that the diagonal connecting the vertex angles of a kite cut the kite into two congruent triangles. 1 Interior Angle Sum Formula: Some Problems

More information

MISCELLANEOUS SHAPES

MISCELLANEOUS SHAPES MISCELLANEOUS SHAPES 4.1. INTRODUCTION Five generic shapes of polygons have been usefully distinguished in the literature: convex, orthogonal, star, spiral, and monotone. 1 Convex polygons obviously do

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general)

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general) Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry 1.1 Identify Points, Lines, and Planes Chapter 1: Essentials of Geometry Point: Line: Collinear points: Coplanar points: Segment: Ray: Opposite rays: Example 1: Use the diagram at the right to answer the

More information

7) Are HD and HA the same line?

7) Are HD and HA the same line? Review for Exam 2 Math 123 SHORT ANSWER. You must show all work to receive full credit. Refer to the figure to classify the statement as true or false. 7) Are HD and HA the same line? Yes 8) What is the

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

Robot 4. Robot 2 Robot 3. Try measuring the angles on the following pages using a protractor or using the Geometer s Sketchpad animation found at

Robot 4. Robot 2 Robot 3. Try measuring the angles on the following pages using a protractor or using the Geometer s Sketchpad animation found at Sec 2.9 Geometry Polygon Angles Name: The Asimov Museum has contracted with a company that provides Robotic Security Squads to guard the exhibits during the hours the museum is closed. The robots are designed

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

Algorithms. Daniel G. Aliaga. Computer Science Department Purdue University

Algorithms. Daniel G. Aliaga. Computer Science Department Purdue University Art Gallery Theorems and Algorithms Daniel G. Aliaga Computer Science Department Purdue University Art Gallery Problem: determine the minimum number of guards sufficient to cover the interior of an n-wall

More information

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles.

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles. Geometry Practice Name 1. Angles located next to one another sharing a common side are called angles. 2. Planes that meet to form right angles are called planes. 3. Lines that cross are called lines. 4.

More information

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a GM1.1 Answers 1 a b 2 Shape Name Regular Irregular Convex Concave A Decagon B Octagon C Pentagon D Quadrilateral E Heptagon F Hexagon G Quadrilateral H Triangle I Triangle J Hexagon Original Material Cambridge

More information

Some Open Problems in Graph Theory and Computational Geometry

Some Open Problems in Graph Theory and Computational Geometry Some Open Problems in Graph Theory and Computational Geometry David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science ICS 269, January 25, 2002 Two Models of Algorithms Research

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Recall: Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Recall: Planar Graphs The drawing

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

2.4 Angle Properties in Polygons.notebook. October 27, 2013 ENTRANCE SLIP

2.4 Angle Properties in Polygons.notebook. October 27, 2013 ENTRANCE SLIP ENTRANCE SLIP If you are given one interior angle and one exterior angle of a triangle, can you always determine the other interior angles of the triangle? Explain, using diagrams. 1 2.4 Angle Properties

More information

Week 2 Polygon Triangulation

Week 2 Polygon Triangulation Week 2 Polygon Triangulation What is a polygon? Last week A polygonal chain is a connected series of line segments A closed polygonal chain is a polygonal chain, such that there is also a line segment

More information

Any questions about the material so far? About the exercises?

Any questions about the material so far? About the exercises? Any questions about the material so far? About the exercises? Here is a question for you. In the diagram on the board, DE is parallel to AC, DB = 4, AB = 9 and BE = 8. What is the length EC? Polygons Definitions:

More information

Week 3 Polygon Triangulation

Week 3 Polygon Triangulation 1 Week 3 Polygon Triangulation 2 Polygon A polygon is the region of a plane bounded by a fnite collection of line segments forming a simple closed curve. The intersection of adjacent segments is the shared

More information

Polygon Partitioning. Lecture03

Polygon Partitioning. Lecture03 1 Polygon Partitioning Lecture03 2 History of Triangulation Algorithms 3 Outline Monotone polygon Triangulation of monotone polygon Trapezoidal decomposition Decomposition in monotone mountain Convex decomposition

More information

Mgr. ubomíra Tomková GEOMETRY

Mgr. ubomíra Tomková GEOMETRY GEOMETRY NAMING ANGLES: any angle less than 90º is an acute angle any angle equal to 90º is a right angle any angle between 90º and 80º is an obtuse angle any angle between 80º and 60º is a reflex angle

More information

Art Gallery Theorems and Algorithms

Art Gallery Theorems and Algorithms Art Gallery Art Gallery Theorems and Algorithms Daniel G. Aliaga Computer Science Department Purdue University Problem: determine the minimum number of guards sufficient to cover the interior of an n-wall

More information

6-1 Properties and Attributes of Polygons

6-1 Properties and Attributes of Polygons 6-1 Properties and Attributes of Polygons Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up 1. A? is a three-sided polygon. triangle 2. A? is a four-sided polygon. quadrilateral Evaluate each expression

More information

AMS 345/CSE 355 Computational Geometry

AMS 345/CSE 355 Computational Geometry AMS 345/CSE 355 Computational Geometry Lecture: Polygons, Guarding Joe Mitchell Do You Like Puzzles? Come to the new Stony Brook Puzzle Society Meets: Friday 1:05-2:30 pm at CSE 2120 Organizer: Pramod

More information

Geometry Unit 2 Test , 3.8,

Geometry Unit 2 Test , 3.8, Name: Class: Date: ID: A Geometry Unit 2 Test - 3.1-3.5, 3.8, 9.1-9.3 Short Answer - You are allowed to use your notes and calculator. No cell phones.good luck! 1. Line r is parallel to line t. Find m

More information

Polygon Triangulation. (slides partially by Daniel Vlasic )

Polygon Triangulation. (slides partially by Daniel Vlasic ) Polygon Triangulation (slides partially by Daniel Vlasic ) Triangulation: Definition Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals

More information

14. How many sides does a regular polygon have, if the measure of an interior angle is 60?

14. How many sides does a regular polygon have, if the measure of an interior angle is 60? State whether the figure is a polygon; if it is a polygon, state whether the polygon is convex or concave. HINT: No curves, no gaps, and no overlaps! 1. 2. 3. 4. Find the indicated measures of the polygon.

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Polygon Angle-Sum Theorem:

Polygon Angle-Sum Theorem: Name Must pass Mastery Check by: [PACKET 5.1: POLYGON -SUM THEOREM] 1 Write your questions here! We all know that the sum of the angles of a triangle equal 180. What about a quadrilateral? A pentagon?

More information

arxiv: v1 [math.co] 20 Aug 2012

arxiv: v1 [math.co] 20 Aug 2012 ENUMERATING TRIANGULATIONS BY PARALLEL DIAGONALS Alon Regev Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois regev@math.niu.edu arxiv:108.91v1 [math.co] 0 Aug 01 1 Introduction

More information

Convex polygon - a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

Convex polygon - a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon. Chapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

More information

Lesson 99. Three-Dimensional Shapes. sphere cone cylinder. Circle the objects that match the shape name.

Lesson 99. Three-Dimensional Shapes. sphere cone cylinder. Circle the objects that match the shape name. Three-Dimensional Shapes Lesson 99 COMMON CORE STANDARD CC.2.G.1 Lesson Objective: Identify threedimensional shapes. Three-dimensional objects come in different shapes. sphere cone cylinder rectangular

More information

The Art Gallery Problem

The Art Gallery Problem The Art Gallery Problem Connor Bohlken Nebraska Wesleyan University cbohlken@nebrwesleyan.edu May 11, 2016 Abstract Given a polygonal art gallery of n vertices, how many security guards are necessary to

More information

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence.

Contents. Lines, angles and polygons: Parallel lines and angles. Triangles. Quadrilaterals. Angles in polygons. Congruence. Colegio Herma. Maths Bilingual Departament Isabel Martos Martínez. 2015 Contents Lines, angles and polygons: Parallel lines and angles Triangles Quadrilaterals Angles in polygons Congruence Similarity

More information

Midpoint and Distance Formulas

Midpoint and Distance Formulas CP1 Math Unit 5: Coordinate Geometry: Day Name Midpoint Formula: Midpoint and Distance Formulas The midpoint of the line segment between any two points (x!, y! ) to (x!, y! ) is given by: In your groups,

More information

Chapter 10 Polygons and Area

Chapter 10 Polygons and Area Geometry Concepts Chapter 10 Polygons and Area Name polygons according to sides and angles Find measures of interior angles Find measures of exterior angles Estimate and find areas of polygons Estimate

More information

9.5 Classifying Polygons

9.5 Classifying Polygons www.ck12.org Chapter 9. Geometric Figures 9.5 Classifying Polygons Introduction The Sculpture Courtesy of Martin Fuchs Marc, Isaac and Isabelle continue to work on their design for the skatepark. Isabelle

More information

Class 4 Geometry. Answer the questions. For more such worksheets visit (1) The given figure has line segments.

Class 4 Geometry. Answer the questions. For more such worksheets visit   (1) The given figure has line segments. ID : in-4-geometry [1] Class 4 Geometry For more such worksheets visit www.edugain.com Answer the questions (1) The given figure has line segments. (2) How many curved lines can be found in the given figure?

More information

Grade 8 - geometry investigation - Rene Rix *

Grade 8 - geometry investigation - Rene Rix * OpenStax-CNX module: m35699 1 Grade 8 - geometry investigation - Rene Rix * Pinelands High School This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 An

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation Definition Simple Polygons 1. A polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve. 2. Simple closed curve means a certain

More information

Answer Key. 1.1 Basic Geometric Definitions. Chapter 1 Basics of Geometry. CK-12 Geometry Concepts 1

Answer Key. 1.1 Basic Geometric Definitions. Chapter 1 Basics of Geometry. CK-12 Geometry Concepts 1 1.1 Basic Geometric Definitions 1. WX, XW, WY, YW, XY, YX and line m. 2. Plane V, Plane RST, Plane RTS, Plane STR, Plane SRT, Plane TSR, and Plane TRS. 3. 4. A Circle 5. PQ intersects RS at point Q 6.

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Line Arrangements. Applications

Line Arrangements. Applications Computational Geometry Chapter 9 Line Arrangements 1 Line Arrangements Applications On the Agenda 2 1 Complexity of a Line Arrangement Given a set L of n lines in the plane, their arrangement A(L) is the

More information

Art Gallery, Triangulation, and Voronoi Regions

Art Gallery, Triangulation, and Voronoi Regions Art Gallery, Triangulation, and Voronoi Regions CS535 Fall 2016 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on Profs. Shmuel Wimer and Andy Mirzaian Topics Triangulation

More information

Polygon Triangulation. (slides partially by Daniel Vlasic )

Polygon Triangulation. (slides partially by Daniel Vlasic ) Polygon Triangulation (slides partially by Daniel Vlasic ) Triangulation: Definition Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals

More information

MOBILE GUARDS 3.1. INTRODUCTION

MOBILE GUARDS 3.1. INTRODUCTION MOBILE GUARDS 3.1. INTRODUCTION In this chapter we explore an interesting variant of the art gallery problem suggested by Toussaint. Rather than modify the shape of the polygons as in the previous chapter,

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Explore 2 Exploring Interior Angles in Polygons

Explore 2 Exploring Interior Angles in Polygons Explore 2 Exploring Interior Angles in Polygons To determine the sum of the interior angles for any polygon, you can use what you know about the Triangle Sum Theorem by considering how many triangles there

More information

Main Idea: classify polygons and determine which polygons can form a tessellation.

Main Idea: classify polygons and determine which polygons can form a tessellation. 10 8: Polygons and Tesselations Main Idea: classify polygons and determine which polygons can form a tessellation. Vocabulary: polygon A simple closed figure in a plane formed by three or more line segments

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

GEOMETRY COORDINATE GEOMETRY Proofs

GEOMETRY COORDINATE GEOMETRY Proofs GEOMETRY COORDINATE GEOMETRY Proofs Name Period 1 Coordinate Proof Help Page Formulas Slope: Distance: To show segments are congruent: Use the distance formula to find the length of the sides and show

More information

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations A pattern has translation symmetry if it can be translated along a vector so that the image coincides with the preimage. A frieze pattern is a pattern that has translation symmetry along a line. Both of

More information

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast 4 Mystery Shape 5 Compare & Contrast 1. Draw and label a shape that has one more side than a triangle. Draw it. 2. Draw and label a shape that has three more sides than a triangle. 3. Draw and label a

More information

About Finish Line Mathematics 5

About Finish Line Mathematics 5 Table of COntents About Finish Line Mathematics 5 Unit 1: Big Ideas from Grade 1 7 Lesson 1 1.NBT.2.a c Understanding Tens and Ones [connects to 2.NBT.1.a, b] 8 Lesson 2 1.OA.6 Strategies to Add and Subtract

More information

Circles and Polygons Long-Term Memory Review Review 1 (Note: Figures are not drawn to scale.)

Circles and Polygons Long-Term Memory Review Review 1 (Note: Figures are not drawn to scale.) Review 1 (Note: Figures are not drawn to scale.) 1. Fill in the lank: In circle below, the angle shown is a/an angle. 2. The measure of a central angle and the measure of the arc that it intersects are

More information

Objectives. 6-1 Properties and Attributes of Polygons

Objectives. 6-1 Properties and Attributes of Polygons Objectives Classify polygons based on their sides and angles. Find and use the measures of interior and exterior angles of polygons. side of a polygon vertex of a polygon diagonal regular polygon concave

More information

Click the mouse button or press the Space Bar to display the answers.

Click the mouse button or press the Space Bar to display the answers. Click the mouse button or press the Space Bar to display the answers. 9-4 Objectives You will learn to: Identify regular tessellations. Vocabulary Tessellation Regular Tessellation Uniform Semi-Regular

More information

Polygons and Convexity

Polygons and Convexity Geometry Week 4 Sec 2.5 to ch. 2 test Polygons and Convexity section 2.5 convex set has the property that any two of its points determine a segment contained in the set concave set a set that is not convex

More information

Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem

Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem Orthogonal art galleries with holes: a coloring proof of Aggarwal s Theorem Pawe l Żyliński Institute of Mathematics University of Gdańsk, 8095 Gdańsk, Poland pz@math.univ.gda.pl Submitted: Sep 9, 005;

More information

Improved Bounds for Intersecting Triangles and Halving Planes

Improved Bounds for Intersecting Triangles and Halving Planes Improved Bounds for Intersecting Triangles and Halving Planes David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 91-60 July 15, 1991 Abstract

More information

Special Lines and Constructions of Regular Polygons

Special Lines and Constructions of Regular Polygons Special Lines and Constructions of Regular Polygons A regular polygon with a center A is made up of congruent isosceles triangles with a principal angle A. The red line in the regular pentagon below is

More information

Name No. Geometry 7-3 1) Two similar polygons are shown. Find the values of x, y, and z

Name No. Geometry 7-3 1) Two similar polygons are shown. Find the values of x, y, and z Name No. Geometry 7-1 1) The sides of a triangle with perimeter 55 are in the ratio of 2:4:5. Find the length of the shortest side. 1) Two similar polygons are shown. Find the values of x, y, and z Name

More information

Angles in a polygon Lecture 419

Angles in a polygon Lecture 419 Angles in a polygon Lecture 419 Formula For an n-sided polygon, the number of degrees for the sum of the internal angles is 180(n-2)º. For n=3 (triangle), it's 180. For n=4 (quadrilateral), it's 360. And

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

(Fun Night at the Museum Task)

(Fun Night at the Museum Task) (Fun Night at the Museum Task) Name: The Asimov Museum has contracted with a company that provides Robotic Security Squads to guard the exhibits during the hours the museum is closed. The robots are designed

More information

L9.5 Welcome Back! 1

L9.5 Welcome Back! 1 L9.5 Welcome Back! 1 2 3 A blast from the past... L9.5 Label the following parts: Center Radius Apothem Center angle Side 4 A blast from the past... L9.5 Label the following parts: Center Radius Apothem

More information

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof.

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof. Page 1 of 14 Attendance Problems. 1. Find the midpoint between (0, x) and (y, z).. One leg of a right triangle has length 1, and the hypotenuse has length 13. What is the length of the other leg? 3. Find

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

Warm-Up Exercises. 1. Draw an acute angle and shade the interior. ANSWER. 2. Find the measure of the supplement of a 130º angle.

Warm-Up Exercises. 1. Draw an acute angle and shade the interior. ANSWER. 2. Find the measure of the supplement of a 130º angle. Warm-Up Exercises 1. Draw an acute angle and shade the interior. ANSWER 2. Find the measure of the supplement of a 130º angle. ANSWER 50 3. Find the measure of the complement of an 86 angle. ANSWER 4 1.6

More information

First we need a more precise, rigorous definition:

First we need a more precise, rigorous definition: Lesson 21 Lesson 20, page 1 of 8 Glencoe Geometry Chapter 10.1 Polygons & Area We have been working with special types of polygons throughout the year. Rectangles, Squares, Trapezoids, and, yes, Triangles

More information

February Regional Geometry Team: Question #1

February Regional Geometry Team: Question #1 February Regional Geometry Team: Question #1 A = area of an equilateral triangle with a side length of 4. B = area of a square with a side length of 3. C = area of a regular hexagon with a side length

More information

4-8 Notes. Warm-Up. Discovering the Rule for Finding the Total Degrees in Polygons. Triangles

4-8 Notes. Warm-Up. Discovering the Rule for Finding the Total Degrees in Polygons. Triangles Date: Learning Goals: How do you find the measure of the sum of interior and exterior angles in a polygon? How do you find the measures of the angles in a regular polygon? Warm-Up 1. What is similar about

More information

Geometry Reasons for Proofs Chapter 1

Geometry Reasons for Proofs Chapter 1 Geometry Reasons for Proofs Chapter 1 Lesson 1.1 Defined Terms: Undefined Terms: Point: Line: Plane: Space: Postulate 1: Postulate : terms that are explained using undefined and/or other defined terms

More information

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Conex decomposition

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Geometry Cumulative Study Guide Test 6

Geometry Cumulative Study Guide Test 6 Geometry Cumulative Study Guide Test 6 Numeric Response 1. Find the base of a rectangle, in inches, with an area of 0 square inches and height of 6 inches. 2. Find the area, in square inches, of the trapezoid

More information

The (Math) Problem With Pentagons

The (Math) Problem With Pentagons The (Math) Problem With Pentagons Triangles fit effortlessly together, as do squares. When it comes to pentagons, what gives? By Patrick Honner BIG MOUTH for Quanta Magazine Children s blocks lie scattered

More information

Computational Geometry: Lecture 5

Computational Geometry: Lecture 5 Computational Geometry: Lecture 5 Don Sheehy January 29, 2010 1 Degeneracy In many of the algorithms that we have discussed so far, we have run into problems when that input is somehow troublesome. For

More information

Polygons are named by the number of sides they have:

Polygons are named by the number of sides they have: Unit 5 Lesson 1 Polygons and Angle Measures I. What is a polygon? (Page 322) A polygon is a figure that meets the following conditions: It is formed by or more segments called, such that no two sides with

More information

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Name: Permissible Aides: The small ruler distributed by the proctor Prohibited: Class Notes Class Handouts Study Guides and Materials The Book

More information

Place Value to Thousands

Place Value to Thousands Place Value to Thousands You can show,0 in a place-value chart. The value of each digit in a number depends on its place in the number. In,0 the value of: is hundred thousand or 00,000. is ten thousands

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement

Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement Rensselaer Polytechnic Institute Advanced Computer Graphics, Spring 2014 Final Project Evaluating the Quality of Triangle, Quadrilateral, and Hybrid Meshes Before and After Refinement Author: Rebecca Nordhauser

More information

Suggested List of Mathematical Language. Geometry

Suggested List of Mathematical Language. Geometry Suggested List of Mathematical Language Geometry Problem Solving A additive property of equality algorithm apply constraints construct discover explore generalization inductive reasoning parameters reason

More information