MAT 124 Solutions Sample Questions for Exam 2

Size: px
Start display at page:

Download "MAT 124 Solutions Sample Questions for Exam 2"

Transcription

1 MAT 124 Solutions Sample Questions for Exam 2 Note: Most of these results can be checked graphically. 1. a) The slope of l " is computed as follows: m " = & '(& ) * ' (* ) = +(, -(. = /, = 2. So the equation of l " is given by y = 2x + b. To determine b, plug into this equation the coordinates of A (you could aslo use the coordinates of C). This yields 2 = 2(3) + b = 6 + b b = 2 6 = 4. Therefore, we get the equation of l " : y = 2x 4. The x-intercept of l " is then the point (0, 2). b) The slope of l, is computed as follows: m, = & C(& D * C (* D = ("(E (,(((/) = ",. Since m " m, = 1, the lines l 1 and l 2 are perpendicular. 2. a) The daily cost C, in dollars, for renting a truck that drives on average x miles per day is given as follows: C(x) = 0.07x + 29 b) If a person spent $ after renting a truck for a whole week, then he/she drove, on average, 230 miles per day: 7C(x) = x = x = x = "",.ME = 230. E./N c) At the rate of 250 miles per day, this new truck rental company is cheaper since it charges a daily cost of 0.04(250) + 35 = $45 while the first company charges C(250) = 0.07(25) + 29 = $ The savings amount to $1.50 per day per truck. Since = 157.5, this implies a total savings of $ for a fleet of 15 trucks driving 250 miles per day for a whole week.

2 3. a) The average yearly population growth of the town is computed as follows:,"+.("/." = M., = 183 people/year.,eem(,ee. / a) According to this constant growth rate, the town population in the year 2000 was 1431 (3 183) = 882 people. b) The population P of the town t years after 2000 is given by the linear model below: P(t) = t. c) To predict the year in which the population of the town will reach 4,000, we solve the equation P(t) = 4000 as follows: t = t = 3118 t =.""X "X Therefore, according to this model, the town population will reach 4,000 people in the year Below is a graph of this linear model P.

3 4. a) The coefficients of f are a = 1, b = 2, c = 1. Therefore, h = ^,_ k = f(1) = 2, the vertex point of the parabola y = f(x) is V = (1, 2), and its line of symmetry is the vertical line x = 1. b) The x-intercepts of the graph of f are (1 2, 0) and (1 + 2, 0) since the two solutions of the quadratic equation f(x) = 1 + 2x x, = 0 are x = 1 ± 2. [Computation done in class] c) If h(x) = ef(x), then the domain of h is given as follows: D g = {x f(x) 0} = lx G n is above, or on, the x axisv = w1 2, 1 + 2x [ , ]. Below is the graph of f.

4 5. a) Since V = ( 1, 4), the equation of the parabola in vertex form is y = a(x + 1), + 4. Now plugging in the coordinates of the point (0, 6) into this equation yields a(0 + 1), + 4 = 6 a + 4 = 6 a = 2. Thus, the equation of the parabola is given by y = 2(x + 1) = 2x 2 + 4x + 6. b) Solving the equation y = 2(x + 1), + 4 = 0 yields (x + 1), = 2, which has no real solutions. This then implies that the parabola has no x-intercepts. Note that this result is consistent with the fact that the parabola opens up and has its vertex located in QII. 6. a) If f(x) = 3x, + 6x + c, then h = +,(.) = 1, k = f( 1) = c = c 3, and the vertex of the parabola y = f(x) is given by V = ( 1, c 3). Since the graph of f is a parabola that opens up, the absolute minimum of f occurs at its vertex point. Therefore, if the absolute minimal value of f is 8, then we have c 3 = 8 c = 5. b) If the parabola y = f(x) passes through the point ( 2, 7), then f( 2) = 7, which implies that 3( 2), + 6( 2) + c = 7 c = 7. c) By the results of part a), we conclude that the range of f is the set R f = {y y c 3} = [c 3, ). 7. The equation of the parabola that passes through the point (2, 4) and whose axis of symmetry is the vertical line x = 1 has the form y = ax 2 2ax + 4, where a 0. To see this, check that the equation of this parabola in vertex form is y = a(x 1), + k, and then plug in the coordinates of the point (2, 4) into this equation to get 4 = a(2 1), + k 4 = a + k k = 4 a. This results in the equation y = a(x 1), + 4 a = ax, 2ax + a + 4 a = ax, 2ax + 4.

5 8. Since factoring the function completely yields f(x) = 3(x, 5x + 6)(x, 8x + 12) = 3(x 2), (x 3)(x 6), the zeros of the polynomial function f are x = 2, x = 3, and x = The domain of the function f(x) = x 3x, is given by D f = x 0 x 1 3 = Š0, 1 3. To see why, note that the parabola y = x 3x, = x(1 3x) (the radicand of the function f) has x-intercepts at the origin and Œ0, 1 3 and has the vertex in Quadrant I. It is therefore above the x-axis on the interval Š0, 1. The graph of this parabola is shown 3 below. 10. a) Since f(0) = 243 (0 2) - = 243 ( 32) = 275, the y-intercept is the point (0, 275). To find any x-intercepts, we solve the equation y = f(x) = 0 as follows: 243 (x 2) - = 0 (x 2) - Ž = 243 x 2 = 243 Therefore, the only x-intercept of the graph of f is the point (5, 0). = 3 x = 5.

6 b) Start with the graph of the basic power function y = x -. Then, a horizontal shift by 2 units to the right transforms the graph of this basic power function to the graph of y = (x 2) -. Now, a reflection about the x-axis transforms the graph of y = (x 2) - into the graph of y = (x 2) -. Finally, a vertical shift 243 units upwards transforms the graph of y = (x 2) - into the graph of y = 243 (x 2) - = f(x). Here are the respective transformations for three points: Point #1: (0, 0) (2, 0) (2, 0) (2, 243) Point #2: (2, 32) (4, 32) (4, 32) (4, 211) Point #3: (3, 243) (5, 243) (5, 243) (5, 0) [Check all these results graphically.] 11. a) Below is the graph of this arch as a parabola.

7 b) Setting up the vertex point of the arch at (0, 630) and the two x-intercepts at (315, 0) and ( 315, 0), so that the center (the midpoint of the arch legs) coincides with the origin, we get the following equation for this parabolic arch: y = f(x) = Œ +.E."- x, = Œ,."- x, x, Note that there are other ways to set up this arch. Another possibility is to place the vertex point at the origin. c) Sincef(200) = f( 200) = Œ,."- (200), , we conclude that the arch height 200 feet away from the center is approximately 376 feet (rounded to the nearest feet). d) Solving the equation f(x) = 20 yields x So the 20-feet-tall statue can be placed 310 feet away from the center. 12. a) Factoring the function f completely yields f(x) = x / x. + 6x, = x, (x, + x 6) = x, (x 2)(x + 3) Thus the x-intercepts are the points (0, 0), (2, 0), and ( 3, 0). S Since f(0) = 0, the y-intercept is also the origin (the point (0, 0)). b) For large values of x (either positive or negative), the graph of f resembles the graph of the power function y = x 4. As a result,, the graph of f will end in QIII on the left and in QIV on the right. Below is the graph of f.

8 Bonus Problem Suppose there is a parabola y = ax, + bx + c, where a 0, that passes through these three collinear points. This would then imply that the coefficients a, b, c satisfy the following equations: 4a + 2b + c = 1 (1) 9a + 3b + c = 2 (2) 16a + 4b + c = 3 (3) Subtracting (1) from (2) yields the equation 5a + b = 1. On the other hand, subtracting (2) from (3) yields the equation 7a + b = 1. Solving for both of these equations results in a clear inconsistency. As a result, the initial system of equations in a, b, c has no solution and no such parabola exists.

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Approximate the coordinates of each turning point by graphing f(x) in the standard viewing

More information

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Algebra II (Wilsen) Midterm Review NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Remember: Though the problems in this packet are a good representation of many of the topics that will be on the exam, this

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined Version PREVIEW HW 01 hoffman 575) 1 This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. FuncPcwise01a 001 10.0

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Quiz 1 Review: Quadratics through 4.2.2

Quiz 1 Review: Quadratics through 4.2.2 Name: Class: Date: ID: A Quiz 1 Review: Quadratics 4.1.1 through 4.2.2 Graph each function. How is each graph a translation of f(x) = x 2? 1. y = x 2 + 2 2. y = (x 3) 2 3. y = (x + 3) 2 + 4 4. Which is

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Algebra 1: Quadratic Functions Review (Ch. 9 part 1)

Algebra 1: Quadratic Functions Review (Ch. 9 part 1) Name: Class: Date: ID: A Algebra 1: Quadratic Functions Review (Ch. 9 part 1) 1. Find the rule of a parabola that has the Ê 1 x-intercepts at ( 6,0) and,0 ˆ 3 ËÁ. 6. 2. Find the rule of a parabola that

More information

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter.

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. QUADRATIC FUNCTIONS PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. SHAPE-VERTEX FORMULA One can write any quadratic function (1) as f(x) = a(x h) 2 + k,

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying linear expressions factoring quadratic equations finding the value of a in the vertex form of a quadratic equation

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Section 3.3. Analyzing Graphs of Quadratic Functions

Section 3.3. Analyzing Graphs of Quadratic Functions Section 3.3 Analyzing Graphs of Quadratic Functions Introduction Definitions A quadratic function is a function with the form f (x) = ax 2 + bx + c, where a 0. Definitions A quadratic function is a function

More information

Assignment 3. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 3. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A truck rental company rents a moving truck one day by charging $35 plus $0.09

More information

2.1 Solutions to Exercises

2.1 Solutions to Exercises Last edited 9/6/17.1 Solutions to Exercises 1. P(t) = 1700t + 45,000. D(t) = t + 10 5. Timmy will have the amount A(n) given by the linear equation A(n) = 40 n. 7. From the equation, we see that the slope

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0 y=-3/4x+4 and y=2 x I need to graph the functions so I can clearly describe the graphs Specifically mention any key points on the graphs, including intercepts, vertex, or start/end points. What is the

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Recall The standard form, or general form, of a quadratic function is written as f(x) = ax 2 + bx + c, where a is the coefficient

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

1.1 Functions. Cartesian Coordinate System

1.1 Functions. Cartesian Coordinate System 1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let s discuss the idea of the Cartesian coordinate system first. Cartesian Coordinate

More information

A I only B II only C II and IV D I and III B. 5 C. -8

A I only B II only C II and IV D I and III B. 5 C. -8 1. (7A) Points (3, 2) and (7, 2) are on the graphs of both quadratic functions f and g. The graph of f opens downward, and the graph of g opens upward. Which of these statements are true? I. The graphs

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

Math 112 Spring 2016 Midterm 2 Review Problems Page 1

Math 112 Spring 2016 Midterm 2 Review Problems Page 1 Math Spring Midterm Review Problems Page. Solve the inequality. The solution is: x x,,,,,, (E) None of these. Which one of these equations represents y as a function of x? x y xy x y x y (E) y x 7 Math

More information

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x Math 33B Intermediate Algebra Fall 01 Name Study Guide for Exam 4 The exam will be on Friday, November 9 th. You are allowed to use one 3" by 5" index card on the exam as well as a scientific calculator.

More information

Determine whether the relation represents a function. If it is a function, state the domain and range. 1)

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) MAT 103 TEST 2 REVIEW NAME Determine whether the relation represents a function. If it is a function, state the domain and range. 1) 3 6 6 12 9 18 12 24 Circle the correct response: Function Not a function

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Lesson 8 Introduction to Quadratic Functions

Lesson 8 Introduction to Quadratic Functions Lesson 8 Introduction to Quadratic Functions We are leaving exponential and logarithmic functions behind and entering an entirely different world. As you work through this lesson, you will learn to identify

More information

Amplifying an Instructional Task Algebra II Example

Amplifying an Instructional Task Algebra II Example Original Task The student is expected to write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. A(4)(B) Write the equations

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

Study Guide and Review

Study Guide and Review Graph the hyperbola given by each equation. 30. = 1 The equation is in standard form, and h = 6 and k = 3. Because a 2 = 30 and b 2 = 8, a = 5.5 and b =. The values of a and b can be used to find c. c

More information

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Back board says your name if you are on my roster. I need parent financial

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Assignments for Algebra 1 Unit 9 Quadratics, Part 1

Assignments for Algebra 1 Unit 9 Quadratics, Part 1 Name: Assignments for Algebra 1 Unit 9 Quadratics, Part 1 Day 1, Quadratic Transformations: p.1-2 Day 2, Vertex Form of Quadratics: p. 3 Day 3, Solving Quadratics: p. 4-5 Day 4, No Homework (be sure you

More information

Assignment Assignment for Lesson 9.1

Assignment Assignment for Lesson 9.1 Assignment Assignment for Lesson.1 Name Date Shifting Away Vertical and Horizontal Translations 1. Graph each cubic function on the grid. a. y x 3 b. y x 3 3 c. y x 3 3 2. Graph each square root function

More information

Test Name: Chapter 4 Test Prep

Test Name: Chapter 4 Test Prep Test Name: Chapter 4 Test Prep 1. Given the following function: g ( x ) = -x + 2 Determine the implied domain of the given function. Express your answer in interval notation. 2. Given the following relation:

More information

MATH 1113 Exam 1 Review. Fall 2017

MATH 1113 Exam 1 Review. Fall 2017 MATH 1113 Exam 1 Review Fall 2017 Topics Covered Section 1.1: Rectangular Coordinate System Section 1.2: Circles Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Algebra 2 Chapter 2 Practice Test

Algebra 2 Chapter 2 Practice Test Algebra 2 Chapter 2 Practice Test 1. Compare the graph of with the graph of. a. The graph of g(x) is a translation 6 units left and 10 units up from the graph of f(x). b. The graph of g(x) is a translation

More information

12/11/2018 Algebra II - Semester 1 Review

12/11/2018 Algebra II - Semester 1 Review Name: Semester Review - Study Guide Score: 72 / 73 points (99%) Algebra II - Semester 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Name the property

More information

Math 101 Exam 1 Review

Math 101 Exam 1 Review Math 101 Exam 1 Review Reminder: Exam 1 will be on Friday, October 14, 011 at 8am. It will cover sections 1.1, 1. and 10.1 10.3 Room Assignments: Room Sections Nesbitt 111 9, 14, 3, 4, 8 Nesbitt 15 0,

More information

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic.

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic. Section 6: Quadratic Equations and Functions Part 2 Section 6 Topic 1 Observations from a Graph of a Quadratic Function Let s review some things we learned earlier about the information we can gather from

More information

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x.

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x. Math 370 Exam 1 Review Name Determine whether the relation is a function. 1) {(-6, 6), (-6, -6), (1, 3), (3, -8), (8, -6)} Not a function The x-value -6 corresponds to two different y-values, so this relation

More information

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums 1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums Quadratic Function A function of the form y=ax 2 +bx+c where a 0 making a u-shaped

More information

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW Name: Block: ALGEBRA W/ TRIGONOMETRY MIDTERM REVIEW Algebra 1 Review Find Slope and Rate of Change Graph Equations of Lines Write Equations of Lines Absolute Value Functions Transformations Piecewise Functions

More information

Warm Up Grab your calculator Find the vertex: y = 2x x + 53 (-5, 3)

Warm Up Grab your calculator Find the vertex: y = 2x x + 53 (-5, 3) Warm Up Grab your calculator Find the vertex: y = 2x 2 + 20x + 53 (-5, 3) Quiz will be next Tuesday, folks. Check HW/ New Section Another useful form of writing quadratic functions is the standard form.

More information

2.2 Transformers: More Than Meets the y s

2.2 Transformers: More Than Meets the y s 10 SECONDARY MATH II // MODULE 2 STRUCTURES OF EXPRESSIONS 2.2 Transformers: More Than Meets the y s A Solidify Understanding Task Writetheequationforeachproblembelow.Useasecond representationtocheckyourequation.

More information

Sections 3.5, : Quadratic Functions

Sections 3.5, : Quadratic Functions Week 7 Handout MAC 1105 Professor Niraj Wagh J Sections 3.5, 4.3-4.4: Quadratic Functions A function that can be written in the form f(x)= ax 2 +bx+c for real numbers a, b, and c, with a not equal to zero,

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

BLM Answers. BLM 4-1 Prerequisite Skills. BLM 4-3 Section 4.1 Modelling With Quadratic Relations. 10. a)

BLM Answers. BLM 4-1 Prerequisite Skills. BLM 4-3 Section 4.1 Modelling With Quadratic Relations. 10. a) BLM Answers (page 1) BLM 4-1 Prerequisite Skills 1. a) 11.1 2.7 9.0 d) 20.2 2. a) 1.7 10.7 6.5 d) 25.1 3. a) 9.5 20.7 96 d) 31.85 4. a) 3x 6x 2 + 6x + 5 10x 2 2x + 6 d) 12x 2 + 10x 6 5. a) 5 0 12 d) 2

More information

Sketching graphs of polynomials

Sketching graphs of polynomials Sketching graphs of polynomials We want to draw the graphs of polynomial functions y = f(x). The degree of a polynomial in one variable x is the highest power of x that remains after terms have been collected.

More information

3.1 Quadratic Functions in Vertex Form

3.1 Quadratic Functions in Vertex Form 3.1 Quadratic Functions in Vertex Form 1) Identify quadratic functions in vertex form. 2) Determine the effect of a, p, and q on the graph of a quadratic function in vertex form where y = a(x p)² + q 3)

More information

2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES

2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES Section 2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES Write, graph and interpret the expense function. Write, graph and interpret the revenue function. Identify the points of intersection of

More information

REVIEW FOR THE FIRST SEMESTER EXAM

REVIEW FOR THE FIRST SEMESTER EXAM Algebra II Honors @ Name Period Date REVIEW FOR THE FIRST SEMESTER EXAM You must NEATLY show ALL of your work ON SEPARATE PAPER in order to receive full credit! All graphs must be done on GRAPH PAPER!

More information

Graphing Absolute Value Functions

Graphing Absolute Value Functions Graphing Absolute Value Functions To graph an absolute value equation, make an x/y table and plot the points. Graph y = x (Parent graph) x y -2 2-1 1 0 0 1 1 2 2 Do we see a pattern? Desmos activity: 1.

More information

Math 111: Midterm 1 Review

Math 111: Midterm 1 Review Math 111: Midterm 1 Review Prerequisite material (see review section for additional problems) 1. Simplify the following: 20a 2 b 4a 2 b 1 ( 2x 3 y 2 ) 2 8 2 3 + ( 1 4 ) 1 2 2. Factor the following: a)

More information

Replacing f(x) with k f(x) and. Adapted from Walch Education

Replacing f(x) with k f(x) and. Adapted from Walch Education Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

POLYNOMIALS Graphing Polynomial Functions Common Core Standard

POLYNOMIALS Graphing Polynomial Functions Common Core Standard K Polynomials, Lesson 6, Graphing Polynomial Functions (r. 2018) POLYNOMIALS Graphing Polynomial Functions Common Core Standard Next Generation Standard F-BF.3 Identify the effect on the graph of replacing

More information

1. a. After inspecting the equation for the path of the winning throw, which way do you expect the parabola to open? Explain.

1. a. After inspecting the equation for the path of the winning throw, which way do you expect the parabola to open? Explain. Name Period Date More Quadratic Functions Shot Put Activity 3 Parabolas are good models for a variety of situations that you encounter in everyday life. Example include the path of a golf ball after it

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics Algebra I February 8 th February 12 th Unit 6: Polynomials & Introduction to Quadratics Jump Start 1) Use the elimination method to solve the system of equations below. x + y = 2 3x + y = 8 2) Solve: 13

More information

Sect 3.1 Quadratic Functions and Models

Sect 3.1 Quadratic Functions and Models Objective 1: Sect.1 Quadratic Functions and Models Polynomial Function In modeling, the most common function used is a polynomial function. A polynomial function has the property that the powers of the

More information

3.1 Quadratic Functions and Models

3.1 Quadratic Functions and Models 3.1 Quadratic Functions and Models Objectives: 1. Identify the vertex & axis of symmetry of a quadratic function. 2. Graph a quadratic function using its vertex, axis and intercepts. 3. Use the maximum

More information

Chapter 6 Practice Test

Chapter 6 Practice Test MPM2D Mr. Jensen Chapter 6 Practice Test Name: Standard Form 2 y= ax + bx+ c Factored Form y= a( x r)( x s) Vertex Form 2 y= a( x h) + k Quadratic Formula ± x = 2 b b 4ac 2a Section 1: Multiply Choice

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

1.6 Modeling with Equations

1.6 Modeling with Equations 1.6 Modeling with Equations Steps to Modeling Problems with Equations 1. Identify the variable you want to solve for. 2. Express all unknown quantities in terms of this variable. 3. Set up the model by

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Unit 2 Day 5. Characteristics of Quadratic Functions

Unit 2 Day 5. Characteristics of Quadratic Functions Unit 2 Day 5 Characteristics of Quadratic Functions 1 Warm Up 1.) Jason and Jim jumped off a cliff into the ocean in Acapulco while vacationing. Jason s height as a function of time could be modeled by

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

2-5 Graphing Special Functions. Graph each function. Identify the domain and range. SOLUTION:

2-5 Graphing Special Functions. Graph each function. Identify the domain and range. SOLUTION: Graph each function Identify the domain and range Write the piecewise-defined function shown in each graph 1 3 The left portion of the graph is the line g(x) = x + 4 There is an open circle at ( 2, 2),

More information

Pre-Calculus Summer Assignment

Pre-Calculus Summer Assignment Pre-Calculus Summer Assignment Identify the vertex and the axis of symmetry of the parabola. Identify points corresponding to P and Q. 1. 2. Find a quadratic model for the set of values. 3. x 2 0 4 f(x)

More information

Summer Math Assignments for Students Entering Algebra II

Summer Math Assignments for Students Entering Algebra II Summer Math Assignments for Students Entering Algebra II Purpose: The purpose of this packet is to review pre-requisite skills necessary for the student to be successful in Algebra II. You are expected

More information

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4 A 8-6 Factor. Step 1 3x 2 + 7x + 2 Step 2 Step 3 Step 4 3x 2 + 7x + 2 3x 2 + 7x + 2 Step 1 Step 2 Step 3 Step 4 Factor. 1. 3x 2 + 4x +1 = 2. 3x 2 +10x + 3 = 3. 3x 2 +13x + 4 = A 8-6 Name BDFM? Why? Factor.

More information

Unit 1 Quadratic Functions

Unit 1 Quadratic Functions Unit 1 Quadratic Functions This unit extends the study of quadratic functions to include in-depth analysis of general quadratic functions in both the standard form f ( x) = ax + bx + c and in the vertex

More information

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions Chapter 2 Polynomial and Rational Functions 2.2 Quadratic Functions 1 /27 Chapter 2 Homework 2.2 p298 1, 5, 17, 31, 37, 41, 43, 45, 47, 49, 53, 55 2 /27 Chapter 2 Objectives Recognize characteristics of

More information

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice Algebra 2CP Name Algebra 2CP S1 Final Exam Information Your final exam will consist of two parts: Free Response and Multiple Choice Part I: Free Response: Five questions, 10 points each (50 points total),

More information

Factor Quadratic Expressions

Factor Quadratic Expressions Factor Quadratic Expressions BLM 6... BLM 6 Factor Quadratic Expressions Get Ready BLM 6... Graph Quadratic Relations of the Form y = a(x h) + k. Sketch each parabola. Label the vertex, the axis of symmetry,

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

Summer Math Assignments for Students Entering Integrated Math

Summer Math Assignments for Students Entering Integrated Math Summer Math Assignments for Students Entering Integrated Math Purpose: The purpose of this packet is to review pre-requisite skills necessary for the student to be successful in Integrated Math. You are

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c.

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c. Ch. 10 Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since

More information