Animating Transformations

Size: px
Start display at page:

Download "Animating Transformations"

Transcription

1 Animating Transformations Connelly Barnes CS445: Graphics Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

2 Overview Rotations and SVD Interpolating/Approximating Points o Vectors o Unit-Vectors Interpolating/Approximating Transformations o Matrices o Rotations» SVD Factorization» Euler Angles

3 Rotations What are rotations?

4 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors:

5 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors: Recall that the dot-product between two vectors can be expressed as a matrix multiplication:

6 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors: This implies that:

7 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors: This implies that:

8 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors: This implies that: Since this is true for all v and w, this means that:

9 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors. A rotation R is a linear transformation that has determinant equal to one and whose transpose is equal to its inverse.

10 Rotations What are rotations? A rotation R is a linear transformation that has determinant equal to one and preserves the angle between any two vectors. A rotation R is a linear transformation that has determinant equal to one and whose transpose is equal to its inverse. A rotation in 3D can be specified by a 3x3 matrix.

11 Rotations What are rotations? A rotation in 3D can also be specified by: o its axis of rotation w ( w =1) and o its angle of rotation θ θ w

12 Rotations What are rotations? A rotation in 3D can also be specified by: o its axis of rotation w ( w =1) and o its angle of rotation θ Properties: o The rotation corresponding to (θ,w) is the same as the rotation corresponding to (-θ,-w).

13 Rotations What are rotations? A rotation in 3D can also be specified by: o its axis of rotation w ( w =1) and o its angle of rotation θ Properties: o The rotation corresponding to (θ,w) is the same as the rotation corresponding to (-θ,-w). o Given two rotations corresponding to (θ 1,w) and (θ 2,w), the product of the rotations corresponds to (θ 1 +θ 2,w).

14 Rotations What are rotations? A rotation in 3D can also be specified by: o its axis of rotation w ( w =1) and o its angle of rotation θ Properties: o The rotation corresponding to (θ,w) is the same as the rotation corresponding to (-θ,-w). o Given two rotations corresponding to (θ 1,w) and (θ 2,w), the product of the rotations corresponds to (θ 1 +θ 2,w). o Given a rotation corresponding (θ,w), the rotation raised to the power α corresponds to (αθ,w).

15 Rotations What are rotations? A rotation in 3D can also be specified by: o its axis of rotation w ( w =1) and o its angle of rotation θ Properties: o The rotation corresponding to (θ,w) is the same as the rotation corresponding to (-θ,-w). o Given two rotations corresponding to (θ 1,w) and (θ 2,w), the product of the rotations corresponds to (θ 1 +θ 2,w). o Given a rotation corresponding (θ,w), the rotation raised to the How power do α we corresponds define the to product (αθ,w). of rotations corresponding to (θ 1,w 1 ) and (θ 2,w 2 )?

16 SVD Any mxn matrix M can be expressed in terms of its Singular Value Decomposition as: where: o U is an nxn rotation matrix, o V is an mxm rotation matrix, and o D is an mxn diagonal matrix (i.e off-diagonals are all 0).

17 SVD Applications: Compression Model Alignment Matrix Inversion Solving Over-Constrained Linear Equations

18 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M.

19 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M. Expressing M in terms of its SVD gives: where: o U is an nxn rotation matrix, o V is an nxn rotation matrix, and o D is an nxn diagonal matrix (i.e off-diagonals are all 0).

20 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M. We can express M -1 as:

21 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M. We can express M -1 as:

22 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M. We can express M -1 as: Since: o U is a rotation, U -1 =U t. o V is a rotation, V -1 =V t.

23 SVD Matrix Inversion: If we have an nxn invertible matrix M, we can use SVD to compute the inverse of M. We can express M -1 as: Since: o D is a diagonal matrix:

24 SVD Solving Over-Constrained Linear Equations: If we have m equations in n unknowns, with m>n, the problem is over-constrained and there is no general solution.

25 However, using SVD, we can find the values of {x 1,,x n } that get us as close to {y 1,,y m } as possible. SVD Solving Over-Constrained Linear Equations: If we have m equations in n unknowns, with m n, the problem is over-constrained and there is no general solution.

26 SVD Solving Over-Constrained Linear Equations: If we express the matrix A in terms of its SVD: then we can set the matrix A * to be: where D * is the diagonal matrix with: This is called the pseudo-inverse of A. That is, we invert A as much as possible.

27 SVD Solving Over-Constrained Linear Equations: If we set: this gives us the values of {x 1,,x n } that most nearly solve the initial equation:

28 Overview Rotations and SVD Interpolating/Approximating Points o Vectors o Unit-Vectors Interpolating/Approximating Transformations o Matrices o Rotations» SVD Factorization» Euler Angles

29 Vectors Given a collection of n control points {p 0,,p n-1 }, define a curve Φ(t) that approximates/interpolates the points.

30 Vectors Given a collection of n control points {p 0,,p n-1 }, define a curve Φ(t) that approximates/interpolates the points. Linear Interpolation: o Interpolating o C 0 continuous p 1 p 2 p 6 Φ 6 (t) p 7 Φ 0 (t) Φ 1 (t) Φ 2 (t) Φ 5 (t) p 5 p 3 Φ 4 (t) p 0 Φ 3 (t) p 4

31 Vectors Given a collection of n control points {p 0,,p n-1 }, define a curve Φ(t) that approximates/interpolates the points. Catmull-Rom Splines (Cardinal Splines with t=0): o Interpolating o C 1 continuous p 1 p 2 p 6 p 7 Φ 1 (t) Φ 2 (t) Φ 5 (t) p 5 p 3 Φ 4 (t) p 0 Φ 3 (t) p 4

32 Vectors Given a collection of n control points {p 0,,p n-1 }, define a curve Φ(t) that approximates/interpolates the points. Uniform Cubic B-Splines: o Approximating o C 2 continuous p 1 p 2 p 6 p 7 Φ 1 (t) Φ 2 (t) Φ 5 (t) p 5 p 0 p 3 Φ 3 (t) p 4 Φ 4 (t)

33 Unit-Vectors What if we add the additional constraint that the points {p 0,,p n-1 } and the curve Φ(t) have to lie on the unit circle/sphere ( p i =1, Φ(t) =1)?

34 Unit-Vectors What if we add the additional constraint that the points {p 0,,p n-1 } and the curve Φ(t) have to lie on the unit circle/sphere ( p i =1, Φ(t) =1)? We can t interpolate/approximate the points as before, because the in-between points don t have to lie on the unit circle/sphere! Φ(t)=(1-t)p 0 +tp 1 p 0 p 1 p 0 p 1

35 Unit-Vectors What if we add the additional constraint that the points {p 0,,p n-1 } and the curve Φ(t) have to lie on the unit circle/sphere ( p i =1, Φ(t) =1)? We can normalize the in-between points by sending them to the closest circle/sphere point: p 0 p 1 Φ(t)=(1-t)p 0 +tp 1

36 Curve Normalization Limitations: The normalized curve is not always well defined. p 0 p 1 Φ(t)=(1-t)p 0 +tp 1

37 Curve Normalization Limitations: The normalized curve is not always well defined. Just because points are uniformly distributed on the original curve, does not mean that they will be uniformly distributed on the normalized one. p 0 p 1 Φ(t)=(1-t)p 0 +tp 1

38 Curve Normalization Limitations: The normalized curve is not always well defined. Just because points are uniformly distributed on the original curve, does not mean that they will be uniformly distributed on the normalized one. SLERP: If we set: o p 0 =(cosθ 0,sinθ 0 ) o p 1 =(cosθ 1,sinθ 1 ) p 0 p 1 We can set:

39 Overview Interpolating/Approximating Rotations and SVD Interpolating/Approximating Points o Vectors o Unit-Vectors Interpolating/Approximating Transformations o Matrices o Rotations» SVD Factorization» Euler Angles

40 Matrices Given a collection of n matrices {M 0,,M n-1 }, define a curve Φ(t) that approximates/interpolates the matrices.

41 Matrices Given a collection of n matrices {M 0,,M n-1 }, define a curve Φ(t) that approximates/interpolates the matrices. As with vectors: Linear Interpolation: Catmull-Rom Interpolation: Uniform Cubic B-Spline Approximation:

42 Rotations What if we add the additional constraint that the matrices {M 0,,M n-1 } and the values of the curve Φ(t) have to be rotations?

43 Rotations What if we add the additional constraint that the matrices {M 0,,M n-1 } and the values of the curve Φ(t) have to be rotations? We can t interpolate/approximate the matrices as before, because the in-between matrices don t have to be rotations!

44 Rotations What if we add the additional constraint that the matrices {M 0,,M n-1 } and the values of the curve Φ(t) have to be rotations? We can t interpolate/approximate the matrices as before, because the in-between matrices don t have to be rotations! We could try to normalize, by mapping every matrix Φ(t) to the nearest rotation.

45 Challenge Given a matrix M, how do you find the rotation matrix R that is closest to M?

46 SVD Factorization Given a matrix M, how do you find the rotation matrix R that is closest to M? Singular Value Decomposition (SVD) allows us to express any M as a diagonal matrix, multiplied on the left and right by the rotations R 1 and R 2 :

47 SVD Factorization Given a matrix M, how do you find the rotation matrix R that is closest to M? Singular Value Decomposition (SVD) allows us to express any M as a diagonal matrix, multiplied on the left and right by the rotations R 1 and R 2 : To be fully correct, you need to ensure that the product of sgn(λ i ) is 1. If not, you need to flip the sign of the sgn(λ i ) where λ i is smallest. The closest rotation R to M is then just the rotation:

48 Euler Angles Every rotation matrix R can be expressed as: o some rotation about the x-axis, multiplied by o some rotation about the y-axis, multiplied by o some rotation about the z-axis: The angles (θ,φ,ψ) are called the Euler angles.

49 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k )

50 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k ) o Interpolate/Approximate the Euler angles:

51 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k ) o Interpolate/Approximate the Euler angles:» Linear Interpolation:

52 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k ) o Interpolate/Approximate the Euler angles:» Linear Interpolation» Catmull-Rom Interpolation:

53 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k ) o Interpolate/Approximate the Euler angles:» Linear Interpolation» Catmull-Rom Interpolation» Uniform Cubic B-Spline Approximation:

54 Euler Angles Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles: o For each M k, compute the Euler angles (θ k,φ k,ψ k ) o Interpolate/Approximate the Euler angles:» Linear Interpolation» Catmull-Rom Interpolation» Uniform Cubic B-Spline Approximation o Set the value of the in-between matrix to:

Quaternions and Exponentials

Quaternions and Exponentials Quaternions and Exponentials Michael Kazhdan (601.457/657) HB A.6 FvDFH 21.1.3 Announcements OpenGL review II: Today at 9:00pm, Malone 228 This week's graphics reading seminar: Today 2:00-3:00pm, my office

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Connelly Barnes, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Modeling Transformations

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

Ray Casting. Connelly Barnes CS 4810: Graphics

Ray Casting. Connelly Barnes CS 4810: Graphics Ray Casting Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Traditional Pinhole Camera The film

More information

METR Robotics Tutorial 2 Week 3: Homogeneous Coordinates SOLUTIONS & COMMENTARY

METR Robotics Tutorial 2 Week 3: Homogeneous Coordinates SOLUTIONS & COMMENTARY METR4202 -- Robotics Tutorial 2 Week 3: Homogeneous Coordinates SOLUTIONS & COMMENTARY Questions 1. Calculate the homogeneous transformation matrix A BT given the [20 points] translations ( A P B ) and

More information

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala)

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala) 3D Transformations CS 4620 Lecture 10 1 Translation 2 Scaling 3 Rotation about z axis 4 Rotation about x axis 5 Rotation about y axis 6 Properties of Matrices Translations: linear part is the identity

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader Scene Graphs: Rendering Lab 3b: Shader William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public mirror web site: http://www.kddresearch.org/courses/cis636

More information

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Transformation Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Project

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11 3D Transformations CS 4620 Lecture 11 1 Announcements A2 due tomorrow Demos on Monday Please sign up for a slot Post on piazza 2 Translation 3 Scaling 4 Rotation about z axis 5 Rotation about x axis 6

More information

Advanced Computer Graphics Transformations. Matthias Teschner

Advanced Computer Graphics Transformations. Matthias Teschner Advanced Computer Graphics Transformations Matthias Teschner Motivation Transformations are used To convert between arbitrary spaces, e.g. world space and other spaces, such as object space, camera space

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Global Illumination. Connelly Barnes CS 4810: Graphics

Global Illumination. Connelly Barnes CS 4810: Graphics Global Illumination Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Overview Direct Illumination

More information

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods CS545 Contents IX Inverse Kinematics Analytical Methods Iterative (Differential) Methods Geometric and Analytical Jacobian Jacobian Transpose Method Pseudo-Inverse Pseudo-Inverse with Optimization Extended

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

CS 559 Computer Graphics Midterm Exam March 22, :30-3:45 pm

CS 559 Computer Graphics Midterm Exam March 22, :30-3:45 pm CS 559 Computer Graphics Midterm Exam March 22, 2010 2:30-3:45 pm This exam is closed book and closed notes. Please write your name and CS login on every page! (we may unstaple the exams for grading) Please

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Game Engineering CS S-05 Linear Transforms

Game Engineering CS S-05 Linear Transforms Game Engineering CS420-2016S-05 Linear Transforms David Galles Department of Computer Science University of San Francisco 05-0: Matrices as Transforms Recall that Matrices are transforms Transform vectors

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Animation Curves and Splines 2

Animation Curves and Splines 2 Animation Curves and Splines 2 Animation Homework Set up Thursday a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate Animation a time with

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors.

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors. Visualizing Quaternions Part II: Visualizing Quaternion Geometry Andrew J. Hanson Indiana University Part II: OUTLINE The Spherical Projection Trick: Visualizing unit vectors. Quaternion Frames Quaternion

More information

Splines, or: Connecting the Dots. Jens Ogniewski Information Coding Group

Splines, or: Connecting the Dots. Jens Ogniewski Information Coding Group Splines, or: Connecting the Dots Jens Ogniewski Information Coding Group Note that not all is covered in the book, especially Change of Interpolation Centripetal Catmull-Rom and other advanced parameterization

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Animating orientation CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Orientation in the plane θ (cos θ, sin θ) ) R θ ( x y = sin θ ( cos θ sin θ )( x y ) cos θ Refresher: Homogenous

More information

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 CS 430/536 Computer Graphics I 3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation November 11, 2013 Matthew Smith mrs126@uclive.ac.nz Department of Computer Science and Software Engineering University

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Quaternions as Orientations () page 1 Multiplying Quaternions q1 = (w1, x1, y1, z1); q = (w, x, y, z); q1 * q = ( w1.w - v1.v, w1.v + w.v1 + v1 X v) where v1 = (x1, y1,

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

Short on camera geometry and camera calibration

Short on camera geometry and camera calibration Short on camera geometry and camera calibration Maria Magnusson, maria.magnusson@liu.se Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Sweden Report No: LiTH-ISY-R-3070

More information

Visualizing Quaternions

Visualizing Quaternions Visualizing Quaternions Andrew J. Hanson Computer Science Department Indiana University Siggraph 25 Tutorial OUTLINE I: (45min) Twisting Belts, Rolling Balls, and Locking Gimbals: Explaining Rotation Sequences

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

Least-Squares Fitting of Data with B-Spline Curves

Least-Squares Fitting of Data with B-Spline Curves Least-Squares Fitting of Data with B-Spline Curves David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

Manual image registration in BrainVoyager QX Table of Contents

Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX......1 Performing manual alignment for functional to anatomical images......2 Step 1: preparation......2

More information

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation CS38: Introduction to Computer Graphics Projection Chapter Min H. Kim KAIST School of Computing Smooth Interpolation SUMMARY 2 Cubic Bezier Spline To evaluate the function c(t) at any value of t, we perform

More information

Matrix Operations with Applications in Computer Graphics

Matrix Operations with Applications in Computer Graphics Matrix Operations with Applications in Computer Graphics The zero matrix is a matrix with all zero entries. The identity matrix is the matrix I with on the main diagonal entries and for all other entries.

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Computer Animation II

Computer Animation II Computer Animation II Orientation interpolation Dynamics Some slides courtesy of Leonard McMillan and Jovan Popovic Lecture 13 6.837 Fall 2002 Interpolation Review from Thursday Splines Articulated bodies

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Warping. 12 May 2015

Warping. 12 May 2015 Warping 12 May 2015 Warping, morphing, mosaic Slides from Durand and Freeman (MIT), Efros (CMU, Berkeley), Szeliski (MSR), Seitz (UW), Lowe (UBC) http://szeliski.org/book/ 2 Image Warping Image filtering:

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Jorg s Graphics Lecture Notes Coordinate Spaces 1

Jorg s Graphics Lecture Notes Coordinate Spaces 1 Jorg s Graphics Lecture Notes Coordinate Spaces Coordinate Spaces Computer Graphics: Objects are rendered in the Euclidean Plane. However, the computational space is better viewed as one of Affine Space

More information

Lesson 28: When Can We Reverse a Transformation?

Lesson 28: When Can We Reverse a Transformation? Lesson 8 M Lesson 8: Student Outcomes Students determine inverse matrices using linear systems. Lesson Notes In the final three lessons of this module, students discover how to reverse a transformation

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Kinematical Animation.

Kinematical Animation. Kinematical Animation 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity

More information

Computer Animation. Rick Parent

Computer Animation. Rick Parent Algorithms and Techniques Interpolating Values Animation Animator specified interpolation key frame Algorithmically controlled Physics-based Behavioral Data-driven motion capture Motivation Common problem:

More information

ξ ν ecliptic sun m λ s equator

ξ ν ecliptic sun m λ s equator Attitude parameterization for GAIA L. Lindegren (1 July ) SAG LL Abstract. The GAIA attaitude may be described by four continuous functions of time, q1(t), q(t), q(t), q4(t), which form a quaternion of

More information

Additional mathematical results

Additional mathematical results Additional mathematical results In this appendix we consider some useful mathematical results that are relevant to threedimensional computer graphics but were not considered in the book itself. 0.1 The

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing Interactive Computer Graphics Aliasing and Anti-Aliasing Hearn & Baker, chapter 4-7 D transforms Hearn & Baker, chapter 5 Aliasing and Anti-Aliasing Problem: jaggies Also known as aliasing. It results

More information

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3 Geometric transformations in 3D and coordinate frames Computer Graphics CSE 167 Lecture 3 CSE 167: Computer Graphics 3D points as vectors Geometric transformations in 3D Coordinate frames CSE 167, Winter

More information

Geometric Transformations and Image Warping

Geometric Transformations and Image Warping Geometric Transformations and Image Warping Ross Whitaker SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2009 1 Geometric Transformations Greyscale transformations -> operate

More information

Lecture 5 2D Transformation

Lecture 5 2D Transformation Lecture 5 2D Transformation What is a transformation? In computer graphics an object can be transformed according to position, orientation and size. Exactly what it says - an operation that transforms

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

0_PreCNotes17 18.notebook May 16, Chapter 12

0_PreCNotes17 18.notebook May 16, Chapter 12 Chapter 12 Notes BASIC MATRIX OPERATIONS Matrix (plural: Matrices) an n x m array of elements element a ij Example 1 a 21 = a 13 = Multiply Matrix by a Scalar Distribute scalar to all elements Addition

More information

IMAGE-BASED RENDERING AND ANIMATION

IMAGE-BASED RENDERING AND ANIMATION DH2323 DGI17 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION IMAGE-BASED RENDERING AND ANIMATION Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions Page 1 of 14 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan Matching and Recognition in 3D Based on slides by Tom Funkhouser and Misha Kazhdan From 2D to 3D: Some Things Easier No occlusion (but sometimes missing data instead) Segmenting objects often simpler From

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Coordinate Transformations

CSE 167: Introduction to Computer Graphics Lecture #2: Coordinate Transformations CSE 167: Introduction to Computer Graphics Lecture #2: Coordinate Transformations Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework #1 due Friday Oct

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

Rotations (and other transformations) Rotation as rotation matrix. Storage. Apply to vector matrix vector multiply (15 flops)

Rotations (and other transformations) Rotation as rotation matrix. Storage. Apply to vector matrix vector multiply (15 flops) Cornell University CS 569: Interactive Computer Graphics Rotations (and other transformations) Lecture 4 2008 Steve Marschner 1 Rotation as rotation matrix 9 floats orthogonal and unit length columns and

More information

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x Rotation Matrices and Rotated Coordinate Systems Robert Bernecky April, 2018 Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach 1. The following provides a simplified

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Tentti/Exam Midterm 2/Välikoe 2, December

Tentti/Exam Midterm 2/Välikoe 2, December 1: 2: 3: Extra: Total 1-3: / 23 4: 5: 6: Total 4-6: / 20 Aalto ME-C3100 Computer Graphics, Fall 2015 Lehtinen / Kemppinen, Ollikainen, Puomio Tentti/Exam Midterm 2/Välikoe 2, December 16 2015 Name, student

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

Interpolating/approximating pp gcurves

Interpolating/approximating pp gcurves Chap 3 Interpolating Values 1 Outline Interpolating/approximating pp gcurves Controlling the motion of a point along a curve Interpolation of orientation Working with paths Interpolation between key frames

More information

Orientation & Quaternions

Orientation & Quaternions Orientation & Quaternions Orientation Position and Orientation The position of an object can be represented as a translation of the object from the origin The orientation of an object can be represented

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information